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Abstract

In silico toxicology is an emerging field. It gains increasing importance as

research is aiming to decrease the use of animal experiments as suggested in

the 3R principles by Russell and Burch. In silico toxicology is a means to iden-

tify hazards of compounds before synthesis, and thus in very early stages of

drug development. For chemical industries, as well as regulatory agencies it

can aid in gap-filling and guide risk minimization strategies. Techniques such

as structural alerts, read-across, quantitative structure–activity relationship,

machine learning, and deep learning allow to use in silico toxicology in many

cases, some even when data is scarce. Especially the concept of adverse out-

come pathways puts all techniques into a broader context and can elucidate

predictions by mechanistic insights.
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1 | INTRODUCTION

Risk assessment is crucial and inevitable for pharmaceutical, cosmetics, and chemical industries as well as regulatory
agencies. The goals of such assessments, however, are most diverse. In the pharmaceutical industries, risk assessment is
conducted throughout the whole drug discovery and development process. Starting with the first evaluation of a com-
pound, even before synthesis, it carries on until clinical trials where risk assessment is crucial for human health.
Despite rigorous safety assessment of novel compounds, attrition still is high during the development process, often due
to safety concerns.1 This is one of the reasons which prompted the European Federation of Pharmaceutical Industries
and Associations (EFPIA; efpia.eu) and the European Commission to team up and found the Innovative Medicines Ini-
tiative (imi.europa.eu).2 This resulted in the launch of several large scale industry-academia collaborative projects
aiming at in silico prediction of toxicity, such as eTOX3 and eTRANSAFE (etransafe.eu).

In the chemical industries safety assessment is conducted as well, however, often with the primary goals being
worker safety and environmental risk assessment. The cosmetics industry's risk assessments mostly revolve around con-
sumer safety. Current safety testing in all industries is trying to implement the 3R principles which propose the
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reduction, refinement, and replacement of safety studies performed on animals.4–6 The announcement of EU regulation
(EC) No 1907/2006 (widely known as REACH) and the European Union's Regulation (EC) No 1223/2009 (ban on ani-
mal testing in the cosmetics industry) shifted the focus from in vivo studies towards in vitro and in silico procedures for
risk assessment. Another major step towards this goal was the European Pharmaceuticals Agency's (EPA) announce-
ment of abolishing all funding for mammalian safety testing, as well as to eliminate mammalian safety testing itself
from the approval processes by 2035.7

The aim of in silico toxicology is to predict certain hazards, such as mutagenicity or organ toxicities, based on com-
putational models. These models can be created by experts (e.g., structural alerts or read across) or created automati-
cally (e.g., machine learning techniques). The applicability of models ranges from the earliest stages of drug
development—where a compound needs only to exist virtually to be testable—to risk assessment in time-critical cases
where in vitro or in vivo testing is not feasible, thus allowing for guidance on timely needed decisions. For example, the
REACH legislation, where large amounts of chemicals needed to be tested for various apical toxicities, aimed towards
in silico toxicology for gap filling techniques to deal with the impossible task of testing reams of chemicals within the
given time frame. With in silico methods, hazards can be estimated early on, eliminating the need for synthesis. This
can be especially important during drug development, where the in silico prediction of a compound can direct the
choice for the lead compounds, not only concerning efficacy but also safety. Testing can, therefore, be directed towards
specific hazards before a compound is taken forward to the preclinical safety testing. Furthermore, in silico toxicology
could serve as a predictive tool for rare idiosyncratic events which can neither be seen in preclinical nor clinical safety
assessments. For chemical safety assessment in silico models can be used to predict hazards for the users of such com-
pounds, as well as for environmental safety.

The underlying assumption of all in silico toxicology approaches is the relationship between a chemical structure
and its biological activity. This relationship states that the physiological action is a function of the chemical constitu-
tion, which was proposed by Brown and Fraser as early as 1868.8 A consequence of this is the “molecular similarity
principle”,9 which states that similar structures will exhibit similar biological activities. This axiom was broadened over
the last years by incorporating similarities based on gene expression or bioactivities.10,11

While in silico toxicology has advanced significantly in the last years, in times of “big data” there remain plenty of
opportunities for even greater leaps forward. Especially within regulatory frameworks its use still is quite limited and
could be improved with the availability and FAIRification of new data.12 One example is the eTRANSAFE project,
where preclinical toxicity data is integrated with clinical data (etransafe.eu). However, regulatory agencies currently
only accept in silico predictions within the ICH M7 guideline13 for impurity testing and within gap filling for the
REACH legislation. This is mainly due to the fact that until now not enough evidence and trust could be built up to
reach the necessary confidence in such models.

In this review, we will give an overview of the different methods of in silico toxicology, especially with a focus on
newly developed technology. We will discuss pitfalls and caveats for model building and frame our vision of the future
of in silico toxicology.

