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Abstract We report the findings from a patient who presented with a concurrent
mediastinal germ cell tumor (GCT) and acute myeloid leukemia (AML). Bone marrow
pathology was consistent with a diagnosis of acute megakaryoblastic leukemia (AML M7),
and biopsy of an anterior mediastinal mass was consistent with a nonseminomatous GCT.
Prior studies have described associations between hematological malignancies, including
AML M7 and nonseminomatous GCTs, and it was recently suggested that a common
founding clone initiated both cancers. We performed enhanced exome sequencing on
the GCT and the AML M7 from our patient to define the clonal relationship between the
two cancers. We found that both samples contained somatic mutations in PTEN (C136R
missense) and TP53 (R213 frameshift). The mutations in PTEN and TP53 were present at
∼100% variant allele frequency (VAF) in both tumors. In addition, we detected and
validated five other shared somatic mutations. The copy-number analysis of the AML
exome data revealed an amplification of Chromosome 12p. We also identified a
heterozygous germline variant in FANCA (S858R), which is known to be associated with
Fanconi anemia but is of uncertain significance here. In summary, our data not only
support a common founding clone for these cancers but also suggest that a specific set
of distinct genomic alterations (in PTEN and TP53) underlies the rare association between
GCT and AML. This association is likely linked to the treatment resistance and extremely
poor outcome of these patients. We cannot resolve the clonal evolution of these tumors
given limitations of our data.

[Supplemental material is available for this article.]

INTRODUCTION

Since first recognized in 1985, multiple studies have described the unique and rare associ-
ation between hematological malignancies and germ cell tumors (GCTs) (DeMent et al.
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1985; Nichols et al. 1985, 1990; Woodruff et al. 1995; Hartmann et al. 2000). Most common-
ly, these cases involve the megakaryocytic lineage of hematopoiesis, frequently resulting in
acute megakaryoblastic leukemia (AML M7) and primary mediastinal nonseminomatous
GCTs. Initially, the biologic relationship between these two entities was elusive, but the first
definitive overview of the syndrome by Nichols et al. (1990) described the significance of an
isochromosome 12p in the acutemyeloid leukemia (AML) samples from these patients in that
it “suggests that the hematologic neoplasm and the mediastinal germ-cell tumor arose from
a common progenitor cell” (Hartmann et al. 2000). Isochromosome 12p is the most common
chromosomal abnormality identified in GCTs but is exceedingly rare in AML that is not asso-
ciatedwith aGCT (Gibas et al. 1986; Hartmann et al. 2000). A potential shared origin of these
two malignancies has been further supported by numerous case reports describing a com-
mon isochromosome 12p in the corresponding tumor samples (Chaganti et al. 1989;
Landanyi et al. 1990; Ikdahl et al. 2007). These studies laid the groundwork for a potential
shared origin of the GCT and AML.

There are two distinct theories that have been generally postulated to explain how these
two malignancies could arise from a shared founding clone. In the first, a primitive mesoder-
mal stemcell is the founding clone and harbors the initiating alteration(s) that drives both can-
cers. The initiating cell would likely arise in early development in the aorta–gonad–
mesonephros (AGM) region, which is the origin for stem cells that give rise to definitive hema-
topoiesis (Medvinsky and Dzierzak 1996). For unclear reasons, cells derived from the found-
ing clone would remain in the AGM region but would also be present in the bone marrow—
and could then give rise to both theGCT in the chest and the AML in the bonemarrow. In the
alternative theory, the AML is derived directly from cells from the GCT (mostly likely from the
yolk sac component of aGCT). Somepopulation of cells from theGCT “seed” (ormetastasize
to) the bone marrow, which gives rise to the AML (as reviewed in Zhao and Dowell 2012).

The argument for a shared common origin was strengthened by a recent study, which
reported the results of targetedmassively parallel sequencing of 33 genes, standard cytoge-
netic/fluorescence in situ hybridization analysis and single-nucleotide polymorphism (SNP)
array profiling on samples from a patient with AML M7 and a synchronous mediastinal
GCT. The authors identified shared somatic mutations in PTEN (G251V missense) and
TP53 (L130P missense), as well as the presence of isochromosome 12p, in both the GCT
and AML samples, which further supports that a common founding clone initiated both can-
cers. However, both the PTEN and TP53 mutations were present at relatively low variant al-
lele frequencies (VAFs) in both samples in that study. For example, in the GCT, the TP53
mutation was only present at a VAF of 5.97% and the PTEN mutation at a VAF of 15.12%
(with VAFs of 20.35% and 27.59% in the AML sample, respectively) (Oshrine et al. 2014).
The low VAFs were most likely due to low tumor cell content of the samples that were se-
quenced, and these data are most consistent with shared mutations present in the founding
clone of both cancers.

