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Abstract

Background: There is an increasing number of proteins with known structure but unknown function. Determining
their function would have a significant impact on understanding diseases and designing new therapeutics.
However, experimental protein function determination is expensive and very time-consuming. Computational
methods can facilitate function determination by identifying proteins that have high structural and chemical
similarity.

Results: We present LabelHash, a novel algorithm for matching substructural motifs to large collections of protein
structures. The algorithm consists of two phases. In the first phase the proteins are preprocessed in a fashion that
allows for instant lookup of partial matches to any motif. In the second phase, partial matches for a given motif are
expanded to complete matches. The general applicability of the algorithm is demonstrated with three different
case studies. First, we show that we can accurately identify members of the enolase superfamily with a single
motif. Next, we demonstrate how LabelHash can complement SOIPPA, an algorithm for motif identification and
pairwise substructure alignment. Finally, a large collection of Catalytic Site Atlas motifs is used to benchmark the
performance of the algorithm. LabelHash runs very efficiently in parallel; matching a motif against all proteins in
the 95% sequence identity filtered non-redundant Protein Data Bank typically takes no more than a few minutes.
The LabelHash algorithm is available through a web server and as a suite of standalone programs at http://
labelhash.kavrakilab.org. The output of the LabelHash algorithm can be further analyzed with Chimera through a
plugin that we developed for this purpose.

Conclusions: LabelHash is an efficient, versatile algorithm for large-scale substructure matching. When LabelHash is
running in parallel, motifs can typically be matched against the entire PDB on the order of minutes. The algorithm
is able to identify functional homologs beyond the twilight zone of sequence identity and even beyond fold
similarity. The three case studies presented in this paper illustrate the versatility of the algorithm.

Background
High-throughput methods for structure determination
have greatly increased the number of proteins with
known structure in the Protein Data Bank (PDB) [1].
Structural genomics initiatives [2-4] have contributed
not only to this increase in number, but have also
increased the diversity of known protein structures. The
function of most proteins is still poorly understood or
even completely unknown. Automated functional anno-
tation methods make it possible to fill in some of the
gaps of missing information. Such methods can be a cri-
tical component of computational drug design and

protein engineering. Their applicability, however, goes
beyond traditional applications. For example, a nuanced
and detailed understanding of protein function can also
provide insight into the roles hub proteins play in pro-
tein interaction networks. Sequence-based methods are
an established way for detecting functional similarity
[5-8], but sequence similarity does not always imply
functional similarity and vice versa. Structural analysis
using the entire PDB allows for the discovery of similar
function in proteins with very different sequences and
even different folds [9]. For an overview of current
approaches in sequence- and structure-based methods
see [2,10,11].
Although it is possible to compare structures at the

fold level [12,13], or by comparing pockets and clefts
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[14-16], this work focuses on substructure matching
methods. Substructure matching methods aim to find a
common substructure motif (sometimes also called a
template) within one or more protein structures. Sub-
structure matching methods can be used to identify
functional similarity in cases where sequence similarity
or fold similarity between homologous proteins is low
(such as in cases of convergent evolution). The identifi-
cation of an important substructure that forms a motif
can be separated from the process of matching the
motif against a number of structures. Several methods
have been proposed to identify residues that are of func-
tional importance [17-19]. Typically, such methods
require as input a family of proteins that are known to
be functionally similar. Once a structural motif has been
identified that characterizes a given function or family,
it is still a challenging problem to screen all the struc-
tures in the PDB for occurrences of substructures simi-
lar to this motif, and determine functional similarity. A
wide variety of substructure matching methods have
been proposed, such as: TESS [20], SPASM [21], Cav-
Base [22], eF-site [23], ASSAM [24], PINTS [25], Jess
[26], SuMo [27], SiteEngine [28], Query3 D [29], Pro-
Func [30], ProKnow [31], SitesBase [32], GIRAF [33],
MASH [34], SOIPPA [35,36], FEATURE [37], and pevo-
SOAR [38]. These methods mainly differ in (1) the
representation of structural motifs, (2) the motif match-
ing algorithm, and (3) the statistics used to determine
significance of match. Representations for substructural
motifs include: Ca coordinates with residue labels (with
side-chain centroid [21] or without [25,34]), physico-
chemical pseudo-centers [28], graphs [22,24,35], general
sets of constraints on atom positions and residue types
[26], binding surfaces annotated with evolutionary con-
servation [38], or learnt vectors of features (such as the
presence of a residue type of metal ion) occurring at
certain distance ranges [37]. Such representations can
then be matched using a variety of techniques such as:
geometric hashing [20,28,32,39-41], depth-first search
[21,25,29,34], graph algorithms (clique detection
[22,23,27], subgraph isomorphism [24]), and constraint
solvers [26]. To assess the statistical significance of
matches the use of Extreme Value Distributions [36,42],
mixtures of Gaussians [26], and a non-parametric model
[35,43] have been proposed.
This paper describes a novel method for rapidly

matching a motif against all known structures in the
PDB (or any arbitrary subset thereof). It addresses sev-
eral algorithmic and system design issues that allow it to
be run in parallel and obtain near real-time perfor-
mance. The method makes very few assumptions about
the motif. For instance, a motif does not necessarily
have to represent a cavity or binding site. The method
was designed to be easy to use by both novice and

expert users: the default parameters work in variety of
scenarios, but can be easily changed to control the
desired output. Through three case studies we demon-
strate the versatility of the method and the ability to
obtain highly sensitive and specific results.