2 | TOXICITY TESTING

The goal of in silico toxicology is to help in risk identification, compound prioritization and ultimately, in combination
with in vitro testing, to replace in vivo testing. Toxicological testing can be divided into general toxicity testing and
mechanistic toxicity testing.14

2.1 | General toxicology—saftey screening

Safety screening of novel drugs, chemicals, or other substances of concern (such as food contaminants) is generally con-
ducted using in vitro and in vivo tests where a compound is administered in different doses and an effect has to be
observed. For regulatory safety documents mostly in vivo tests need to be conducted. Such tests are conducted for two
purposes: first, to determine the acute toxicity of a compound and second, to determine the repeated dose effects. Acute
toxicity tests are usually used to determine the starting doses for organ toxicity testing.15 Repeated dose studies usually
determine the toxicity of a compound. Mostly subacute repeated dose studies (28 days) and subchronic repeated dose
studies (90 days) to determine organ (OECD TG 407 and 408),16,17 inhalative (OECD TG 412 and 413)18,19 or dermal
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toxicity (OECD TG 410 and 411)20,21 are conducted in rodents. In some cases (e.g., for the REACH annex X22) long-term
toxicity studies (52 weeks) have to be conducted, however, this can be done in combination with a carcinogenicity study
(OECD TG 452 and 453).23,24

These tests are used to evaluate different exposure levels: The no observed adverse effect level which is a dose where
the compound does not affect the organism and the lowest observed adverse effect level, which is the dose where first
effects can be observed. These levels are then used to estimate either the first doses for clinical trials or the dose-limits
for human safety. However, such doses can only be estimated for noncarcinogenic and nongenotoxic substances. In
addition to the required in vivo tests, there are many in vitro tests such as the Ames mutagenicity test or the skin sensi-
tization assay, which can serve as a replacement for the in vivo tests. Further for specific chemical classes, such as agro-
chemicals, additional studies, like ecotoxicological assessment, have to be conducted. Additional information on
regulatory toxicology can be found in References 25 and 26.

2.2 | Mechanistic toxicology

Mechanistic toxicology revolves around investigating the reasons for substances to cause toxicity. This involves mecha-
nistic in vitro as well as in vivo studies. Elucidation of mechanistic information involves illumination of the target as
well as the pathways which lead to the apical toxicity endpoint. This knowledge can be used to gain deeper insights into
the mechanisms of toxic substances. Furthermore, such knowledge can be utilized to prevent toxicity by avoiding spe-
cific structural features. Following mechanistic studies, cellular receptors and transporters, which can lead to certain
types of toxicities, were identified. Such targets are called off-targets, two of the most prominent examples are the
human Ether-à-go-go Related Gene (hERG) channel and the bile salt export pump (BSEP) transporter. Substances bind-
ing to hERG can lead to severe torsades des pointes27 and BSEP blockers often lead to cholestasis.28 Alongside (off)-tar-
gets, (toxico)kinetics, especially in junction with genetic components, also plays an important role in the elucidation of
toxicity mechanisms.29 Using kinetics, the exposure defines whether a hazard becomes an imminent risk. Similarly, the
metabolism, and genetic variations thereof, such as fast and rapid metabolizers, can determine whether a patient
develops severe side effects. In addition, genetic variants of the immune system might be responsible for severe idiosyn-
cratic drug reactions.30 In the future, toxicogenomics might be able to help clarify such mechanisms further and
develop a better understanding of pathways related to different apical toxicity endpoints.31 More detailed information
on mechanistic toxicology can be found in Reference 32.

3 | EXPERT METHODS

Expert methods use the knowledge and experience of experts to deduce or explain toxicity mechanisms. This can be
done for single compounds as well as whole compound classes. Whereas read-across is used to infer toxicity from other
related compounds, structural alerts are a means to highlight potential hazards and help understanding the underlying
mechanism. Expert methods are aimed at helping to assess compounds where no previous knowledge is available,
therefore they can use mechanistic evidence as well as data from safety screenings to provide an assessment.

3.1 | Read-across

Read-across is a method aiming at filling data gaps for a novel or previously uncharacterized compound.33 It relies on the
formation of chemical categories from structures. The underlying assumption is that similar structures will have similar
bioactivities.9 Therefore, read-across is conducted by identifying similar molecules and evaluating their bioactivity, thus
inferring the (non) toxicity of the parent compound. In the best case, the occurrence of a common scaffold makes it possi-
ble to analyze the influence of different substituents on the activity, allowing for a thorough assessment. Chemical similar-
ity can be defined by calculating the similarity of feature vectors such as chemical properties or fingerprints using
similarity metrics such as the Euclidean or Tanimoto similarity, opening up numerous possibilities for the calculation.34

Another part of the read-across approach is the interpretation of available data, which is highly subjective and
therefore there is no impartial solution. Due to the problem of chemical similarity and the subjective interpretation of
the available data, read-across was being regarded as an “ugly duckling” for methods that “originate from the idea that
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any information is better than no information in situations where there is no budget”.35 However, available data, as
well as the use of the method is increasing. Especially the REACH initiative, which required large amounts of testing to
be conducted, allowed read-across for gap filling. The good news is that with “big data” a manifold of data sources is
available to guide read-across. Recently, Pawar et al. conducted a meta-review identifying more than 900 databases that
contain data relevant for read-across.36

Several recent case studies demonstrated that a careful read-across can be utilized to estimate the toxicities of vari-
ous compound classes.37–41 However, all case-studies show that the approach is highly dependent on the available data
and the definition of similarity between the parent compound and the analogs. This is summarized in a final review of
the conducted case studies by Schultz and Cronin who identified primarily transparency and uncertainties as being the
main factor for a successful read-across.42 In particular, they note “Today ‘chemical similarity’ means more than prov-
ing similarity in chemistry; it requires the category formation and RA [read-across] process to be transparent, reproduc-
ible and clearly documented. Specifically, key principles of biological, as well as chemical, similarity need to be
supported, where possible, by data and scientific evidence.”42 which emphasizes the high complexity of read-across. To
create a framework and guidelines for read-across, the Organisation for Economic Co-operation and Development
(OECD), European Chemicals Agency (ECHA), and the European Centre for Ecotoxicology and Toxicology of
Chemicals put efforts into guidelines for read-across assessment.43–45 Especially many efforts were taken towards a
reproducible and objective read-across using mathematical models and quantifying the uncertainty of the prediction.
The overarching conduction of read-across consists of seven steps (based on Reference 46):

1 Decision context: what is the question to be answered.
2 Data gap analysis: where are knowledge gaps.
3 Overarching similarity rationale: wow is similarity defined.
4 Analog identification: based on the definition, which compounds are similar.
5 Analog evaluation: which similar compounds can be used.
6 Data gap filling: combine the knowledge gained from the analogs.
7 Uncertainty assessment: how clear is the evidence, where are still gaps, is the extrapolation adequate.