Herein, we report the results of enhanced exome sequencing from a case of a male pa-
tient with a mediastinal GCT and synchronous AML M7. By sequencing minute amounts of
tumor DNA, we were able to identify and validate shared somatic mutations in TP53, PTEN,
and five other genes (of unknown pathogenic significance). Our data support the hypothesis
that these shared alterations are present in the founding clone of the tumors. The copy-num-
ber analysis of the AML exome data revealed an amplification of Chromosome 12p (consis-
tent with an isochromosome 12p), which was not detected on standard cytogenetics. We
also identified a heterozygous germline variant in FANCA (S858R), which is known to be as-
sociated with Fanconi anemia but is of uncertain significance here. This is therefore the sec-
ond case report to describe the presence of shared TP53 and PTEN somatic mutations in the
rare syndrome of concurrent GCT and AMLM7, suggesting that thesemutations synergize in
an important way to contribute to these tumors.
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RESULTS

Clinical Presentation
The patient was a 33-yr-old Caucasian male with no significant past medical history who pre-
sented with a 1-mo history of generalized weakness, a 40-pound weight loss, and dyspnea
on exertion. His initial workup was notable for a platelet count of 5000/µL, hemoglobin of
13.1 g/dL, and a white blood count of 9200 cells/µL with a normal differential. A chest radio-
graph revealed evidence of a large anterior mediastinal mass; a computed tomography (CT)
scan of the chest was performed that showed a 10 × 7.7 × 11-cm heterogeneous enhancing
anterior mediastinal mass (Fig. 1). Given the suspicion for a GCT in this young man, standard
tumor markers were drawn: α-fetoprotein (AFP) was 237 ng/mL (upper limit of normal [ULN]
was 8.1 ng/mL), lactic acid dehydrogenase (LDH) was 6760 U/L (ULN 250 U/L), and β-human
chorionic gonadotropin (β-hCG) was <5 (normal <5 IU/L). Given the patient’s abnormal
blood counts, a bone marrow biopsy was done and revealed a moderately fibrotic marrow
with an abnormal population of large, mononuclear cells with irregular contours. The overall
cellularity of the marrow was 70% from the core biopsy section (Fig. 2A). Immunostaining of
the core showed that a subset of the large cells were CD61+ and had weak CD117 expres-
sion. By cytochemistry, these cells were negative for myeloperoxidase and periodic acid-
Schiff (PAS) staining with focal nonspecific esterase (NSE) positivity. Immunohistochemistry
for GCT markers was negative (AFP, OCT4, placental alkaline phosphatase [PLAP], and
SALL4). Overall, the CD61 immunostaining was consistent with megakaryoblasts (Fig. 2B).
The hemodilute aspirate showed 15% large blasts with flow cytometry demonstrating that
a subset of these blasts were CD41+, CD61+, and CD117dim (CD34− and CD33−).
Cytogenetic studies revealed a hyperdiploid karyotype: 59–69, XXY; +X, +2, −3, −4, −6,
−8, +10, −11, −12, −13, −16, −18, +19, +20, +21, +1–4mar[composite karyotype in 9/25
metaphases]/46, XY[17]. Taken together, these findings were consistent with a diagnosis
of acute megakaryoblastic leukemia, or AML M7 under the former French–American–
British (FAB) classification (Bennett et al. 1976).

ACT-guided core needle biopsy of themediastinal mass showed necrotic tissuewith one
island of viable cartilage cells suggestive of a GCT. The patient then underwent video-
assisted thoracic surgery and incisional biopsy of the mediastinal mass, which revealed
necrotic fragments of tissue with scattered foci of moderately to poorly differentiated

Figure 1. Computed tomography scan of the chest revealed a large, anterior mediastinal mass (red arrow).
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adenocarcinoma (Fig. 3). Immunostaining was positive for pancytokeratin, CK7, and AFP re-
activity, with nonreactivity for CK20, OCT4, SALL4, PLAP, TTF1, and napsin-A. Overall, the
diagnosis was consistent with a nonseminomatous GCT. Other than the isolated island of
cartilage from the first biopsy, we did not observe the presence of other germ layers.
Specifically, there was no identified yolk sac component to either biopsy.

