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Background: Lutetium-177-prostate-specific membrane antigen-617 (Lu-PSMA) is
an effective therapy for metastatic castration-resistant prostate cancer (mCRPC).
However, treatment responses are heterogeneous despite stringent positron emis-
sion tomography (PET)-based imaging selection criteria. Molecularly based
biomarkers have potential to refine patient selection and optimise outcomes.
Objective: To identify circulating tumour DNA (ctDNA) features associated with
treatment outcomes for men treated with Lu-PSMA.
Design, setting, and participants: ctDNA from men treated with Lu-PSMA in combina-
tion with idronoxil for progressive mCRPC were analysed using an 85-gene cus-
tomised sequencing assay. ctDNA fractions, molecular profiles, and the presence
of alterations in aggressive-variant prostate cancer (AVPC) genes were analysed
at baseline, cycle 3 and at disease progression.
Intervention: Men received Lu-PSMA with idronoxil every 6 wk for up to six cycles.
Outcome measurements and statistical analysis: Baseline and exit PSMA and fluo-
rodeoxyglucose PET/computed tomography (CT) imaging was conducted at base-
line and study exit. Single-photon emission CT (SPECT) scans were performed 24
h after Lu-PSMA. Blood samples were collected at baseline, cycle 3 and at disease
progression. Cox proportional-hazards models were used to assess associations
and derive hazard ratios (HRs) and confidence intervals (CIs) for associations
between molecular factors, imaging features, and clinical outcomes.
Results and limitations: Sixty samples from 32 men were sequenced (32 at baseline,
24 at cycle 3, four from patients with disease progression); two samples (baseline,
on-treatment) from one individual were excluded from analysis owing to poor
quality of the baseline sequencing data. Alterations in AVPC genes were associated
lsevier B.V. on behalf of European Association of Urology. This is an open access article
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with shorter prostate-specific antigen (PSA) progression-free survival (PFS) and
overall survival (OS) in univariate (HR 3.4, 95% CI 1.5–7.7; p = 0.0036; and HR
3.3, 95% CI 1.4–7.7; p = 0.0063, respectively) and multivariate analyses (HR 4.8,
95% CI 1.8–13; p = 0.0014; and HR 4.1, 95% CI 1.6–11; p = 0.004).
Conclusions: ctDNA alterations in AVPC genes were associated with shorter PSA PFS
and OS among men treated with Lu-PSMA and intermittent idronoxil. These candi-
date molecular biomarkers warrant further study to determine whether they have
predictive value and potential to guide synergistic combination strategies to
enhance outcomes for men treated with Lu-PSMA for mCRPC.
Patient summary: Certain DNA/gene changes detected in the blood of men with
advanced prostate cancer were associated with shorter benefit from lutetium
PSMA, a targeted radioactive therapy. This information may be useful in determin-
ing which men may benefit most from this treatment, but additional research is
needed.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

When added to standard of care (SOC) therapy, lutetium-
177-prostate-specific membrane antigen-617 (Lu-PSMA)
radioligand therapy improves imaging-based progression-
free survival and overall survival among men with prostate
cancer previously treated with at least one prior line of
novel androgen-receptor pathway inhibition and one to
two lines of taxane-based chemotherapy [1,2]. However,
more than one-third of men treated with Lu-PSMA
monotherapy fail to achieve a prostate-specific antigen
(PSA) response of at least 50% despite stringent positron
emission tomography (PET)-based selection criteria [2]
and the duration of benefit is heterogeneous among those
who do experience a response [1,2].

68Gallium (Ga)-PSMA PET imaging is used to identify
the patients most suitable for Lu-PSMA therapy, but crite-
ria have yet to be standardised. A Ga-PSMA PET mean
standardised uptake value (SUVmean) of �10 was predic-
tive of a higher PSA response rate to Lu-PSMA versus
cabazitaxel in the TheraP study [3] and compared to
SOC in the VISION trial [4]. Only a small proportion of
men meet this criterion and a poor response may still
be seen in patients with high SUVmean. It is hypothesised
that radiation resistance is one mechanism underlying
treatment resistance to Lu-PSMA, and thus synergistic
combinations may improve outcomes. Therefore, we con-
ducted the prospective phase 1/2 LuPIN trial of Lu-PSMA
in combination with idronoxil [5], a synthetic flavonoid
derivative of genistein that may have radiosensitising
properties [6].