Thus far, many tools have been developed for category formation or read across (see also Reference 47). The ECHA
made an effort to create a tool to guide, as well as asses, read-across approaches and identify gaps and uncertainties. This
framework is called the read-across assessment framework (RAAF).48 It establishes different scenarios for the assessment of
similarity and the subsequent deduction of evidence. This is important because especially compound similarities, evidence,
used data and lack of plausibility were identified by Ball and coworkers as main reasons for rejected read-across studies.49

Recently, the focus was shifted from purely chemical similarity towards using auxiliary bioactivity fingerprints for a
better characterization of the underlying mechanisms.10,50–53 One approach, called GenRA, uses a bioactivity based
similarity derived from different toxicity endpoints. Helman and coworkers could show that GenRA achieves a better
predictivity when applied to structurally-related clusters of chemicals.54 Recently, GenRA was also implemented in the
EPAs ToxDashboard.55

The most important step of a read-across, besides the assessment of the compound similarity, is the assessment of the
remaining uncertainty. For uncertainty assessment, many analyses were done defining different sources such as the similar-
ity of the analogs, confidence in the underlying data or the weight of the available evidence. Schultz and coworkers made a
great effort to characterize those various sources.56 Their analysis resulted in 30 questions that target all the uncertainties
and thus allow a very thorough estimate. In addition, they evaluated existing read-across frameworks and conclude that cur-
rently, the RAAF incorporates most of these questions. New approaches for read-across include the use of gene expression
data57 or the implementation of local quantitative structure–activity relationships (QSARs) for the prediction of the com-
pounds.58 However, especially the QSARs suffer from having a low explainability and thus contradict the concept of the
transparency of a read-across. Nevertheless, local QSARs, especially with explainable algorithms, can help in assessing the
toxicity in addition to the read-across if sufficient data is available. For more information see Reference 59.

3.2 | Structural alerts

Structural alerts, like read-across, are based on the idea that chemicals can be grouped into clusters of molecules
exhibiting similar toxicity and, moreover, having a similar mode of action. A structural alert is a common substructure
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that can be linked to a certain type of toxicity. Such alerts can be derived through expert knowledge60 or by statistical
evaluation of fragmented datasets (e.g., References 61–64, for a comparison see Reference 65). The statistical evaluation
of a dataset is usually done by utilizing a fragmentation algorithm and subsequently deriving structures that are associ-
ated with certain toxicities. For this, the user assumes that, if a substructure is present in a higher percentage of toxic
than nontoxic molecules, the structure might be responsible for the toxicity. Floris and coworkers complemented this
approach by laying out a basis for the statistical analysis of newly found alerts, which is using the chi-squared test on
an alert's contingency table.66

However, often no mode of action can be directly assigned to such statistically found alerts. Derivation of alerts by
expert knowledge yields the advantage of an explanation for an alert. This explanation often results in mechanistic
insights that subsequently can be used to suggest structural changes, where applicable.67 Independent of their source,
structural alerts can help in the identification of hazards. Alerts can cluster datasets according to a potential common
mechanism of such compounds.68 In addition, they yield a starting point for mechanistic studies69 or structural
changes67 to minimize the risk of toxicity. However, as alerts only see one part of a structure, they fail at analyzing the
different effects of multiple groups occurring at the same molecules. Those effects might be influencing each other and
thus influence the toxicity. This is, for example, known for the induction of mutagenicity of nitro groups. Although
widely known as a structural alert, the nitro group is often used in therapeutics (e.g., cancer therapeutics) as a func-
tional group providing reactivity towards the target.70 However, it is also known that by structural modification of such
compounds the genotoxicity can be reduced, if not abolished.71,72

A new method, which is able to partly incorporate such modifications is the generation of structural alerts through
scaffold trees.73 The generated trees show how the hazard of a molecule changes when the parent fragment is modified.
When assessing a compound with structural alerts it is important to understand the absence of an alert does not denote
a molecule to be nontoxic, rather it states no known alert could be found. However, with sufficient available data this
can be made possible.74 It was also shown that the potency of an alert might be corresponding to the daily dose, there-
fore alerts might not be relevant for low doses of drugs.75 Alves and coworkers therefore proposed that structural alerts
should not be seen as a ”yes” or ”no” concerning toxicity but rather as a hypothesis about the mode of action and subse-
quently trigger closer mechanistic studies.67,76 Similarly, Limban and coworkers propose the replacement of structural
alerts by functional groups that counteract the supposed toxicity mechanism rather than directly rejecting such com-
pounds.67 Kalgutkar also highlighted, that, although structural alerts should not be ignored, especially in the case of
toxicity via metabolic activation, alerts should be used with care77 as metabolic activation might be heavily influenced
by existing residues of a scaffold. Myden and coworkers also showed that structural alerts can be highly sensitive, lead-
ing to many false-positive results.78 Overall, structural alerts serve as a means to group chemical structures and to
derive common mode of actions. However, as alerts do not consider the whole molecule and do not allow for truly neg-
ative predictions, they should only be used to indicate a hazard which can be used to guide future studies.