The initial pathologic diagnosis of both the AML M7 and GCT were difficult. The patho-
logic interpretation of the diagnostic bone marrow biopsy was complicated by marrow fibro-
sis and numerous background histiocytes (not uncommon in AML M7) and moderate crush
artifact (Hahn et al. 2015). Although the case did not meet the World Health Organization
(WHO) guidelines for a diagnosis of AML with >20% blasts, the aspirate with 15% blasts
was hemodilute, and the overall findings were consistent with a diagnosis of AML M7

Figure 2. (A) A low-magnification (10×) view of a section from the diagnostic bone marrow biopsy shows a
moderately fibrotic marrow, many infiltrating histiocytes, and an abnormal population of large, mononuclear
cells. (B) A higher-magnification (40×) view of the diagnostic bonemarrow section with immunohistochemistry
highlighting the CD61+ megakaryoblasts (brown staining).

Figure 3. Low-magnification (10×) view of a section from the incisional biopsy of the mediastinal mass, which
shows necrotic fragments of tissue with scattered foci of moderately to poorly differentiated adenocarcinoma
(red arrows).

A common clone gives rise to a GCT and AML

C O L D S P R I N G H A R B O R

Molecular Case Studies

Lu et al. 2016 Cold Spring Harb Mol Case Stud 2: a000687 4 of 15



(Vardiman et al. 2002). Similarly, despite two biopsies, the diagnosis of the GCT was compli-
cated by the extensive necrosis of the tumor samples. Nonetheless, it was clear that the dis-
ease in the bone marrow and the chest were two distinct malignancies. Furthermore, the
issues with the suboptimal tumor samples led to unique challenges for comprehensive se-
quencing, which will be outlined in detail below.

The patient was initially treated with standard “7+3” AML induction chemotherapy (with
cytarabine and idarubicin), and a day-15 bonemarrow biopsy showed a hypocellular marrow
with no evidence of leukemia. He then had a day-30 bone marrow biopsy, which showed a
normocellular marrow with no evidence of leukemia. As his blood counts had recovered, he
met the criteria for complete remission and went on to receive one cycle of high-dose cytar-
abine consolidation therapy for AML; however, shortly thereafter his GCT markers began to
rise (AFP 683.8 ng/mL, LDH 346 U/L, and β-hCG 18 IU/L). He was then treated with two cy-
cles of etoposide, ifosfamide, and cisplatin (VIP regimen) for his GCT. The patient did have
improvement in his tumor markers with VIP, but further restaging with imaging was not yet
performed.

Fifteen days after his second cycle of VIP, he presented with nausea, vomiting, and al-
tered mental status. A brain magnetic resonance imaging (MRI) showed evidence of marked
leptomeningeal enhancement, and a lumbar puncture with cerebrospinal fluid (CSF) cytolo-
gy confirmed central nervous system relapse of AMLM7. The patient was treated with seven
doses of intrathecal cytarabine, and his CSF cytology cleared of blasts. Unfortunately, the pa-
tient’s mental status deteriorated several weeks after the completion of his intrathecal che-
motherapy, and he expired 5 mo after his initial diagnosis. Although an autopsy was not
performed, the cause of death was presumed to be secondary to persistent central nervous
system (CNS) involvement with leukemia.