Results and Discussion
The LabelHash Algorithm
We are interested in matching a structural motif against
a large set of target structures. The structural motif is
defined by the backbone Ca coordinates of a number of
residues and (optionally) allowed residue substitutions
for each motif residue which are encoded as labels. Pre-
vious work has established that this is a feasible repre-
sentation because it can find biologically relevant results
[17,34,42,44].
The method presented below is called LabelHash. We

will first give a high-level description. The method
builds a hash table for n-tuples of residues that occur in
a set of targets. In spirit LabelHash is reminiscent of the
geometric hashing technique [40], but the particulars of
the approach are very different. The n-tuples are hashed
based on the residues’ labels. Each n-tuple has to satisfy
certain geometric constraints. The data in the hash table
is indexed in a way that allows fast parallel access.
Using this table we can look up partial matches of size
n in constant time. These partial matches are augmen-
ted in parallel to full matches with an algorithm similar
to MASH [34]. Compared to geometric hashing [40],
our method significantly reduces storage requirements.
Relative to MASH, we further improve the specificity.
Furthermore, in the LabelHash algorithm it is no longer
required to use importance ranking of residues to guide
the matching (as was done in MASH). In our previous
work, this ranking was obtained using Evolutionary
Trace (ET) information [45]. The LabelHash algorithm
was designed to improve the (already high) accuracy of
MASH and push the envelope of matching with only
very few geometric constraints. We want motifs to be as
general as possible to allow for future extensions and to
facilitate motif design through a variety of methods. Our
simple-to-use and extensible LabelHash algorithm is
extremely fast and can be a critical component of an
exploratory process of iterative and near-interactive
design and refinement of substructure templates. The
algorithm consists of two stages: a preprocessing stage
and a stage where a motif is matched against the pre-
processed data.
Preprocessing Stage
The preprocessing stage has to be performed only once
for a given set of targets; any motif can then be matched
against the same preprocessed data. The targets can
consist of single chains, but it is also possible to treat
entire domains as a single target. This is useful for
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motifs that span multiple chains. During the preproces-
sing stage we aim to find possible candidate partial
matches. This is done by finding all n-tuples of residues
that satisfy certain geometric constraints. We will call
these n-tuples reference sets. Typically, n is small; in our
experiments we use 3-tuples. All valid reference sets for
all targets are stored in a hash map, a data structure for
key/value pairs that allows for constant time insertions
and lookups (on average). In our case, each key is a
sorted n-tuple of residue labels, and the value consists
of a list of reference sets that contain residues with
these labels in any order. So for any reference set in a
motif we can instantly find all occurrences in all targets.
Notice that in contrast to geometric hashing [40] we do
not store transformed copies of the targets for each
reference set, which allows us to store many more refer-
ence sets in the same amount of memory.
In our current implementation the geometric con-

straints apply to the Ca coordinates of each residue, but
there is no fundamental reason why other points such
as Cb’s or physicochemical pseudo-centers [22,46] can-
not be used instead. We have defined the following four
constraints on valid reference sets:

• Each Ca in a reference set has to be within a dis-
tance dmaxmindist from its nearest neighboring Ca .
• The maximum distance between any two Ca’s
within a reference set is restricted to be less than
ddiameter.
• Each residue has to be within distance dmaxdepth

from the molecular surface. The distance is mea-
sured from the atom closest to the surface.
• At least one residue has to be within distance dmax-

mindepth from the surface.

The first pair of constraints requires points in valid
reference sets to be within close proximity of each
other, and the second pair requires them to be within
close proximity of the surface. The distance parameters
that define these constraints should be picked large
enough to allow for at least one valid reference set for
each motif that one is willing to consider, but small
enough to restrict the number of seed matches in the
targets. One would perhaps expect that the storage
requirements would be prohibitively expensive, but–as
described in the Implementation and Methods sections–
the required storage is still very reasonable. The values
for the four distance parameters described above were
chosen empirically and kept fixed for all experiments
(see Methods).
Matching Stage
For a given motif of size m (m ≥ n), the LabelHash algo-
rithm can look up all matches to a submotif of fixed
size n, and expand each partial match to a complete

match using a depth-first search. The partial match
expansion is a variant of the match augmentation algo-
rithm [34] that consists of the following steps. First, it
solves the residue label correspondence between a motif
reference set and the matching reference sets stored in
the LabelHash table. (If more than one correspondence
exists, all of them are considered.) Next, the match is
augmented one residue at a time, each time updating
the optimal alignment that minimizes the RMSD. If a
partial match has an RMSD greater than some threshold
ε, it is rejected. For a given motif point, we find all resi-
dues in a target that are within some threshold distance
(after alignment). This threshold is for simplicity usually
also set to ε. The threshold ε is set to be sufficiently
large (7 Å in our experiments) so that no interesting
matches are missed.
The algorithm recursively augments each partial

match with the addition of each candidate target resi-
due. The residues added to a match during match aug-
mentation are not subject to the geometric constraints
of reference sets. In other words, residues that are not
part of a reference set are allowed to be further from
each other and more deeply buried in the core. For
small-size reference sets, the requirement that a motif
contains at least one reference set is therefore only a
very mild constraint. As we will see in the next section,
our approach is still highly sensitive and specific.
For a given motif, we generate all the valid reference

sets for that motif. Any of these reference sets can be
used as a starting point for matching. However, those
reference sets that have the smallest number of match-
ing reference sets in the LabelHash table may be more
indicative of a unique function. Reference sets with a
large number of matches are more likely to be common
structural elements or due to chance. We could exhaus-
tively try all possible reference sets, but for efficiency
reasons we only process a fixed number of least com-
mon reference sets. Note that the selection of reference
sets as seed matches is based only on frequency. In con-
trast, in our previous work, only one seed match was
selected based on importance ordering frequently based
on evolutionary importance [34]. Because of the prepro-
cessing stage it now becomes feasible to expand matches
from many different reference sets. The information
stored inside a LabelHash file is stored so that only the
relevant parts of the file need to be read from disk dur-
ing matching.
The matching algorithm is flexible enough to give

users full control over the kind of matches that are
returned. It is possible to keep multiple matches per tar-
get or partial matches that match at least a certain mini-
mum number of residues. The latter option can be
useful for larger motifs where the functional significance
of each motif point is not certain. In such a case, a
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0.5 Å RMSD partial match of, say, 9 residues, might be
preferable over a 2 Å complete match of 10 residues.
With partial matches, the matches can be ranked by a
scoring function that balances the importance of RMSD
and the number of residues matched. One can also
choose between keeping only the lowest RMSD match
per target or all matches for a target, which may be
desirable if the top-ranked matches for targets have very
similar RMSD’s. Finally, the number of motif reference
sets that the algorithm uses for match augmentation can
also be varied. Usually most matches are found with the
first couple reference sets, but occasionally a larger
number of reference sets need to be tried before the
smallest RMSD match for each target is found. With the
default settings (used for all results in this paper), the
number is set to a conservative threshold of 15.
Statistical Significance of Matches
There is no universal RMSD cut-off that can be used to
decide whether a match is significant, and picking a cut-
off for a given motif and corresponding protein family is
non-trivial. The cut-off depends on the structural varia-
tion within a protein family and the likelihood that a
match to a non-homologous protein occurs due to
chance. In our work we use a nonparametric model to
compute the statistical significance of each match. This
model is briefly summarized below and described in
more detail in [43,47]. The model assumes that the
matching algorithm returns for each target only the low-
est RMSD, complete match to a motif. Keeping partial
matches or multiple matches per target complicates the
determination of the statistical significance of each
match. This is an issue we plan to investigate in future
work.
For a set of matches we can compute a probability