Metastatic castration-resistant prostate cancer (mCRPC)
is characterised by molecular and phenotypic heterogene-
ity, so it is unlikely that a single predictive biomarker will
adequately predict meaningful treatment outcomes [7].
Our previous analysis of 18 men revealed that variants in
genes related to aggressive-variant prostate cancer (AVPC)
were associated with worse outcomes among men treated
with Lu-PSMA [5]. To build on this knowledge and identify
potential molecular biomarkers associated with Lu-PSMA
treatment response, we performed a molecular analysis
for a subset of patients enrolled in the LuPIN trial and trea-
ted with Lu-PSMA in combination with idronoxil. Here we
report results for serial analyses of cell-free DNA (cfDNA)
from 31 patients treated in the LuPIN study in the context
of their imaging findings and therapeutic outcomes.
2. Patients and methods

2.1. Study design and participants

The patient population included 32 men with mCRPC who had blood

samples prospectively collected while enrolled in the phase 1/2 LuPIN

clinical trial of Lu-PSMA in combination with idronoxil [8]. The study

protocol was approved by the St. Vincent’s Hospital institutional review

board (HREC/17/SVH/19, ACTRN12618001073291) and all patients pro-

vided informed written consent. The LuPIN trial required high PSMA

expression on Ga-PSMA PET/computed tomography (CT) without discor-

dant disease on fluorodeoxyglucose (FDG) PET/CT imaging and progres-

sive mCRPC following at least two lines of taxane-based chemotherapy

and one novel androgen signalling inhibitor (ASI). Patients received up

to six doses of 177Lu-PSMA-617 (7.5 GBq) intravenously once every 6

wk in combination with 400–1200 mg of idronoxil suppositories on

the day of and for 9 d following Lu-PSMA treatment. Additional details

on the study treatment procedures have been published previously [8].

Blood was collected for circulating tumour DNA (ctDNA) analysis on

day 1 of treatment, at 12 wk on treatment (day 1, cycle 3), and 6 wk after

the sixth cycle of treatment (end of treatment, EOT) and/or on disease

progression (PD). Thirty-one of 56 (55%) men on the study had suitable

baseline samples available for this analysis, of whom 23 had on-

treatment samples and four had EOT/PD samples. Ten cfDNA samples

from presumed healthy males aged <30 yr (BioIVT, Westbury, NY,

USA) were used as a normal reference for detecting copy number alter-

ations (CNAs).
2.2. Sample processing and cfDNA assay methods

Samples were analysed using a customised 85-gene hydrid capture–

based cfDNA assay with unique molecular identifiers (UMIs) designed

to detect prostate cancer–relevant single-nucleotide variants (SNVs),

small insertions and deletions (indels), copy number alterations (CNAs),

and TMPRSS2-ERG gene fusions. Assay sensitivity was confirmed in a ref-

erence sample, for which 13/14 (93%) known SNVs at 0.5% variant allele

frequency were detected.
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Table 1 – Baseline characteristics for the 31 patients included in the
analysis

Parameter Result

Median age, yr (IQR) 68 (64–75)
ECOG performance status, n (%)
0–1 30 (97)
2 1 (3)

Median PSA at cycle 1, lg/l (IQR) 329 (55–6)
Median haemoglobin, g/l (IQR)a 121 (110–127)
Median alkaline phosphatase, U/l (IQR)b 162 (90–324)
Disease volume on PSMA PET, n (%)
<20 metastases, no visceral metastasis 6 (19)
�20 metastases and/or visceral metastasis 25 (81)

PSMA PET results
Median SUVmean (IQR) 8.3 (7.3–9.3)
Median SUVmax (IQR) 39 (27–53)
Median tumour volume, ml (IQR) 935 (314–1375)
FDG PET results
Median SUVmax (IQR) 8.1 (5.4–10.0)
Median SUVmean (IQR) 4.0 (3.5–4.3)
Median tumour volume, ml (IQR) 68.0 (19.8–352.8)
Prostate cancer history
Gleason score, n (%)
�7 5 (16)
8–10 19 (61)
Unknown/not available 7 (23)

Prior systemic treatments, n (%)
LHRH agonist/antagonist 31 (100)
Chemotherapy 31 (100)
Docetaxel 31 (100)
Cabazitaxel 31 (100)
Other chemotherapy agent 3 (9)

Novel androgen signalling inhibitor 31 (100)