Genomic Analysis
To study the possible clonal relationship between the GCT and AML, we assayed these tu-
mor specimens using “enhanced exome sequencing,” which augments a standard exome-
capture reagent with additional probes covering the coding sequences for all 264 recurrently
mutated genes (RMGs) that have been identified in AML (Cancer Genome Atlas Research
Network 2013; see Methods). This approach typically provides ∼100× median coverage
over the standard exome-target regions but increases coverage of the RMG target space
to an average of ∼400×–500×. As noted above, the tumor samples were not optimal for se-
quencing studies. Therefore for the GCT, a pathologist performed laser capturemicrodissec-
tion on sections of the formalin-fixed paraffin-embedded (FFPE) block from the second
mediastinal biopsy to isolate areas that appeared to have been viable tumor. We isolated
a total of 2 ng of GCT genomic DNA (gDNA) via this method before exhausting the FFPE
block. Next, as the cryopreserved cells from the diagnostic hemodilute bone marrow aspi-
rate only contained 15% blasts, we performed flow cytometry–based cell sorting to enrich
for the blasts using a gating strategy for viable CD61+ leukemic blasts. We isolated a total
of 48 ng of AML gDNA via this method. The low yields of gDNA necessitated using
whole-genome amplification (WGA) on these samples to ensure that we could obtain suffi-
cient DNA for exome-capture hybridization. We performed WGA on the entire GCT gDNA
isolate (as described in the Methods) and on 8 ng of the AML gDNA prior to library gener-
ation, capture, and sequencing. The remaining 40 ng of AML gDNA was not amplified but
used for library generation (with a unique barcode adaptor) and captured independently be-
fore sequencing.We isolated gDNA froma skin biopsy obtained at the time of the diagnostic
bone marrow biopsy and sequenced as above as a “normal” comparator to define the
somatic status of mutations.
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A minimum of 20× coverage was achieved for 35%, 19%, 62%, and 98% of the exome-
target space for the GCT WGA, AML WGA, AML gDNA, and the skin gDNA, respectively.
The low sequence coverage obtained using WGA libraries was typical for amplified low-in-
put DNA samples, as was the low coverage obtained from using only 40 ng of input gDNA
for the unamplified AML capture (we typically use aminimum of 150 ng of input gDNA for an
exome library).

The low coveragemade variant calling challenging, so in addition to our standard variant
calling pipeline, we used extensivemanual review and Sanger validation of putative calls. For
each of the three tumor libraries, there were thousands of putative variants called, but most
were low-frequency artifacts, likely resulting from the WGA and/or insufficient coverage. By
limiting the analysis to protein-coding regions and focusing on data from the sequencing of
the higher-quality nonamplified gDNA from the AML, we filtered the list down to 47 variants
that had VAFs of >15% in the AML gDNA sample and were putatively shared somatic events
between the tumor samples. Manual review further culled this list to 29 potential variants,
10 of which we labeled “high confidence” (by manual review). We also included a PTENmu-
tation, despite it having low read support in the GCT sample, as it is a well-known tumor sup-
pressor, and four other mutations that were not “high confidence” but did have supporting
reads in all tumor samples (ALG1LP9, RASAL3, MT-ND6, and CRTAC1—none with estab-
lished roles in cancer pathogenesis). In total, 15 mutations were chosen for Sanger valida-
tion. Out of the 15 candidate variants, seven variants were validated as somatic in both
samples, two variants were validated as somatic in only the AML M7 sample, two variants
were validated as germline mutations, one variant (a deletion) was not detected in any tumor
library, and three were in amplicons that failed sequencing reactions. These three amplicon
sequences matched multiple places on the targeted chromosomes, as it was not possible to
design primers that were unique to the target. As a result, we likely generated a mixed
polymerase chain reaction (PCR) product, which resulted in low-quality trace sequences
(Table 1; Supplemental Fig. 1). Of the coding somatic variants that we validated, none has
mutations at the identical amino acid position reported in COSMIC, other than PTEN and
TP53, which do have recurrent mutations at each respective location (the mutation data
were obtained from the Sanger Institute CatalogueOf Somatic Mutations In Cancer website,
http://www.sanger.ac.uk/cosmic) (Bamford et al. 2004).

Of the seven somatic variants observed in both tumors, we detected a frameshift dele-
tion in TP53 (R213fs_del) and a missense mutation in PTEN (C136R) (Fig. 4). Both mutations
had VAFs approaching 100% for both samples in the exome data suggesting that both mu-
tations were homozygous (Fig. 4C). Consistent with this observation, our analysis of the
gAML M7 data is consistent with loss of heterozygosity (LOH) for genomic segments includ-
ing these two genes (Supplemental Table 1). Sequence coverage for the GCT samples was
very low (with 14 and two reads, respectively), so the VAF estimates are less reliable for that
sample. The Sanger trace for the TP53 deletion appears homozygous in theGCT sample, but
is not as clear for the PTENmutation (Fig. 4A,B). To exclude an artifact as a consequence of
WGA, we isolated 47 ng of total genomic DNA from the first mediastinal core biopsy of the
GCT (predominantly necrotic tumor) and again performed Sanger sequencing for the TP53
and PTEN alterations. The PTEN reaction failed; however, the TP53 sequencingwas success-
ful and confirmed that the deletion appeared to be homozygous.