4 | MACHINE LEARNING BASED PREDICTIONS

4.1 | 2D and 3D quantitative structure–activity relationships

Quantitative structure–activity relationship (QSAR) analysis is the advancement of SAR analysis. SAR analysis dates
back to a thesis of Cros who discovered that toxicity increases with diminishing water solubility.79,80 By SAR analysis of
congeneric series, it can be determined how substituents influence the bioactivity of a compound. In 1963 Hansch and
Fujita published a first mathematical method termed p − σ − π analysis to correlate changes in biological activity with
changes of structural properties.81 This was complemented by Free and Wilson's mathematical contribution to
structure–activity relationships.82 With both methods, it became possible to have a quantitative hypothesis for the con-
tribution of different substituents to the biological activity. However, it needs to be noted that in traditional QSAR only
distinct congeneric series are analyzed. This is mainly because QSAR was intended to provide information on the physi-
cochemical features required at specific positions of a chemical scaffold in order to enhance binding affinity. Basic
requirements for a traditional QSAR analysis thus require a concrete ligand–receptor interaction, presumably in the
same binding mode. Only then changes in for example, electronic properties of an R group can be related to changes in
the biological activity of the compound.

In the early times of QSAR, descriptors and fingerprints derived from the 2D structure of the compounds were used
as an input feature vector. With the increasing computational power available, also the use of methods based on three-
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dimensional representations of molecules became possible. Nevertheless, this comes with the cost of intense conforma-
tional sampling requirements. In alignment-dependent 3D-QSAR methods such as CoMFA83 and CoMSIA,84 each com-
pounds' conformational space needs to be sampled to derive the energetically most favorable conformation, and these
need to be aligned. In alignment independent methods, such as GrIND,85 VolSurf,86 Pentacle,87 and 3D autocorrelation
vectors,88 descriptors are calculated from distinct 3D conformations of the individual molecules and used for correlation
analysis. Although in this case no alignment is necessary, the methods still require a thorough conformational analysis,
as the descriptor values are conformation-dependent.

Considering all this, it becomes evident that classical 2D-QSAR and 3D-QSAR are not considered to be a valuable
method for predicting toxicity, especially in case of complex in vivo endpoints such as hepatotoxicity, cardiotoxicity, or
neurotoxicity. In these cases, multiple physicochemical (solubility, crossing barriers) and molecular (interaction with a
transporter, cytochromes, off-targets) events are involved, which preclude any traditional QSAR method other than cor-
relation with very global physicochemical features such as logP, TPSA, or number of H-bond donors, -acceptors, or
rotatable bonds. However, for very specific endpoints, and if congeneric series are available, QSAR and 3D QSAR can
be used to determine properties decreasing the toxicity.89–92

4.2 | Structure-based approaches

With the increasing amount of protein structures deposited in the Protein Data Bank (pdb; http://www.rcsb.org/),93

also structure-based approaches are used to predict toxicity. However, in this case there needs to be a clear, causal link
between a protein (in this case called off-target) and the adverse effect. One of the prototype examples in this respect is
the hERG potassium channel and its link to the long QT syndrome. Although recent work demonstrates that blocking
hERG not necessarily leads to Torsades de pointes,94 affinity to hERG is routinely tested in the drug discovery and
development process. This need also triggered the development of respective in silico methods. Besides numerous
ligand-based models applying basically all methods used in machine learning,95–99 also structure-based approaches
such as docking into protein homology models of hERG were explored. These studies comprise, for example, induced
fit docking of a small set of hERG blockers,100 insights into the molecular basis of drug trapping of propafenones in
hERG,101 up to calculation of absolute binding free energies between hERG and structurally diverse ligands.102

Also, for other off-targets such as ABC-transporter structure-based methods were applied to get a deeper under-
standing of the molecular basis of compound/off-target interaction. In case of P-glycoprotein, SAR guided docking103

led to a docking protocol which allowed to perform structure-based classification of a large set of P-gp inhibitors and
noninhibitors.104 Also for the BSEP, an ABC-transporter linked to cholestasis, structure-based classification was suc-
cessfully implemented.105 Finally, we would like to mention the off-target safety assessment (OTSA) framework, which
combines a number of 2D target prediction methods with 3D protein-based approaches. Briefly, the combination of six
different cheminformatic methods with 3D-methods such as pocket descriptors allows to predict off-target interactions
for small molecules.106 While OTSA basically predicts potential interactions, proteochemometric modeling tries to pre-
dict quantitative compound-target interaction values by including target-based descriptors into the data matrix for clas-
sical QSAR analyses.107

4.3 | Traditional machine learning

Over the years the original QSAR analysis was expanded by different groups. Today, in the field of in silico toxicology,
the term QSAR is used very widely to describe all forms of predictive modeling, including more complex (and less quan-
titative) machine learning models. Machine learning is a term comprising supervised model building for classification
and regression, unsupervised techniques such as clustering, and reinforcement learning techniques mostly applied to
sequential decision making tasks such as molecular design.108 In the following, we will use the term machine learning
to refer to supervised learning for classification or regression models if not stated otherwise. Machine learning is split
into two ”worlds.” Traditional machine learning refers to techniques such as k-nearest neighbors (kNNs), random for-
ests, or support vector machines, which are separated from neural networks as the central algorithm of deep learning
(which will be discussed in the next section).

To train traditional machine learning models, datasets of 100 compounds or more should be used. For training, the
molecules have to be transformed into a suitable representation such as descriptors or fingerprints. Descriptors usually
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constitute molecular properties such as the log P or the number of hydrogen bond donors, but can also involve more
complex 3-dimensional properties such as atom distances or surfaces. Fingerprints are bit-vectors or count vectors
which report the presence or absence or the number of occurrences of a structural feature. These representations are
then used as input for model generation. By trying to predict the training set molecules correctly, and reporting the
errors made back to the model, the model is improving its prediction.