ECOG = Eastern Cooperative Oncology Group; FDG = fluorodeoxyglucose;
IQR = interquartile range; LHRH = luteinising hormone–releasing hor-
mone; PET = positron emission tomography; PSA = prostate-specific
antigen; PSMA = prostate-specific membrane antigen; SUV = standardised
uptake value.
a Normal range 130–180 g/l.
b Normal range 30–100 U/l.
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cfDNA was extracted from double-spun plasma derived from EDTA

whole blood tubes using a QIAmp circulating nucleic acid kit (Qiagen,

Hilden, Germany) and quantified using a Qubit dsDNA HS Assay kit

(ThermoFisher, Waltham, MA, USA). Library preparation was performed

with 50 ng of cfDNA and xGen Prism DNA Library Preparation kits (Inte-

grated DNA Technologies, USA). The libraries were amplified with xGen

unique dual index primers (Integrated DNA Technologies, Coralville, IA,

USA) and checked using ThermoFisher LabChip GX Touch. Hybrid cap-

ture was performed with 500 ng of library cfDNA pooled in six-plex,

the 10 301 customised xGen discovery probe set (Integrated DNA Tech-

nologies), and an xGen Hybridization and Capture kit (Integrated DNA

Technologies). Captured library pools were sequenced with 150-bp

paired-end reads on an Illumina NovaSeq 6000 platform at the Garvan

Institute of Medical Research.

Sequence data were processed and analysed using a customised

pipeline following Integrated DNA Technologies recommendations with

modifications (Supplementary material). In brief, demultiplexed FASTQ

files were converted to unmapped BAM files, and UMIs were extracted

and added to the RX tag. Reads were aligned to the human reference

genome hg38 using BWA-MEM. Sequence error correction was per-

formed using a combined read family approach. Consensus reads were

realigned, filtered, and clipped. Variants were called using VarDict [9]

and copy number ratios were obtained with CNVkit [10]. ctDNA fractions

were estimated from allele fractions observed for heterozygous germline

single-nucleotide polymorphisms (SNPs). Copy number loss and gain

events were called on the basis of copy number ratios after adjusting

for the ctDNA fraction. TMPRSS2-ERG gene fusions were called on the

basis of split reads or copy number loss.

2.3. Imaging procedures and analyses

Ga-PSMA and FDG PET/CT scans were performed at baseline and trial

exit (either after completion of 6 cycles of treatment or at cessation of

treatment because of progressive disease [11]). In addition to baseline

and exit PET imaging, Lu-PSMA single-photon emission CT (SPECT)/CT

scans were acquired 24 h after each dose of Lu-PSMA for quantitative

analyses of total tumour volume, SUVmax, and SUVmean using MIM

software (Cleveland, OH, USA) [11,12].

2.4. Study endpoints

The primary endpoint for the LuPIN trial was safety and tolerability

assessed using National Cancer Institute Common Terminology Criteria

for Adverse Events v5.0. Secondary endpoints used to correlate molecu-

lar characteristics to outcomes included the PSA decline from baseline

(any decline and a decline �50% [PSA50]) at any time point, Prostate Can-

cer Working Group 3–defined PSA progression-free survival (PFS), and

overall survival (OS), defined as time from day 1 of treatment to death.

Exploratory endpoints included associations between treatment out-

comes (PSA response, PSA PFS, OS) and baseline ctDNA fraction, change

in ctDNA fraction (difference between baseline and on-treatment ctDNA

fraction), presence of variants, including AVPC-associated genes (TP53,

PTEN, RB1), and changes in variants in serial samples.

2.5. Statistical analysis

Owing to the exploratory nature of this molecular substudy, the sample

size was based on the availability of suitable samples from men enrolled

in the LuPIN trial rather than formal power calculations. Patient charac-

teristics are reported as the median and interquartile range (IQR) or as

the absolute frequency and proportion. A two-sided exact binomial

95% confidence interval (CI) was calculated for PSA response rates.