In addition to the shared somatic variant analysis, we performed copy-number analysis
using the exome-sequence data from the gAML M7 sample and detected an amplification
of Chromosome 12p consistent with an isochromosome 12 (Fig. 5). As noted in the Clinical
Presentation subsection, the AML karyotype from conventional cytogenetics was extremely
complex with evidence of -12 in the hyperdiploid [triploid] karyotype but no evidence of iso-
chromosome 12p (there were several marker chromosomes that were not identified, howev-
er). We were unable to perform copy-number analysis on the exome data from the GCT
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because of the low coverage. Although amplification/isochromosome of 12p is the most
common cytogenetic abnormality in GCTs, this feature is not common in AML (Nichols
et al. 1985; Gibas et al. 1986; Bosl et al. 1989).

Finally, we performed a germline analysis on the high-quality exome data derived from
the skin sample (see Supplemental Table 2). We detected a heterozygous germline variant in
FANCA (S858R) that was validated by Sanger sequencing (at a VAF of 53% with 79 reference
allele reads and 88 variant allele reads; see Supplemental Fig. 2 for Sanger validation results).
This mutation is known to be associated with Fanconi anemia, an autosomal-recessive

Figure 4. Shared somatic mutations identified in TP53 (A) and PTEN (B) using exome sequencing and later
validated by Sanger sequencing. Variant allele fraction (VAF) of these two mutations is listed in C. Sanger se-
quencing for the PTEN and TP53 variants was also done on unamplified gDNA isolated from the necrotic GCT
(germ cell tumor) sample from the first mediastinal biopsy, which also confirmed the results depicted below.
AML M7, acute megakaryoblastic leukemia.

Figure 5. Copy-number analysis of the unamplified AML M7 sample demonstrated amplification of
Chromosome 12p. The plot is “noisy” because of the low-sequencing coverage of the AML sample.
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disorder (Savino et al. 2003). The mutation is of uncertain significance here as it is heterozy-
gous, and no known complementation partner was identified.

DISCUSSION

The syndrome of associated hematologic malignancies and mediastinal GCTs is extremely
rare but well documented in the literature (Nichols et al. 1985; Woodruff et al. 1995;
Hartmann et al. 2000; Yu et al. 2011). A nonseminomatous mediastinal GCT and an associ-
ated hematologic neoplasm that most often involves the megakaryocytic lineage of hema-
topoiesis characterize the syndrome. This most commonly manifests as acute
megakaryoblastic leukemia (AML M7); although, it has also been associated with myelo-
monocytic leukemia, myelodysplasia with abnormal megakaryocytes, and essential throm-
bocythemia (Nichols et al. 1985). Prior reports observed a median time of ∼6 mo from the
diagnosis of the GCT to diagnosis of the hematologic disease, with rare reports of a synchro-
nous presentation, as seen in our patient (Nichols et al. 1985; Hartmann et al. 2000).
Generally, this syndrome must be distinguished from a primary malignancy with a therapy-
related secondary malignancy (i.e., a primary GCT and then a secondary AML, which typical-
ly develops at least a year following exposure to cytotoxic chemotherapy), but that potential
scenario is not a complicating factor in this case (Nichols et al. 1985; Yu et al. 2011).

Isolated de novo AML M7 is also very rare in adults, only accounting for <1% of all AML
cases. Outcomes for patients with isolated AMLM7 are very poor, with a median overall sur-
vival reported between ∼4 and 10 mo (Hahn et al. 2015). Similarly, a primary mediastinal
nonseminomatous GCT is also a rare cancer, because extragonadal GCTs account for only
<5% of GCTs in males. Primary mediastinal nonseminomatous GCTs (in the absence of an
associated hematologic malignancy) also have a poor prognosis when compared with testic-
ular (or extragonadal retroperitoneal) nonseminomatous GCTs with a 5-yr overall survival
rate of only 45% (Bokemeyer et al. 2002).

The hematologic malignancies associated with primary mediastinal GCTs typically
behave aggressively, with patients frequently succumbing to direct effects or complications
of the hematologic malignancy, either before initiation of therapy or after achieving a short-
lived response to treatment. The prognosis for these patients is extremely poor, with a me-
dian overall survival of only ∼5 mo (Hartmann et al. 2000). Allogeneic stem cell transplant
represents the only curative approach for patients, but few patients are able to move forward
to transplantation (Hiramatsu et al. 2008).