A model can either be a regression model, predicting a continuous variable such as the LD50, or a classification
model, such as a model for mutagenicity. Classification models are usually predicting a binary outcome or a continuous
value between 0 and 1. Such continuous values can either be transformed into a binary outcome using a threshold
(commonly 0.5) or can be transformed into a probability. Lately, many developments focus on thorough validation pro-
cedures to increase regulatory acceptance and to build trust. In this respect the main concerns are related to the limited
chemical information used for building the model, which reduces the confidence in prediction of dissimilar molecules.
Frenzel and coworkers showed that freely available Ames models can especially help in the prioritization for mutagenic
or carcinogenic heat-induced food contaminants. However, they concluded that the evaluated models are not yet pre-
dictive enough to use them as a stand-alone tool.109 In contrast, a large international study revealed that existing and
commonly used models for Ames mutagenicity are working well and the predictivity can compete with the in vitro
Ames test.110 In this context it has to be noted that, depending on the dataset used, it might be that the contaminants
Frenzel and coworkers used are too specialized to be caught by models in the public domain, which usually also only
rely on public data. Thus, their molecules might not be in the applicability domain (see also Section 4.5). Another
important finding by Honma and coworkers was that incorporating newly available data also increases the performance
and thus models should be updated regularly.110

Another important step is leveraging available (big) data to build better machine learning models. This was
shown by Luechtefeld et al. who mined available data from regulatory agencies and developed RASAR, reporting to
outperform animal test accuracy.111 Although the methodology was criticized later,112 this approach highlights the
need to leverage the available data and combine available datasets. Besides that, data mining, especially from non-
tabular data such as study reports, can increase the availability of data and thus improve existing models.

Unfortunately, developed models often lack an explanation of the prediction. Yet, this is one of the important pre-
requisites in the OECD's QSAR validation guidelines (see Section 4.6). The last point states that models should have a
(mechanistic) explanation to be widely accepted. Usually, models are black boxes and, apart from the input and the out-
put, the user does not know what is happening internally. Some models (such as regression or random forests) can at
least explain the most relevant input features. Therefore, the focus has shifted from the mere model building towards
establishing trust in a model's prediction, by giving confidence estimates for a prediction. In particular, conformal pre-
dictions can yield such an estimate of the certainty of the model for a specific prediction.113,114 In brief, a conformal pre-
dictor is built using an existing model along with a calibration dataset. Predictions of this dataset are then used to
determine the p-value of a new prediction. This p-value is calculated for both classes (i.e., toxic or nontoxic) separately.
If the p-value is above the chosen significance level the compound belongs the class. Possible outcomes of conformal
predictions are a compound belonging to (a) only one class, meaning the compound is classified with high confidence,
(b) both classes, denoting the compound cannot be predicted with high confidence, or (c) it belongs to no class,
denoting that the compound is too dissimilar and cannot be predicted.

The last option, therefore, represents a way to get confidence scores and using them as an applicability domain for
the models.115 In addition, it was shown that conformal predictions can also be used to deal with imbalanced data,
which is a common problem for toxicological datasets.114 Another method to convert predictions into real probabilities
is Platt scaling, which uses a learned log transformation to calculate the class probabilities from existing predictions.116

A very interesting approach to interpretability was introduced by Alves and coworkers. Their approach, Multi-
Descriptor Read Across, uses a kNN approach to classify compounds. The novelty lies in using four different types of
descriptors to determine the nearest neighbors.117 Using the kNN method a prediction can be intuitively understood by
inspecting the nearest neighbors used by the algorithm. The drawback of all traditional machine learning methods is
that missing data has to be imputed to be able to use incomplete data matrices.

4.4 | Neural networks and deep learning

Neural networks are a technique dating back to the 1940s and 1950s.118,119 They have long been used to predict differ-
ent tasks. However, it was not until 2006 that their real breakthrough started.120–122 With the availability of graphical
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processing units, training of neural networks has been hugely facilitated yielding new opportunities.120 Since neural
networks now contain much higher numbers of hidden layers the technique was re-branded as deep learning. For bio-
activity predictions, the Merck Kaggle challenge and the Tox21 challenge showed that neural networks might be supe-
rior to traditional machine learning, yielding higher predictive performance and thus winning the challenge.116,123–125

The biggest advantages of deep learning for bioactivity/toxicity predictions are (a) the flexibility with regard to the
structural representation and (b) the possibility of multi-task predictions (i.e., predicting multiple toxicities in the same
model). In fact, deep learning is always seen as a method able to extract meaningful features by itself, thus not needing
any feature generation beforehand. This can be impressively seen in the image recognition field.126 For the prediction
of chemicals, this implies, instead of using descriptors, the molecules themselves should be used as an input. Effectively,
this opens doors for predictive toxicology (see Figure 1). By providing images, molecular graphs, 3D grids, or SMILES
strings, the network can learn the necessary properties or patterns by itself, based on the assumption that all informa-
tion needed is encoded in the structure.127 Especially in the case of graphs, smiles or 3D grids, the model is not biased
by the user's selection of descriptors, which might not be suitable for the task at hand. Such approaches have yet to be
extensively studied.