Time-to-event outcomes (PSA PFS, OS) were analysed using the

Kaplan-Meier method and 95% CIs were calculated (SPSS; SPSS Inc., Chi-
cago, IL, USA). Kaplan-Meier survival and univariate and multivariate

Cox proportional-hazards models were used to assess associations

between molecular factors, PET/SPECT imaging features, and clinical out-

comes and derive hazard ratios (HRs) using R version 4.3.0 (R Foundation

for Statistical Computing, Vienna, Austria). Multivariate analysis

included known prognostic factors recorded just before cycle 1 of treat-

ment (elevated alkaline phosphatase, anaemia [haemoglobin below the

lower limit of normal], and volume of disease [high volume and/or vis-

ceral metastases]), with p values adjusted for testing of multiple genes

using the Benjamini-Hochberg method [13].
3. Results

3.1. Patient characteristics and outcomes

A total of 60 samples (32 baseline, 24 on-treatment, four
EOT/PD) from 32 patients were initially sequenced, but
two samples (baseline, on-treatment) from one individual
were excluded from analysis owing to poor quality of the
baseline sequencing data. The baseline characteristics for
the men included in the final analysis are summarised in
Table 1. Median follow-up was 19.1 mo for the trial popula-
tion. For the overall trial population (n = 56), the PSA50

response rate was 61% (95% CI 47–74%), median PSA PFS
was 7.5 mo (95% CI 5.9–9.0), and median OS was 19.7 mo
(95% CI 9.5–30). For the 31 men included in this analysis,
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the PSA50 response rate was 65%, median PSA PFS was 6.3
mo, and median OS was 15.8 mo.
3.2. ctDNA fraction

The ctDNA fraction was estimated in 27/31 baseline sam-
ples (27%, IQR 21.5–37.5%), 16/23 cycle 3 samples, and three
of four EOT/PD samples based on the allele fractions
observed for SNPs subject to loss of heterozygosity (LOH;
Supplementary material). The remaining samples did not
include informative SNPs, consistent with either the
absence of ctDNA or a lack of SNPs with LOH in the regions
of the genome analysed. Changes in estimated ctDNA frac-
tion between baseline and cycle 3 were correlated with
changes in tumour volume on PSMA SPECT/CT (q = 0.48,
p = 0.06; Supplementary Fig. 1). A reduction in ctDNA frac-
tion or tumour volume showed a trend for better PSA PFS or
OS (Supplementary Fig. 1).
3.3. ctDNA molecular profiles

Commonly altered genes and pathways in baseline samples
(n = 31) are summarised in Figure 1 and included AR (65%),
TP53 (23%), RB1 (26%), TMPRSS2-ERG (42%), PI3K pathway
genes (42%), WNT pathway genes (35%), and DNA repair
genes (58%). Overall findings for the patient cohort are sum-
marised in Supplementary Figure 2. These findings are gen-
erally consistent with previous studies in mCRPC [14]. A
longitudinal analysis comparing baseline and cycle 3 time
points did not show treatment-associated changes for indi-
vidual genes.
Fig. 1 – Commonly altered genes and pathways in baseline samples sorted by d
variation, indel, or gene fusion (TMPRSS2-ERG).
3.4. ctDNA variants of interest and outcome correlates

3.4.1. AVPC genes
One or more alterations in AVPC genes (PTEN, RB1, TP53)
were associated with shorter PSA PFS and OS on both uni-
variate and multivariate analysis (Fig. 2); in particular,
TP53 alterations were strongly associated with worse
outcomes.

3.4.2. Other potential biomarkers associated with outcomes
Associations between molecular changes, including SNVs
and CNAs, in individual genes and PSA PFS outcomes were
analysed in univariate analyses and in multivariate analyses
adjusted for known prognostic factors. Results are sum-
marised as volcano plots of false discovery rate–adjusted p
values and log(HR) in Figure 3. The gene most strongly asso-
ciated with PSA PFS on multivariate analysis was TP53 (HR
21.7, 95% CI 3.9–119.3; adjusted p = 0.015). NCOA2, MTOR,
PIK3R1, and NBN were also associated with shorter PSA
PFS (adjusted p = 0.015, 0.017, 0.023, and 0.025, respec-
tively; HRs included in Supplementary Fig. 3). BRIP1 alter-
ations were associated with short PSA PFS (adjusted
p = 0.018) but all of these alterations co-occurred with
NCOA2 amplifications.

In a gene set analysis, PI3K pathway alterations shown in
Figure 1 were associated with shorter PSA PFS (HR 3.7;
p = 0.0022) and OS (HR 4.1; p = 0.0025) on univariate anal-
ysis and on multivariate analysis (HR 3.7; p = 0.0058; and
HR 3.6; p = 0.013, respectively).