density function over RMSD by smoothing the RMSD
distribution using the Sheather-Jones optimal bandwidth
[48]. An example distribution is shown in Figure 1. In
an ideal case, functionally homologous targets would
have a low RMSD and would be well-separated from
the non-homologous targets. From this RMSD

distribution, which we will call a motif profile, we can
assign a p-value to a match by dividing the area under
the curve to the left of the match’s RMSD by the total
area under the curve. For instance, for the match at the

cut-off in Figure 1, the p-value would be A
A B+ , where A

and B are the areas under the curve to the left and right
of the dotted line, respectively. However, the value of
the distance cut-off parameter ε introduces an algorith-
mic bias that affects the computation of the statistical
significance of a match. Other matches could be found
if the value of ε were increased. To correct for this bias,
we model the existence of these ‘missed’ matches by
placing a point-weight proportional to their relative fre-
quency at infinity. The corrected p-value is then

A
A B C+ + , where C is the weight of the missed matches.

Finding missed matches is straightforward: for each tar-
get where no match was found, we simply check
whether there are enough residues of the right types so
that a match is possible. The residue frequencies are
pre-computed for each target and stored inside the
LabelHash tables.
It can be shown that for a motif of n residues our sta-

tistical model computes the exact p-value of matches

with RMSD less than  n , i.e., their p-value would not

change if no ε threshold was used [43]. For example, for
a 6-residue motif and ε = 7 Å, the p-values of all
matches within 2.9 Å of the motif are exact.

Implementation
Data Layout
We aimed for LabelHash to be scalable to all available
structures in the Protein Data Bank, even as it continues
to grow. The structural information, reference sets and
indexing information require significant storage. The
data layout is determined not only by the content, but
also by the expected access patterns. Space-efficient sto-
rage of all data that supports computationally efficient
access can contribute significantly to the overall speed
of the algorithm. Typically, only a very small fraction of
the data is accessed in matching a motif for two reasons.
First, only a small number of reference sets in a motif is
used for match expansion. Second, often we are only
interested in matching a motif against a subset of all
known structures (such as the non-redundant PDB or a
given class/family of proteins). The data format should
also be extensible (so that we can store additional attri-
butes for each target in the future) and allow concurrent
access to facilitate parallelized matching (see next sub-
section). In our current implementation we have chosen
to use the Hierarchical Data Format (HDF5) [49], a
standard file format used for large data sets. Concep-
tually, the HDF5 software library creates a file system

Figure 1 Non-parametric model of statistical significance of
matches. Accounting for the ‘missed’ matches due to the RMSD
cut-off parameter ε with a point-weight at ∞ allows for accurate
estimation of the p-value of matches.
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within a file. With HDF5 one can easily create and
change hierarchical groups of data sets, without having
to worry about keeping all the indexing information up-
to-date. It also allows for sophisticated compression
schemes (which can be enabled per data set) and
includes support for parallel I/O (by providing a soft-
ware layer on top of MPI-IO).
The data is laid out as follows. For each target there is

a group that contains data sets with the target’s struc-
tural information, residue types, and any other informa-
tion specific to the target that we may add in the future.
For every possible set of n residue labels, we store all
the reference sets with those labels in a large matrix
with n columns, where n is the reference set size. Asso-
ciated with each matrix is some additional indexing
information that keeps track of which block of rows in
each matrix contains indices into which target structure.
The n-tuples take up the bulk of the data that needs to
be stored, but, luckily, they are also very compressible.
We chose to use SZIP [50] compression because of its
high compression ratio and fast decompression speed.
The LabelHash HDF5 file for the entire PDB (based on
a snapshot from March 25, 2009), including reference
sets and all metadata takes up 65 GB. Although this is a
very large file, it still fits easily on commodity hard
drives (and even some solid state drives), and a signifi-
cant portion of the file could be kept in memory (e.g.,
in page cache) on a dedicated server.
Large-Scale Matching
Multi-core processors and distributed computing clus-
ters are increasingly commonplace, and naturally we
would like to take advantage of that. Both the prepro-
cessing stage and the matching stage are parallelized,
and a near-linear speed-up with the number of CPU
cores can be achieved. In the preprocessing phase a
master node asynchronously sends PDB id’s to slave
nodes, which read the corresponding PDB file, compute
the reference sets, and send all data back to the master.
The master node writes all data to disk. Although this
seems suboptimal in terms of communication, it avoids
the difficulties associated with parallel write access (if all
nodes write to a single file) or a sequential merge of sev-
eral files (if nodes write to separate files).
Matching in LabelHash is also easily parallelized. The

targets to be matched are evenly divided over the nodes
and each node matches a given motif against its targets
independently. Once matching is finished, the match
results are aggregated into one output file by one of the
cores. This parallelization scheme could lead to load
imbalance if matching against some targets takes signifi-
cantly longer than others. In our experiments the num-
ber of targets was usually large enough and arbitrarily
distributed over the nodes such that there was no imbal-
ance. If load imbalance were to become an issue, it

would be relatively easy to implement schemes that
dynamically assign batches of targets to the nodes.
Another potential performance bottleneck is the simul-
taneous disk access by the nodes. If all nodes indepen-
dently try to read data from the LabelHash table, they
can spend a significant amount time in system calls,
waiting for disk access or seeking the right disk sectors.
The bulk of the data that needs to be read consists of
the n-tuples for the selected targets. This data is read
synchronously using the HDF5-provided software layer
on top of MPI-IO. The amount of data to be read by
each node is roughly equal, so that idle time is mini-
mized. Once the n-tuples have been read, the match
augmentation phase starts. For each of its targets, a
node will load the structural information from the
LabelHash table and compute the best match(es). The
computation time tends to be significantly larger than
the disk access time, so that the nodes can read the data
asynchronously with only minimal disk contention.
Algorithmic Issues
In the original implementation of match augmentation
[34], the runtime was dominated by computing (a)
RMSD alignments and (b) nearest neighbors for a motif
point in a target structure. In addition to the perfor-
mance improvements obtained through the pre-compu-
tation of reference sets, the LabelHash algorithm uses a
fast, new algorithm and pre-computation, respectively,
to speed up these two components.
The match augmentation algorithm iteratively updates