Nevertheless, a few pioneers already obtained interesting results. Goh et al. developed Chemception, a network
predicting toxicity from 2D images of chemical structures, and later asked: “How much chemistry does a network need
to know?”.128,129 The results showed that training can be conducted with images but encoding additional chemical
knowledge is helpful for the predictive performance. Similarly Fernandez et al. trained a network solely on images and
reported comparable performances to other state-of-the-art models.130 Although training on structural images might
not be the goal for predictive toxicity, image training could purposefully be used in the detection of toxicities from path-
ological or image-based techniques. Jimenez-Carretero et al. showed that convolutional neural networks can be used to
predict toxicity from cell staining images and even classify them by their mode of action.131 Another study was able to
predict assay outcomes from microscopy images from high throughput screening studies.132

Apart from images, SMILES can also be used to predict the toxicity of a molecule, as implemented in SmilesNet
developed by Gini and coworkers. It uses SMILES strings as an input, transforms them into a feature vector, and subse-
quently predicts the mutagenicity of a compound.133 A representation which seems to be the most natural in light of
representing molecules as atoms and bonds is the molecule representation by graphs. In such graphs, the atoms are rep-
resented by the vertices and the bonds are represented by the edges between them. Xu et al. showed that the prediction
of acute oral toxicity can benefit from a graph representation.134

Two very interesting approaches which do not use chemical structures as an input, but interpret in vitro assay out-
comes are the prediction of seizure induction by a compound135 and the prediction of liver toxicity endpoints by out-
comes from transcriptomic data.136

Another discovery which has highly impacted bioactivity prediction is the use of multitask networks.137–139 These
networks predict multiple toxicities at once. It was shown that they benefit from the multitask setting by increasing the
performance and at the same time regularizing the network to prevent overfitting. Tasks used in such approaches do
not have to be closely related, however, a commonality of such tasks, like for example the same mode of action, should

FIGURE 1 Scheme of a neural network with possible inputs. The order of the input from up to down, is in concordance with the bias

introduced by the user
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be suspected to benefit from multitasking.140 Without any commonality or similar structures, the model cannot make
use of a shared representation for the tasks which is without benefit for training.

This is of great interest to the toxicological community since it is known that compounds can have multiple targets
and mode of actions and thus might not be constricted to causing one single toxicity. Moreover, the method does not
need to be used on a completely filled outcome matrix, but compounds can have missing activities for some endpoints
and nonetheless be used for the predictions. This yields much larger datasets which can be used for better training of
models. Many studies already highlighted that multitask networks exhibit better predictivity than single task networks.
The application so far was done for modeling of acute toxicity,134,141 reactivity,142 and ADME-Tox properties.143 All this
work highlights, that without the need to use descriptors or fingerprints to transform a molecule into a suitable input of
machine learning models, in silico toxicology can benefit greatly. The possibility to combine related endpoints to form
larger datasets is also a very important step towards larger, and hopefully more generalized, datasets.

Although all methods are very promising, the problem of the interpretability still exists, especially for multitask net-
works. However, interesting conclusions were drawn by Mayr et al., Gini et al., and Xu and coworkers who could show
that networks can learn representations which are comparable to structural alerts.116,133,134 Wenzel and coworkers
introduced response maps to highlight important features used by the network.143

4.5 | Applicability domain

Models are trained on a dataset representing a certain part of the chemical space. The aim is to generalize a model such
that it can possibly predict all available chemical compounds. However, looking at the currently known organic chemi-
cal space which was estimated at 3.4 × 109144 or even more compounds and the dataset size, which usually lies between
a few hundred to a few thousand molecules, it becomes clear that even training with a large dataset of 10,000 com-
pounds means that only 0.00003% of the chemical space is covered. Therefore, a model can never reliably predict the
whole chemical space and predictions should be confined to the chemical space used for model building. The concept
of comparing newly predicted molecules to the training set, as well as giving confidence about the new prediction, is
called the applicability domain. This important criterion is also included in the OECD guideline for the validation of
QSAR models (see Section 4.6).

In their very comprehensive review of applicability domain methods, Mathea and coworkers divided the concept of
applicability domain into novelty detection and confidence estimation.145 They define novelty detection as checking
whether an unseen compound is part of the chemical space the model was trained on. Confidence estimation is defined
as the reliability of a prediction, therefore denoting how confident a model is that the predicted class is correct. The sep-
aration into the descriptor and predictive domain make an interpretation of a prediction for an unseen compound com-
prehensible and traceable.

Hanser and coworkers expand this concept into three stages: they term the novelty detection as applicability and
split the concept of confidence estimation into a reliability and decidability estimation.146 Reliability estimation uses
the compound neighborhood to determine if there are data points close enough and how well the model predicts these
data points. The decidability is the weight of evidence that the prediction of the novel compound is correct. This could,
for example, be a posterior probability or the evidence from single decision trees in a random forest. Both publications
highlight the importance of dividing the applicability domain into two areas, namely the descriptor space and the pre-
dictive space. Both add valuable information about the prediction and can inform the user how trustworthy a prediction
is. Thus, aligning with the aforementioned methodology, the modeler should give users an estimate of how close the
predicted molecule is to the training dataset. Only if the predicted molecule shares a certain similarity, a model can reli-
ably extrapolate from the seen values (see Figure 2). For example, a model trained on a quinone dataset will be able to
predict quinone-like molecules, however, it might fail to predict benzopyrene due to the limited structural similarity.