Multiple theories have surfaced in an attempt to explain the connection between the
GCT and AML. Previous reports have proposed that these malignancies originated from a
common, early (i.e., mesodermal) stem cell progenitor, developing separately along germ
cell and hematopoietic lines and resulting in the GCT and hematologic malignancy, respec-
tively (Lee 1994). Alternatively, others have argued that the syndrome resulted from the dif-
ferentiation of a transformed germ cell into the hematopoietic lineage (Bosl et al. 1989;
Landanyi et al. 1990; Orazi et al. 1993). This proposed clonal relationship was initially estab-
lished by the demonstration of isochromosome 12p in bothGCT and hematologicmalignan-
cy specimens (Nichols et al. 1985; Hartmann et al. 2000; Yu et al. 2011). However, a later
study presented evidence for hematopoietic cells within the yolk sac component of GCTs
that morphologically resembled the leukemic blasts found in the bone marrow of four pa-
tients, suggesting that leukemia developed from a differentiated component of the GCT
that subsequently “metastasized” to the bone marrow to cause leukemia (Orazi et al.
1993). Despite these findings, further elucidation of the genomic link between these malig-
nancies has been slow to develop, on account of their rarity (Nichols et al. 1985, 1990;
Chaganti et al. 1989; Woodruff et al. 1995; Yu et al. 2011). It should again be noted that
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we did not identify a yolk sac component from the patient’s GCT biopsies, which may have
been a result of the extensive amount of necrosis present in these samples. This is one lim-
itation of the current study in terms of defining the specific cell of origin of these two related
tumors.

More recently, Oshrine et al. (2014) demonstrated shared mutations in TP53 (L130P
missense) and PTEN (G251V) in a male patient with concurrent AML M7 and a mediastinal
nonseminomatous GCT. The patient also had evidence of isochromosome 12p in both can-
cers. In our case, enhanced exome sequencing was carried out on the AML M7 and GCT
samples, and we identified common somatic mutations in TP53 (R213fs_del) and PTEN
(C136R missense), which were confirmed through Sanger sequencing. Importantly, we vali-
dated five additional shared mutations between the AML M7 and the GCT (in RASAL3,
MT-ND6, SLC9A2, ACPP, and PCF11). Although the significance of any of these particular
mutations to tumorigenesis is unknown (none are recurrently mutated in AML), the charac-
terization of a total of seven shared somatic variants between the GCT and AML M7 firmly
establishes the presence of a shared founding clone between the two distinct malignancies.
Furthermore, as demonstrated in numerous previous reports, wewere able to identify an am-
plification of Chromosome 12p in the AML M7, further supporting a common clonal ances-
try. Unfortunately, wewere not able to perform a copy-number analysis on theGCT given the
data quality, and the limited coverage of the gAML precluded a detailed copy-number anal-
ysis, which is already difficult with exome data. An improved copy-number analysis of both
the GCT and AML would have added power to our study and may have made it possible to
infer the clonal evolution of the cancers. Moreover, as this was exome data, we also do not
have information on structural variation, which should be recognized as another limitation of
the current work.

We identified two variants that were specific to the AML M7 sample (in MDGA1 and
CORO7). Again, these variants have no clear link to AML leukemogenesis and are probably
passenger mutations. It is also possible that they do not represent subclonal mutations that
are specific to the AML sample—they may not have been detected in the GCT sample
because of limitations associated with sequencing a WGA sample, including low sequence
coverage and amplification-induced bias (Pinard et al. 2006). Other than the TP53mutation,
we did not identify any other mutation in a gene that is known to be recurrently mutated in
AML.

Germline analysis revealed a heterozygous germline variant in FANCA (S858R). The
S858R mutation is known to be associated with Fanconi anemia, which is an autosomal-
recessive disorder (Savino et al. 2003). The mutation is of uncertain significance in our pa-
tient, because it is heterozygous with no known complementation partner identified. It
should be noted, however, that Oshrine et al. also found a heterozygous germline mutation
of unknown significance, an ATM D1080E missense mutation, in their patient. Although in-
volved in different pathways, both genes play pivotal roles in DNA damage repair.

PTENmutations and isochromosome 12p are exceedingly rare in AML. We identified no
PTEN mutations in the 200 cases of AML sequenced in the TCGA project (Cancer Genome
Atlas Research Network 2013). Isochromosome 12p alterations are also as uncommon in
AML, as previously shown in multiple studies (see Nichols et al. 1990). Conversely, TP53mu-
tations are relatively rare in GCTs (Masters and Köberle 2003). We now report the second
case to describe the association between shared TP53 and PTEN mutations, as well as an
alteration in Chromosome 12p, in the syndrome of concurrent GCT and AMLM7. Themutual
occurrence of a mutation in both PTEN and TP53 has not been previously reported in AML,
other than the current study and the study by Oshrine et al. (2014).