the RMSD alignment with each residue added to a par-
tial match. Since match augmentation is started from
many matching reference sets and for each partial
match there can be many possibilities for match aug-
mentation, the computation of RMSD alignments can
potentially be a performance bottleneck. Computing
such alignments typically involves computing a covar-
iance matrix and the largest eigenvalue/eigenvector pair
of this matrix [51,52]. For small substructures the com-
putational cost is dominated by the eigenvalue/eigenvec-
tor calculation. We use a recently proposed method to
compute the optimal alignment by finding the largest
root of the characteristic polynomial, instead of comput-
ing a matrix decomposition of the covariance matrix
[53,54]. Using this method in our implementation, the
time needed for RMSD calculations is drastically
reduced to less than one tenth of the traditional
approach.
To expand a partial match by one residue, the match

augmentation algorithm looks for matching residues for
the next motif point under the current optimal align-
ment. The matching residues are found using a proxi-
mity data structure. Several such data structures exist;
in our implementation we use Geometric Near-neighbor
Access Trees [55]. The key observation to speeding up
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proximity queries is that the nearest neighbors of a
motif point are very similar to the nearest neighbors of
the point in the target closest to this motif point. Sup-
pose we are interested in all nearest neighbors within
7 Å of a motif point and the closest point in the target
is x Å away. Then the set of nearest neighbors of this
point that are within (7 + x) Å includes all the nearest
neighbors of the motif point. Those within (7 - x) Å
are guaranteed to be also nearest neighbors of the
motif point, and only those within the (7 - x) Å to
(7 + x) Å range need to be checked. So the nearest
neighbors of an arbitrary point can simply be found by
computing one nearest neighbor, and looking up the
nearest neighbors of this neighbor. To be able to look
up all nearest neighbors for an arbitrary point within a
radius of r Å, we need to precompute nearest neigh-
bors for each target within a radius of 2r Å, since x
can be at most r Å. This is exactly what is currently
implemented; the indices of the nearest neighbors and
corresponding distances are stored (in compressed for-
mat) for each target point. This adds only marginally
to the total table size, while providing significant
speedups.
The LabelHash Server and Chimera Interface
The LabelHash algorithm has been made accessible
through a web interface at http://labelhash.kavrakilab.
org. A user can specify a motif by a PDB ID and a num-
ber of residue ID’s. For each motif residue the user can
optionally specify a number of alternate labels. The user
can match against either the full PDB or the 95%
sequence identity filtered non-redundant PDB
(nrPDB95). Once the matches for a motif have been
computed, an email is sent to the user which includes a
URL for a web page with the match results. This page
lists information for the top matches, including: the

matched residues, the RMSD, the p-value, Enzyme
Commission (EC) numbers and Gene Ontology (GO)
annotations (if applicable), and a graphical rendering of
the match aligned with the motif.
From the results page, one can also download an XML

file that contains all the matches found. This match file
can then be loaded in Chimera, a popular molecular
visualization and analysis program [56]. For this, we
have developed a plugin called ViewMatch. (It is derived
from the Chimera ViewDock extension for visualizing
results from the DOCK program.) The ViewMatch plu-
gin allows the user to scroll through the list of matches.
Figure 2 shows the user interface. In the main window a
selected match is shown superimposed with the motif.
Recall that, although all atoms in the matched residues
are shown, only the Ca atoms were used to compute the
alignment. The Ca atoms are shown as spheres. In the
controller window on the right, all matches are listed in
the top half with their RMSD to the motif, p-value and
other attributes. By specifying constraints on the match
attributes, the user can restrict the matches that are
shown. The bottom half of the window shows additional
information for the selected match, such as the EC clas-
sification and GO terms. By clicking the PDBsum but-
ton, the PDBsum web pages [57] are shown for the
selected matches. This gives the user an enormous
amount of information about a match.
We expect that advanced users may want to have

more control over the matching parameters and the
creation of LabelHash tables. For that reason, we have
made available for download on the LabelHash web
site a suite of command line tools (for Linux and OS
X) to do just that. It includes programs to run Label-
Hash in parallel on a cluster of machines, as well as a
Python interface.

Figure 2 Match visualization using Chimera. Left: A match (in green) shown superimposed with a motif (in white), while the rest of the
matching protein is shown in ribbon representation. Right: The ViewMatch controller window.
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Testing
The LabelHash algorithm has been evaluated for speed,
scalability, and functional annotation precision through
a carefully selected set of case studies that demonstrate
orthogonal features of the algorithm. First, the ability of
LabelHash to identify common substructures at the
superfamily level of SCOP [58] classification is validated
within the Enolase Superfamily (ES). Second, the ability
of LabelHash to construct motifs from the output of
state-of-the-art methods and then quickly match them
against the entire PDB is demonstrated with the output
of SOIPPA [35], a motif discovery and structural align-
ment algorithm. Third, as a comprehensive functional
annotation benchmark, LabelHash motifs are created
from catalytic residues documented by the Catalytic Site
Atlas (CSA) [59] and then matched against the nrPDB95

to assess per-motif functional annotation sensitivity and
specificity. Finally, we evaluate the speed and scalability
of the LabelHash algorithm by matching all motifs used
in this paper against the nrPDB95. Together, these tests
demonstrate the versatility and generality of LabelHash
for a variety of functional annotation problems.
Identifying Members of the Enolase Superfamily
To demonstrate the ability of LabelHash to successfully
identify motifs at the superfamily scale, spanning multi-
ple EC classes, LabelHash was used to identify shared
catalytic substructures among Enolase Superfamily (ES)
[60] proteins. Previous work by Meng et al. [61] used
the SPASM [62] substructure comparison method to
investigate a conserved substructure within ES proteins.
As a challenging validation experiment, LabelHash was
used to identify the conserved substructure (ESmotif)
among the same benchmark set of ES structures (ESdb)
that were both defined previously by Meng et al. [61].
LabelHash was able to identify those structures included
in the ESdb with high sensitivity and specificity. In addi-
tion to those structures included in the ESdb, matches
were identified by LabelHash to additional ES proteins
which have more recently been identified and to several
proteins with only putative ES-like function.
The ES currently includes 7 major sub-groups span-