This again leads to the question of the definition of structural similarity. As already noted, assessing structural simi-
larity is highly complex and always dependent on the molecular representation. For small datasets, a trained medicinal
chemist might be able to define the represented chemical space by visual inspection, whereas for large datasets and
newly predicted molecules this needs to be automated. Independent of the method, the chemical similarity of a com-
pound to the training dataset should always be measured based on the model input such as fingerprints or descriptors.
As secondary information, the modeler should give the user as much information as possible on the closest compounds
in the training set146 as well as a confidence score, which is inherent in most used classifiers.145
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Roy and coworkers recently published an applicability domain calculation that implements all three criteria pro-
posed by Hanser and coworkers. They use the prediction error of the 10 nearest neighbors in cross-validation, the simi-
larity to the training dataset, and the proximity of the predicted activity to the mean of the training data.147 Although
they finally develop a combined score, their findings are in line with the conclusion from Hanser and coworkers, that a
combination of applicability, reliability, and decidability is beneficial as all contribute to a successful prediction. Confor-
mal predictors as introduced before are using their means of generating out of domain prediction. They can fail to confi-
dently assign a class to a prediction, therefore, the user knows the compound is out of domain.115 This estimate can be
considered as information about reliability.

In addition to the question of how an applicability domain can be successfully implemented, it is also interesting to
see which models need a defined applicability domain. Liu and coworkers showed that, while it is generally accepted
that traditional machine learning models need an applicability domain, deep learning models also cannot generalize
much better.148 However, this is not very surprising given that until now most deep learning models are not built on
much larger datasets than traditional models. In the future, with the availability of bigger datasets, this might change
in favor of a more relaxed definition of the applicability domain.

4.6 | Regulatory frameworks for QSAR

In general, QSAR is not only an old but still evolving field as can be seen by the more extensive use and thus the efforts
to harmonize and increase the use. In 2007 the OECD published guidelines on the validation of QSAR models.149 The
guidelines demand models which conform with the following principles:

1 a defined endpoint,
2 an unambiguous algorithm,
3 a defined domain of applicability,
4 appropriate measures of goodness-of-fit, robustness, and predictivity,
5 mechanistic interpretation, if possible.

These guidelines also highlight one of the biggest pitfalls of QSAR modeling: While it is easy to obtain a predictive
model, it is much harder to ensure that the predictive model is useful. Whereas the first two principles—the endpoint
and the algorithm—can be managed with little effort, the last three points need thorough consideration. The applicabil-
ity domain, as discussed earlier, is important since the chemical space is too large for a model to be wholly generalized.
Thus, a measure is needed to evaluate the similarity of a compound to the training set as well as a possibility to obtain
a reliability for the prediction. Point number four—the performance—is probably the most important point. Model

FIGURE 2 The chemical space of a QSAR model. The grey

dots represent compounds from a hypothetical training dataset.

The colored dots represent compounds which should be

predicted by the model. The green dots represent compounds

that are within the applicability domain. The pink dots represent

compounds that would be predicted as out of domain as they lie

on the borders of the chemical space which is very little

populated. For the orange compounds, it is not clear from visual

inspection how confident the model is in the extrapolation of

such compounds as the surrounding area is populated, the

compound, however, lies in a gap in the models' chemical space.

Different applicability domain calculation might give different

results here
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evaluation should not only be conducted thoroughly, that is using an external test set to obtain the performance on a
nonrelated structural dataset, but also should use appropriate measures. The last point—a mechanistic explanation—is
not obligatory for a model. However, in addition to the applicability domain, mechanistic information can not only
inform a user but also help to evaluate a developed model further.

With these principles available for model development, in 2014 the ICH M7 guideline was published. The revised
ICH M7 guideline for the mutagenicity assessment was a big step towards the use of in silico approaches for regulatory
documents. This guideline was a milestone for in silico toxicology as it represents the first guideline to allow the
replacement of an in vitro test with an in silico prediction. Furthermore, this guideline is accepted by many regulatory
agencies.150 It allows the assessment of manufacturing impurities of low quantity employing two orthogonal
approaches. These approaches usually are one expert tool, relying on structural alerts, and one machine learning model.
Both models have to be complementary and have to comply with the OECD validation principles.151 If both systems
are predicting the compound as negative, no in vitro Ames test has to be conducted. For an ambiguous outcome—for
example, contradicting predictions, an out of domain or inconclusive prediction—the expert review plays a crucial role
for further decisions.152,153 The expert review can, by adding additional evidence, clarify the prediction and make a final
decision. In addition, it can also be used to refute a positive prediction, but substantial evidence is needed.152 This appli-
cation of in silico prediction also highlights the need for certain negative predictions and the applicability domain. For
instance, the absence of a structural alert does not necessarily denote that a compound is inactive. In combination with
the applicability or novelty detection, for example, by looking at the closest negative compounds, this negative predic-
tion can, however, be justified as a true negative.74

Apart from being a milestone, the ICH M7 guideline has also influenced other guidelines such as the toxic sub-
stances control act154 or the International Standard ISO 10993-1 for the biological evaluation of medical devices, which
both implement the possibility for in silico assessments.

5 | ADVERSE OUTCOME PATHWAYS

The goal in toxicology has shifted from a mere determination of the hazard of a compound towards a mechanistic
explanation. This explanation enables structural changes as well as an extrapolation of the risk of a compound (e.g., is
the mechanism relevant only if a compound was ingested or can skin contact lead to sensitization, etc.) and thus a bet-
ter safety profile of drugs as well as chemicals. Thus far we have explained how different in silico techniques can be
used to determine hazards emanating from a compound. In principle, two events usually are described by such models:
first, the direct interaction of the compound with cellular organelles or compartments—like for example the binding of
a compound to DNA—or second, the resulting apical endpoint, such as carcinogenicity, which is commonly used for
hazard evaluation. The first concept is also termed molecular initiating event (MIE), and the second is termed adverse
outcome. The event cascade which is following the MIE is referred to as an adverse outcome pathway (AOP), the events
are referred to as key events (see Figure 3).