In summary, our data provide some of the strongest evidence to date that the tumors in
this syndrome arise from a shared founding clone (i.e., a single cell ultimately evolved into
both tumors). Given the limitations of our data, we could not deduce the clonal evolution
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of the GCT and AML, however. More specifically, we could not determine whether the AML
was a subclone of the GCT, which will require further study. Although speculative, mutations
in both TP53 and PTEN, along with isochromosome 12p, may represent the common geno-
mic abnormalities that drive this rare syndrome that is distinct from the typical pathogenesis
of either isolated AML or typical GCTs. Inactivation of TP53 may partially explain the poor
prognosis of these patients, because it is a known factor in chemoresistance and in unfavor-
able risk AML. Additional effort should be focused on the pathogenesis of this syndrome,
because we have not been able to clarify the cell of origin. However, our results have signifi-
cant implications for future genomic screening and on developing novel targeted treatment
approaches for this rare patient population with an extremely poor prognosis.

METHODS

For the GCT, we extracted 2 ng of gDNA from laser capture microdissected tumor on the
FFPE block of the incisional mediastinal biopsy. Briefly, tumor cells from hematoxylin and eo-
sin–stained slides were identified by a pathologist (I.S.H.) and captured from 10-μm stained
sections using an Arcturus PixCell instrument. The captured cells were then microdissected
into the cap of 500-μL safe-lock tubes filled with 50 μL ALT buffer (QIAGEN). DNA extraction
was performed as previously described (Cancer Genome Atlas Research Network 2013).
WGAwas performed using the Rubicon Genomics PicoPLEXWGA kit according to the man-
ufacturer’s instructions. We split the sample into three separate aliquots before amplification
and then pooled these samples before sequencing tominimize the risk of bias introduced by
the WGA. For the AML sample, 48 ng of gDNA was isolated from flow-sorted megakaryo-
blasts from cryopreserved cells banked during the diagnostic bone marrow biopsy. We per-
formed flow sorting using a BD Bioscience FACSAria II cell sorter with a gating strategy for
CD61+ positive cells (CD45dim/low side scatter blasts that were CD3−, CD33−, and CD61+).
All antibodies were from BD Bioscience. For microscopy, we used an Olympus BX41 micro-
scope with an Olympus DP72 camera.

Eight nanograms of the isolated AML gDNAwas used forWGA libraries with the Rubicon
Genomics PicoPLEX kit and the remaining 40 ng of unamplified gDNAwas used for separate
exome capture. For enhanced exome sequencing, we used the Roche NimbleGen SeqCap
EZ Human Exome Library v3.0 kit plus a spike-in with probes covering all coding exons of
significantly recurrently mutated genes in AML (from Integrated DNA Technologies, 264
genes, with the addition of the TERT promoter and WT1 noncoding regions) (Cancer
Genome Atlas Research Network 2013; Klco et al. 2015). The four dual-indexed libraries
were then pooled and run on a single flow cell of an Illumina HiSeq 2500 sequencer in rapid
run mode.

Sanger sequencing was done as previously described (Ellis et al. 2012) on theWGA AML
and GCT DNA samples. In addition, we isolated 47 ng of gDNA (unamplified) from the core
biopsy FFPE block of the first mediastinal GCT biopsy for Sanger sequencing for the TP53
and PTEN mutations.

Exome-sequencedatawerealigned to referencesequencebuildGRCh37-lite-build37us-
ing BWA-MEM version 0.7.7 (parameters: -t 4 -q 5::) (Li and Durbin 2009). Data were then
merged and deduplicated using picard version 1.113 (https://broadinstitute.github.io/
picard/). We detected somatic single-nucleotide variants (SNVs) using the union of three call-
ers: (1) SAMtools version r982 (parameters:mpileup -BuDS) (Li et al. 2009) filteredby snp-filter
version v1 and false-positive-filter v1 (parameters: –bam-readcount-version 0.4 –bam-read-
count-min-base-quality 15 –max-mm-qualsum-diff 100) and intersected with Somatic
Sniper version 1.0.4 (parameters: -F vcf -q 1 -Q 15) (Larson et al. 2012) filtered by false-posi-
tive version v1 (parameters: –bam-readcount-version 0.4 –bam-readcount-min-base-quality
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15) then somatic-score-mapping-quality version v1 (parameters: –min-mapping-quality
40 –min-somatic-score 40); (2) VarScan 2.3.6 (Koboldt et al. 2012) filtered by varscan-high-
confidence version v1 then false-positive version v1 (parameters: –bam-readcount-version
0.4 –bam-readcount-min-base-quality 15); and (3) Strelka version 1.0.11 (parameters:
isSkipDepthFilters = 1) (Saunders et al. 2012) (see Table 2 for coverage metrics).