ning 20 families and 14 well-defined EC classes as
defined by the Structure-Function Linkage Database
(SFLD) [63]. As shown in Figure 3, a core of five resi-
dues directly mediates the conserved partial reaction
among ES members. Modeling this substructure as a
five-residue motif as done by Meng et al. [61] results in
the following superfamily-specific motif (ES-motif):
164KH, 195D, 221E, 247EDN, 297HK; residues are num-
bered with respect to mandelate racemase structure
[PDB:2MNR]. A benchmark set of ES structures defined
by Meng et al. [61] (ESdb) was used as a positive test
set; the nrPDB95 was used as a background structure set
which also includes several overlapping structures

belonging to the ES. Residues making up the conserved
substructure among ES members are known to vary
widely in Ca RMSD (up to 2.3 Å Ca RMSD) although
the side-chains of the residues superimpose closely (as
shown in Figure 3). By using LabelHash to enumerate
all reasonable substructure matches based on Ca RMSD
and then filtering the resulting potential matches by
side-chain RMSD, LabelHash successfully identifies ES
members with high sensitivity and specificity using the
approach outlined below.
To identify matches based on a different distance

metric rather than Ca deviation involves adding only a
simple post-processing step to the initial substructure
matches identified by LabelHash. For each target struc-
ture in the ESdb, many possible matches are first identi-
fied based on amino acid label compatibility and Ca

distance cutoffs to the ES motif. From these possible
matches, a single “best” match is selected per target
based upon minimum side-chain centroid RMSD to the

Figure 3 The enolase superfamily (ES) motif. (a) The
substructure responsible for the conserved partial reaction among
members of the ES consists of the five residues shown above from
which the ES motif used here is derived [61]. (b) Enolase from
Saccharomyces cerevisiae [PDB:1ELS] with demonstrated divalent ion
coordination to the conserved superfamily substructure [68]. A
single Mn2+ is coordinated by a carboxylate triad (Asp, Glu, Asp in
this enzyme) and a second Mn2+ binds in a substrate specific
manner [68].
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motif rather than Ca RMSD as done in previous experi-
ments. The distribution of matches yielded by this pro-
cess differs from the minimum Ca distance distribution.
For example, enumerating all possible matches in eno-
lase structure [PDB:1EBH] results in 84 possible
matches and from these possible matches, a “best”
match can be selected based on any user-defined cri-
teria. For ES we used side-chain centroid RMSD, but in
general Ca RMSD, surface accessibility, distance to a
known ligand, or even colocation with a pocket/cavity
could be used instead. For the ES, side-chain centroid
RMSD is preferred over full-atom side-chain RMSD due
to the fact that several different types of amino acids are
possible at each position and defining an appropriate
one-to-one atom mapping between side-chains of differ-
ent amino acids is difficult to define. However, Cb align-
ment is a viable alternative to the side-chain centroid if
a pseudo atom is defined for glycine.
Comparing the prediction performance of Ca versus

side-chain centroid RMSD for ES, as shown in Figure 4,
demonstrates that alternative match selection measures,
such as side-chain deviation, outperforms Ca deviation
for the ES. Using minimum Ca RMSD as a match selec-
tion criteria per target, only 31% of structures in the
ESdb are matched with statistical significance (p-value
threshold of a = 0.01, 29 false negative matches). How-
ever, with minimum side-chain centroid RMSD as a
match selection criterion per target, LabelHash achieves
95% sensitivity. The match RMSD distributions in
Figure 4 reveal the higher discriminating power of side-
chain centroid RMSD for the ES. Using side-chain cen-
troid RMSD, the distribution of matches for the ESdb
structures is easily separable from the much larger num-
ber of matches to nrPDB95 structures while Ca RMSD
alone results in the majority of ESdb matches to overlap
with unrelated matches to structures in the nrPDB95.
Many matches to nrPDB95 structures still fall below

the statistical significance threshold (as shown in

Additional File 1) and these possibly false positive (FP)
matches were further investigated. Out of the 47 total
FP matches, 35 matches actually corresponded to struc-
tures that have now been identified to belong to ES as
documented by the SFLD [63]. An additional 10 FP
matches corresponded to structures that have only puta-
tively defined functions, but may be related to the ES:
[PDB:2QGY], [PDB:3CK5], [PDB:2OO6], [PDB:2PPG],
[PDB:2OQH], [PDB:3CYJ], [PDB:1WUF], [PDB:1WUE],
[PDB:2OZ8], and [PDB:2POZ]. The final 2 matches cor-
respond to an aminoacylase from the M20 family
[PDB:1YSJ] and human arginase I [PDB:2AEB]; both
matches correspond to dimetal binding sites within the
two different enzymes which bind Mn2+ and Ni2+,
respectively. Altogether, these results highlight the
potential of LabelHash to identify similarities between
remote homologs.
Combining LabelHash and SOIPPA
Recent work by Xie and Bourne on Sequence Order-
Independent Profile-Profile Alignment (SOIPPA) [35]
and SMAP [36] allows the alignment and identification
of structurally similar, but sequentially distinct, sequence
motifs. To further validate the LabelHash method, the
alignment output of SOIPPA was used to create Label-
Hash motifs that are demonstrated to maintain the
high-specificity of SOIPPA. LabelHash provides the
means to search the entire nrPDB95 for matches to
SOIPPA-derived motifs in a matter of minutes. These
experiments illustrate how LabelHash can be used to
further enhance available structural analysis methods by
converting identified residues of interest directly to
LabelHash motifs that can be efficiently scanned against
large structural databases.
Several of the aligned sequence motifs identified by

SOIPPA were used to construct the LabelHash motifs
listed in Table 1. For each template structure in this
table, a LabelHash motif was defined using the residues
and alternate amino acid labels identified by SOIPPA