3.4.3. Outcomes for participants with SUVmean >10
Five men (16%) had SUVmean >10 on baseline PSMA PET.
There were no significant differences in median PSA PFS
escending estimated ctDNA fraction. Asterisks indicate a single-nucleotide



Fig. 2 – (A) Swimmer plot for prostate-specific antigen (PSA) progression-free survival (PFS). Triangles indicate progression. Kaplan-Meier curves for survival
outcomes stratified by the presence (red) or absence (blue) of aggressive-variant prostate cancer gene alterations: (B) univariate analysis for PSA PFS, (C)
univariate analysis for overall survival (OS), (D) multivariate analysis for PSA PFS, and (E) multivariate analysis for OS. HR = hazard ratio with 95% confidence
interval in parentheses.
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Fig. 3 – Volcano plots of genes associated with prostate-specific antigen progression-free survival outcomes on (A) univariate analysis and (B) multivariate
analysis incorporating baseline clinical prognostic factors. Associations with a p value <0.05 after adjustment for the false discovery rate are highlighted in
green. HR = hazard ratio.
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(p = 0.62) and OS (p = 0.96) between the SUV <10 and >10
groups.
4. Discussion

In this study we explored molecular features of ctDNA and
their associations with treatment outcomes among men
with mCRPC treated with Lu-PSMA in combination with
intermittent idronoxil as a radiosensitiser. Alterations in at
least one AVPC gene were associated with shorter PSA PFS
and OS. Activating mutations in the PI3K pathway and indi-
vidual alterations in the AR-associated gene NCOA2 were
also correlated with shorter survival outcomes. Baseline
PSMA PET SUVmean, ctDNA fraction, and PSMA PET tumour
volume were not associated with outcomes, but a decrease
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in tumour volume at 12 wk (cycle 3) and a reduction in
ctDNA fraction may be associated with better outcomes,
although the numbers were small in these groups.

With the success of the VISON trial, Lu-PSMA therapy is
increasing in popularity globally, but treatment outcomes
are heterogeneous, with only a small portion of patients
experiencing a prolonged response. Information on
biomarkers associated with Lu-PSMA treatment outcomes
is limited, but our study identified potential biomarkers
for further study that may help in refining patient selection
for this efficacious but costly treatment. It was previously
found that SUVmean was associated with better outcomes,
but this generally applied to only one-third of men treated
with Lu-PSMA [3,4]. In addition, correlation between
changes in total tumour volume on PET and SPECT imaging
and Lu-PSMA outcomes has been observed [11,12]. How-
ever, in an ideal scenario a predictive biomarker would
already be present at baseline or could be used in combina-
tion with imaging parameters to improve the predictive
value. ctDNA evaluation has the added benefit of potentially
identifying alternative therapeutic options (eg, PARP inhibi-
tors for BRCA2 mutations) and mechanisms of treatment
resistance while being relatively noninvasive.

Notably, PI3K pathway–activating mutations and AR-
associated gene alterations were associated with worse out-
comes in our study. There is significant crosstalk between
the PI3K and AR pathways, which may serve as a mecha-
nism of treatment resistance when either pathway is tar-
geted individually [15]. PSMA downregulation, as seen
with PSMA-targeting agents such as Lu-PSMA, is associated
with AR signalling activation. Potentially, aberrant AR sig-
nalling induced by NCOA2 alterations [16,17] may reduce
tumour reliance on PI3K signalling and therefore PSMA
expression, with a reduction in Lu-PSMA uptake intracellu-
larly [18]. In addition, PI3K activation has been identified as
a mechanism underlying radiotherapy resistance [19,20].
Therefore, co-administration of Lu-PSMA with a PI3K path-
way inhibitor and/or more potent AR pathway inhibitor
may represent a strategy to overcome Lu-PSMA resistance.

While this exploratory analysis has highlighted several
therapeutic possibilities, the study is limited by the rela-
tively small sample size and single-arm design. The associ-
ation of AVPC alterations with poorer outcomes may be
prognostic rather than predictive, although the strongest
correlation was observed for PSA PFS rather than OS. Fur-
ther work is needed to analyse larger data sets for men trea-
ted with Lu-PSMA to clarify these potential molecular
biomarkers and ultimately improve patient outcomes.
5. Conclusions

We identified biomarkers associated with treatment out-
comes among men with mCRPC treated with Lu-PSMA that
may be evaluated in future studies to ascertain their predic-
tive value in refining patient selection for this therapy.
AVPC gene alterations strongly associated with shorter
PSA PFS and OS and PI3K activating mutations may repre-
sent a therapeutically targetable mechanism of treatment
resistance.
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