We detected somatic indels using the union of four callers: (1) gatk-somatic-indel version
5336 (McKenna et al. 2010) filtered by false-indel version v1 (parameters: –bam-readcount-
version 0.4 –bam-readcount-min-base-quality 15); (2) pindel version 0.5 (Ye et al. 2009) fil-
tered by pindel-somatic-calls version v1 then pindel-vaf-filter version v1 (parameters: –vari-
ant-freq-cutoff=0.08) then pindel-read-support version v1; (3) VarScan 2.3.6 (parameters:
–nobaq –version r982) (Koboldt et al. 2012) filtered by varscan-high-confidence-indel ver-
sion v1; and (4) Strelka version 1.0.11 (parameters: isSkipDepthFilters = 1) (Saunders et al.
2012). Transcript annotation was performed using Ensembl v74_37. All somatic variants
were manually reviewed using Integrative Genomics Viewer (IGV) (Robinson et al. 2011).

Somatic copy-number variants (CNVs) were called and recentered from the aligned BAM
file using VarScan2 (http://dkoboldt.github.io/varscan) (Koboldt et al. 2012) using default pa-
rameters. Segments of copy number were identified using circular binary segmentation as
implemented in DNAcopy for R (Seshan VE and Olshen A. DNAcopy: DNA copy-number
data analysis R package, version 1.40.0). VarScan2 was also used in conjunction with the
DNAcopy package to identify regions of copy-number-neutral LOH. For a list of all called
CNVs from the gDNA AML sample, please see Supplemental Table 3.

Germline SNPs and indels were detected in the skin sample using SAMtools version
r982 (parameters: -nobaq –version r982:–min-coverage 3 –min-var-freq 0.20 –p-value 0.10
–strand-filter 1 –map-quality 10) filtered by false-positive v1 (parameters –bam-readcount-
min-base-quality: 15 –bam-readcount-version: 0.4 –max-mm-qualsum-diff: 100). These
were unioned with SNPs called with SAMtools version r962 filtered by var-filter-snv v1,
then false-positive-vcf v1 (parameters: –bam-readcount-min-base-quality: 15 –bam-read-
count-version: 0.4 –max-mm-qualsum-diff: 100). Variants were filtered against an internally
curated list of cancer-related genes, and then further curated to retain those likely to have
functional consequences (Supplemental Table 2).

ADDITIONAL INFORMATION

Ethics Statement
The patient was enrolled in a single-institution, tissue-banking protocol approved by the
human studies committee at Washington University. He provided written informed consent
for comprehensive sequencing studies, including exome sequencing. The Washington
University Institutional Review Board (IRB) approved this protocol.

Table 2. Exome-sequencing coverage metrics

Sample
Number of

reads
Percentage of
duplicate reads

Percentage of
reads mapped

On target mean
coverage

Skin 195,524,973 6.89 99.88 183.94

gDNA AML M7 50,171,683 6.07 99.88 38.11

WGA AML M7 44,068,667 4.1 99.3 17.66

WGA GCT 120,320,947 3.13 99.55 36.50

gDNA, genomic DNA; AML M7, acute megakaryoblastic leukemia; WGA, whole-genome amplification; GCT, germ cell
tumor.

A common clone gives rise to a GCT and AML

C O L D S P R I N G H A R B O R

Molecular Case Studies

Lu et al. 2016 Cold Spring Harb Mol Case Stud 2: a000687 12 of 15

http://dkoboldt.github.io/varscan
http://dkoboldt.github.io/varscan
http://dkoboldt.github.io/varscan
http://dkoboldt.github.io/varscan
http://dkoboldt.github.io/varscan


Database Deposition and Access
The sequence data for all tumors and matched normal samples has been deposited in the
NCBI database of Genotypes and Phenotypes (dbGaP; http://www.ncbi.nlm.nih.gov/gap)
under accession number: phs000159.v8.p4. PTEN and TP53 variants have been deposited
in ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) under accession numbers SCV000257331–
SCV000257340.
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