Figure 4 LabelHash results for ES motif based on [PDB:2MNR]. Dark gray denotes matches to structures in the ESdb as defined by Meng et
al. [61] while light gray denotes matches to structures in the nrPDB95. The dashed line in each plot corresponds to the p-value threshold at a =
0.01. (a) The clear separation of the distributions of ESdb and nrPDB95 matches identified using minimum side-chain RMSD illustrates the high-
specificity of the 2MNR-based motif. (b) Examining the distributions of matches based upon Ca RMSD demonstrates the inseparability of ESdb
matches from the majority of nrPDB95 structures if minimum Ca RMSD is used alone for match selection.
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alignment [35]. Specifically, to construct a LabelHash
motif from the SOIPPA alignment output data, the
coordinates of the SOIPPA-identified motif residues
from only the template structure are combined with the
set of alternate amino acid labels identified by SOIPPA-
alignment; the coordinates of the structures aligned by
SOIPPA (i.e., structures other than the template struc-
ture) are not used. Each LabelHash motif was then
matched against the corresponding SOIPPA alignment
structures in the table, in addition to the nrPDB95 as a
background structure set, in order to assess the statisti-
cal significance of matches in each corresponding align-
ment structure. In all cases the correct match was
identified with extremely low p-values. Both the Label-
Hash motif substructure and corresponding match sub-
structures can be seen in Figures 5 and 6.
Combining multiple pairwise SOIPPA alignments

allows for the construction of a single LabelHash motif
that comprises the common SOIPPA motif residues
shared between each pairwise alignment. For example,
based upon SOIPPA pairwise alignments between
SAM-dependent methyltransferase [PDB:1ZQ9] and
each of urocanase [PDB:1UWK], carbonyl reductase
[PDB:1CYD], and flavocytochrome c3 fumarate
[PDB:1D4D], a single LabelHash motif was derived
using the subset of residues from [PDB:1ZQ9] identified
by SOIPPA [35] within each of the three aforemen-
tioned pairwise alignments and the alternative amino
acid labels for residues in each pairwise SOIPPA align-
ment. The resulting LabelHash motif correctly identifies
the corresponding residues in each of [PDB:1UWK],
[PDB:1CYD], and [PDB:1D4D] without LabelHash tak-
ing into account any knowledge of each of these three
target structures beyond the alternate labels required.
The [PDB:1ZQ9]-based LabelHash motif was then
matched against the full PDB to search for other struc-
tures with statistically significant similarity to the shared
substructure modeled by the motif.
Using LabelHash to match the [PDB:1ZQ9]-based

motif versus the PDB reveals many additional matches
with low p-values to binding sites for adenine-contain-
ing molecules including FAD, NAD, and SAM.
Although LabelHash does not take into account the pre-
sence, position, or absence of a bound ligand at any

point in the matching process, many of the identified
matches could be confirmed as binding sites because of
a bound adenine-containing ligand. Matches to lipoa-
mide dehydrogenase [PDB:2YQU], urocanase
[PDB:1W1U], and MnmC2 [PDB:2E58] were identified

Table 1 SOIPPA-derived Motifs

Template
Structure

SOIPPA-derived LabelHash Motif SOIPPA-aligned
Structure(s)

p-value of LabelHash-computed
match

1HQC 9E, 10YI, 11IF, 12GE, 13Q, 169LV, 171QY, 172GA 1ZTF < 0.0009

1ECJ 367D, 369IV, 371RT, 372G, 373TA, 374T, 375SL 1H3D < 0.0005

1AYL 232H, 250ST, 251G, 252TS, 253GA, 254K, 255TS, 256T, 257LT,
268DG, 269DE

1P9W < 0.0006

1ZQ9 29G, 50ET, 51LRKS, 52DTEQ, 79VLA 1CYD, 1D4D, 1UWK < 0.0005

Figure 5 SOIPPA motifs. In each image, the motif substructure is
colored green while the matched substructure is colored purple. All
ligands neighboring either the motif or matched substructure are
shown colored by atom type for reference; the ligand atoms are
not used at any point during the LabelHash matching process. (a)
LabelHash motif based on [PDB:1HQC] in Ca RMSD alignment to
the matched substructure from [PDB:1ZTF]; 8 matched residues. (b)
LabelHash motif based on [PDB:1ECJ] in Ca RMSD alignment to the
matched substructure from [PDB:1H3D]; 7 matched residues. (c)
LabelHash motif based on [PDB:1AYL] in Ca RMSD alignment to the
matched substructure from [PDB:1P9W]; 11 matched residues.
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with p-values less than 0.0001, 0.0005, and 0.0006,
respectively. Each match identified is shown in Figure 7.
Catalytic Site Atlas Motifs
In our final experiment we matched a large number of
motifs from the Catalytic Site Atlas (CSA) [59] against
the nrPDB95. The CSA is a manually-curated database
of literature-documented functional sites. All experi-
ments were conducted using CSA version 2.2.11 which
contains 968 literature-documented sites. The subset
of CSA sites used in our experiments includes only
literature-documented sites that adhere to the follow-
ing criteria:

1. The PDB structure corresponding to the site must
have a fully qualified EC classification (i.e., 3.4.1.1 is
fully qualified but 3.4.1.- or 3.2.- or 3.- are all not);
each site will be compared against proteins within
the same EC classification to assess sensitivity.
2. The EC class corresponding to the documented
site must contain more than 10 structures so that
meaningful per-site statistics can be computed for
all sites included in the benchmark.
3. The LabelHash motif based upon the CSA site
must contain at least one valid reference set (prere-
quisite for matching; see Methods for details on
reference set constraints).
4. The site must contain a minimum of 4 non-hetero
residues (i.e., residues referencing prosthetic groups,
coordinated metal ions, or other ligands do not
count towards the 4 residue minimum) because the

current LabelHash implementation does not support
matching heteroresidues/heteroatoms.

From the available 968 CSA sites, 147 adhered to our
criteria. From each of these 147 CSA sites, a LabelHash
motif was constructed using the PDB structure that cor-
responded to each CSA record in every case. Because
the CSA does not include allowable amino acid

Figure 6 SOIPPA-derived motif. LabelHash motif constructed by
combining multiple pairwise SOIPPA alignments in order to identify
a common set of residues shared amongst all SOIPPA-aligned
structures. Each of the four substructures used to construct the
LabelHash motif are shown in red, green, purple, and fuchsia; the
identified common set of 5 residues is shown for each substructure.
The ligands neighboring each substructure are shown for reference
and colored by atom type.

Figure 7 Matches to adenine-containing ligand binding sites.
Several high-confidence matches identified by the [PDB:1ZQ9]-
based motif were identified and subsequently confirmed by the
presence of an adenine-containing ligand in the matched site. The
matched residues are colored green with the bound ligand colored
by atom type. From top to bottom the matches shown above
correspond to [PDB:2YQU], [PDB:1W1U], and [PDB:2E58].

Moll et al. BMC Bioinformatics 2010, 11:555
http://www.biomedcentral.com/1471-2105/11/555

Page 10 of 15



substitutions or mutations for site records, only the sin-
gle amino acid label that corresponds to the amino
acids present in the PDB structure were used in all
cases. The motifs analyzed here range in size from 4
to 8 residues, while previous work by Torrance et al.
[64] only investigated the performance of CSA motifs
ranging from 3-5 residues in size.
To assess the ability of each CSA-based motif to iden-

tify functionally equivalent catalytic sites in protein
structure, each CSA-based motif was matched against
the EC class corresponding to the PDB structure of
each site. Structures sharing EC classification with the
CSA-based motif are considered positive matches while
matches to structures outside of the motif EC class
within the nrPDB95 were considered negative matches.
For the CSA benchmark, the individual chains in both
positive and negative protein structures are matched
individually. For the 147 CSA-based motifs, 118 unique
EC classes are represented spanning all 6 top-level EC
classifications (oxidoreductases, transferases, hydrolases,
lyases, isomerases, ligases).
Overall, the ability of CSA motifs to identify members

of the same EC class (4th-level EC classification) varied
wildly. This result is not unexpected due to the fact that
per-EC class coverage was not a consideration in the
design of the CSA [64]; the aforementioned study by
Torrance et al. [64] considered the set of positive struc-
tures for each motif to be the “CSA family” of PSI-
BLAST identified relatives rather than the full, 4th-level
EC class. The analysis performed here widens the study
by considering not only those structures with sequence
similarity identifiable by PSI-BLAST, but the entire set
of structures sharing an EC class with each motif.
Highly successful motifs, such as the pyruvate kinase
and xylose isomerase motifs based upon structures
[PDB:1PKN] and [PDB:2XIS], respectively, correctly
identify more than 100 matches to their corresponding
EC classes, achieving > 90% EC-class sensitivity with at
least 99.8% specificity against the entire nrPDB95.
The CSA contains multiple catalytic site definitions

for a single EC class in several cases (as can be seen in
Additional File 2) and the motifs based on each defini-
tion sometimes had large differences in function predic-
tion performance. Consider, for example, two motifs are
defined by the CSA for EC:2.1.1.45 (thymidylate
synthases): the motif based upon structure [PDB:1LCB]
from Lactobacillus casei was defined as {198C, 219S,
221D, 257D, 259H, 60E} and matched 192/218 chains
with significance resulting in 88.1% sensitivity at a p-
value threshold of 0.002, while the motif based upon
structure 1TYS from Escherichia coli was defined as
{146S, 166R, 169D, 58E, 94Y} matched only 4/218 chains
with significance resulting in a drastically lower 1.8%
sensitivity at the same p-value threshold. Examining the

EC:2.1.1.45 matches produced by the poorer performing
[PDB:1TYS] motif revealed that a single motif residue
(146S) was matching a non-cognate serine residue in the
majority of EC:2.1.1.45 structures that caused the RMSD
of these matches to increase drastically and fall outside
of the significance threshold. However, pruning 146S

from the [PDB:1TYS] motif increased the sensitivity to
80.3%, matching 175/218 chains in EC:2.1.1.45.
In other cases where multiple motifs were defined by

the CSA for a single EC class, each motif was found to
match a different subset of functionally related struc-
tures. For example, the CSA defines a separate motif for
both cellobiohydrolase (CBH) I and II from Tricho-
derma reesei which both belong to EC:3.2.1.91 (cellulose
1,4-b-cellobiosidases). Individually, the CBH I and II
motifs have a sensitivity of 43.7% and 21.1%, respec-
tively, at p = 0.002, but because both motifs match a
mutually exclusive set of structures within EC:3.2.1.91,
the combination of both motifs identifies over 60% of
structures within EC:3.2.1.91. However, combining the
results from multiple motifs by taking the union of all
positive matches will result in a decrease in overall spe-
cificity due to lack of multiple testing correction. In
recent work [65], we have developed a technique call
Motif Ensemble Statistical Hypothesis testing that allows
multiple (potentially overlapping) motifs to be statisti-
cally combined into a single function prediction test.
Many of the CSA motifs included in the benchmark

could be further optimized to increase function predic-
tion sensitivity and specificity. The previously developed
Geometric Sieving (GS) method for motif refinement
[34] identifies subsets of motif residues within a larger
motif that preserve the overall specificity of the larger
motif while increasing sensitivity by removing motif
residues that do not contribute to specificity. Also in
previous work [34], evolutionary methods based upon
Multiple Sequence Alignment (MSA) and phylogenetic
tree construction, such as Evolutionary Trace [45] and
ConSurf [66], have been used to automatically define
motifs and identify alternate residue labels in order to
represent residue substitutions present in a MSA.
Therefore, while the CSA motifs examined in this
benchmark serve as an objective set of expert-defined
catalytic site definitions, many motifs could be improved
further by applying our previously investigated optimiza-
tion techniques.
Performance and Scalability
Figure 8 shows the average performance of matching all
motifs mentioned above against all 21,745 targets in the
nrPDB95. The main observation in the left graph is that
most motifs can be matched against the entire nrPDB95

in a few seconds up to a few minutes. To the best of
our knowledge no other general purpose substructure
matching algorithm implementation comes even close
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to such performance. The right graph shows the speedup.

The speedup for n cores is simply T
Tn

1 , where Ti is the

wallclock time for i cores. The ideal, linear speedup is
shown with a black dotted line. Benchmark results for up
to 128 cores are shown in Additional File 3.
There were 4 motifs used in the comparison with

SOIPPA, 14 motifs in the Enolase Superfamily study,
and 147 Catalytic Site Atlas motifs. In general, wallclock
time can be reduced significantly by using more cores.
The motifs that take more time to match tend to be lar-
ger and have more alternate residue labels. For small,
simple motifs (3-4 residues without alternate labels) the
wallclock time with a single core is already very small
and there is not much room for improvement by adding
more cores. In this case the runtime is dominated by
file access and communication between the cores, with
only minimal time needed for computation. The differ-
ence between the solid and dashed lines show the per-
formance increase when switching from a shared
Panasas filesystem to a local solid-state drive. This dif-
ference confirms that much of the time is spent simply
reading data. In other words, for simple motifs there is
limited room for performance improvement by modify-
ing the match augmentation algorithm. For motifs that
take longer to match (the SOIPPA and Enolase super-
family motifs) we see that an almost linear speedup can
be expected.

Conclusions
We have presented LabelHash, a novel algorithm for
matching structural motifs. It quickly matches a motif
consisting of residue positions, and possible residue

types to all structures in the PDB (or any subset
thereof). We have shown that LabelHash often achieves
very high sensitivity and specificity. The statistical signif-
icance of matches is computed using a non-parametric
model. Typically, the number of false positive matches
is much smaller than the number of true positive
matches, despite the large number of targets in our
background database. This greatly speeds up the analysis
of match results. Our algorithm uses only a small num-
ber of parameters whose meaning is easy to understand
and which usually do not need to be changed from their
default values. Matching results are easily visualized
through a plugin for Chimera, a molecular modeling
program.
Extensibility was an important factor in the design of

the LabelHash implementation. Our program is easily
extended to incorporate additional constraints or use
even conceptually different types of motifs. For instance,
matching based on physicochemical pseudo-centers
[22,46] could easily be incorporated, and we plan to
offer this functionality in the future. Input and output
are all in XML format (except for the LabelHash table
itself), which enables easy integration with other tools or
web services. As we demonstrated in the study of the
enolase superfamily, LabelHash can be part of a multi-
stage matching pipeline, where matches produced by
LabelHash can be given to the next program, which can
apply additional constraints to eliminate more false posi-
tives. As long as the set of matches produced by Label-
Hash include all functional homologs, this is a viable
strategy. Of course, the output of LabelHash can also
easily be passed on to any clustering algorithm or a
visualization front-end.

Figure 8 Performance. Average wallclock time (left) and speedup (right) for matching the different categories of motifs against the entire
nrPDB95. The solid lines indicate performance using a shared Panasas filesystem, while the dashed lines indicate performance with solid-state
drives.
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Our matching algorithm has the capability to keep
partial matches and multiple matches per target. This
makes the statistical analysis significantly more compli-
cated. Currently, we just disable the p-value computa-
tion when either option is selected, but we plan to
investigate the modeling of the statistical distribution of
these matches.

Methods
Data sets
For most of our tests we used one LabelHash table for
the entire Protein Database (PDB), based on a snap-
shot taken at March 25, 2009. Each chain was inserted
separately in the LabelHash file. This resulted in
roughly 138,000 targets. Molecular surfaces (used to
compute each residue’s depth) were computed with
the MSMS software [67]. We chose to use reference
sets of size 3. The following parameter values were
used for the reference sets: dmaxmindist = 16 Å, ddiameter

= 25 Å, dmaxmindepth = 1:6 Å, and dmaxdepth = 3:1 Å.
The same parameters were used in all experiments.
These values were chosen such that motifs generally
contained at least one reference set of size 3. They are
very generous in the sense that most motifs we have
used for evaluating the LabelHash algorithm contain
many reference sets. If reference sets of more than 3
residues are used, the values of the distance para-
meters need to be increased to guarantee that each
motif contains at least one reference set. The advan-
tage of larger reference sets is that we instantly match
a larger part of a motif. However, increasing these
values also quickly increases the number of reference
sets in the targets. So the number of reference sets to
perform match augmentation on will also quickly
increase. Finally, the storage required for the hash
tables grows rapidly with reference set size. After the
preprocessing phase the total size of the LabelHash
table for the entire PDB was 65 GB, while with refer-
ence sets of size 4 (and the same parameters) the table
would grow to approximately 5 TB (estimated based
on a table constructed for a subset of the PDB).

Benchmarking
The computational experiments were carried out on a
Linux cluster where each node has two quad core 2.4
GHz Intel Xeon (Nehalem) CPUs with 8 MB cache.
Each node has 12 GB of memory per node shared by all
cores on the node. So for the results in Figure 8 only 2
nodes were used, while for the results in Additional File
3 up to 128/8 = 16 nodes were used. The 65 GB table
did not fit on our solid-state drives, so a separate table
for just the nrPDB95 (21,745 targets, 9.7 GB) was used
in the benchmarking tests.

Additional material

Additional File 1: Enolase Superfamily (ES) motifs based on
different structures. The ES motif was defined using different PDB
structures as templates and although the amino acid labels are identical
across all motifs, the 3 D coordinates of each motif point vary according
to the structure on which a motif was based [61]. This causes significant
variation in the ability of the motifs to accurately classify ESdb structures.

Additional File 2: Matching results for CSA motifs. Several motifs
obtained from the Catalytic Site Atlas (CSA) were matched against the
corresponding protein family and the nrPDB95. From the resulting
matches the Area Under the Curve (AUC) for the Receiver Operating
Characteristic (ROC) curve and Precision-Recall (PR) curve were
computed. A ROC curve plots sensitivity ( )TP

TP FN+ as a function of
the false positive rate ( )FP

FP TN+ , while a PR curve plots precision
( )TP
TP FP+ as a function of recall (which is equivalent to sensitivity). The

sensitivity and specificity at a p-value threshold of 0.001 were also
computed.

Additional File 3: LabelHash parallel performance. Average wallclock
time (left) and speedup (right) for matching different motifs against the
nrPDB95 on a high-performance computing cluster. For the motifs used
in the SOIPPA comparison and the Enolase Superfamily study substantial
(but diminishing) improvements can be obtained by increasing the
number of cores. These motifs are larger and have more alternate labels
than the CSA.
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