These pathways were first introduced for ecotoxicology.1551 The AOP framework allows the assessment of chemical
hazards through the incorporation of mechanistic information. This information can elucidate species differences or
account for causal evidence of found statistical correlations. Very useful resources to discover known AOPs are the
AOP Wiki (aopwiki.org) and the AOP-KB (aopkb.org) or the OECD series on AOPs.156

FIGURE 3 Schematic drawing of an adverse outcome

pathway. The pathway consists of a molecular initiating event

(MIE), several key events (KE), and an adverse outcome (AO).

The light grey area depicts a scheme for a linear, single adverse

outcome pathway. The dark grey area depicts an adverse

outcome pathways network with multiple initiating events and

multiple adverse outcomes. The green square with exposure

highlights that this information is not yet part of the AOP

framework, however, it is highly interlinked
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An important property of AOPs is their independence from a specific substance. Therefore, an AOP can be used for
all compounds where mechanistic evidence is available. AOPs can either be generated manually by literature review or
mechanistic studies or by automated data mining.157–159 As mentioned earlier, high throughput screening data is a
valuable tool to advance in silico toxicology. Fay and coworkers showed that high throughput screening data can also
be used to identify MIE or key events for AOPs and help prioritization of testing resources.160 Incorporating mechanis-
tic information can highlight data gaps or pave the way towards specific testing. Such tests can then be utilized in early
phases of drug development to test a compound for the activation of AOPs, which might be a crucial factor in the deci-
sion process for the advancement of a novel compound.

To a certain extent, this is already done by specific testing for off-target activities such as hERG-channel blocking,
which is known to increase the risk of QT-elongation in drug-users. With the availability of more MIEs, this safety
panel could largely expand and focused in vitro testing approaches could be developed. Furthermore, general
toxicogenomics data is already used (although infrequently) in mechanistic toxicology studies to elucidate the mode of
action.161,162 Thus it could be used to elucidate the mechanisms and help the development of AOPs, as well as, AOP
networks.163 AbdulHameed and coworkers mined several toxicogenomics datasets and integrated the information in
their assessment of the AOP for cholestasis and thereby identified mitochondrial toxicity as a, so far, overlooked cause
of cholestasis.164

Yet, information of an AOP is limited to a potential hazard. For risk assessment, the AOP framework can only be
used when linked with toxicokinetic data165 or as suggested by Escher and coworkers linking the AOP to the exposome
and aggregate exposure pathways (AEPs)166 (see Figure 3). In a case study, Hines and coworkers showed that AEPs
indeed can be beneficial to human risk assessment.167 Quantitative AOPs were proposed by Conolly and coworkers and
extend the concept of AEPs by including dose- and time-response information.168

Apart from being a self-contained method, AOPs can also be linked to the above mentioned in silico methods. Struc-
tural alerts can, first of all, categorize compounds and subsequently link those groups to specific MIEs if the alerts mode
of action is known.68,169 In a read-across analysis, AOPs can be incorporated as an additional layer of information. In
the assessment of compound toxicity via traditional machine learning or deep learning, the AOP concept can also be
very useful. Machine learning can be used to predict the MIE or the AOP of a compound, and in principle all intermedi-
ate steps as well, to guide the safety assessment.170 However, it has to be noted that the MIE, as well as the adverse out-
come, have large differences in the model quality. The MIE is a very specific and well-defined event, where usually
structural determinants are known or can be deduced by knowledge of the target structure. The adverse outcomes are
often much harder to model. One reason is the lacking clarity of the endpoints, as data is often based on the interpreta-
tion of an outcome. For example, in the case of drug-induced liver injury, the data is based on case reports, which, for
example, might be biased by the examiner or via unknown multidrug use. In animals, the outcome is based on the his-
topathologist's interpretation of the seen lesion which might vary between individual assessments. The second reason is
that one adverse outcome, such as drug-induced liver injury, can be caused by a multitude of MIEs. Thus, the model
needs to be able to interlink all possible causes with the outcome, which is more complex as the structural variability is
much higher.

Nevertheless, both events can be modeled, however, with different purposes. Whereas the MIE can guide early haz-
ard assessment towards specific assays or tests, the adverse outcome can be used, in combination with toxicokinetics, to
conduct a risk assessment. This assessment could be used for gap filling as well as the prediction of potential mecha-
nisms to guide further investigations. A useful guideline on how AOPs can be integrated into risk assessment was publi-
shed by Sakuratani and coworkers.171 Arzuaga and coworkers showed that the AOP framework can be used to identify
and describe possible species-specific effects.172 By introducing information about genetic screens Mortensen et al.
could also show that AOPs can be used to gain information about possible susceptibility introduced through genetic
variation.173 The biggest strength and drawback of AOPs is their linearity. On one hand it introduces simplicity and
facilitates usability, on the other hand most AOPs are not limited to a single event chain but can be much more inter-
linked through common MIEs, modulators or key events. To analyze such dependencies AOP networks were proposed,
which can add additional mechanistic information174,175 (see Figure 3). Oki and coworkers demonstrated that such net-
works can be created by mining high throughput screening data in combination with toxicogenomics data, applying fre-
quent itemset mining.176

Systems toxicology (following systems biology) is a relatively new discipline, which especially aims to integrate toxi-
cological assessment with novel techniques monitoring changes in the whole organism, such as omics approaches and
leverage this information to gain a more complete understanding of toxicological mechanism. Sturla and coworkers
aptly describe, “It [Systems Toxicology] will enable the gradual shift from toxicological assessment using solely apical
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end points toward understanding the biological pathways perturbed by active substances. Systems Toxicology is
expected, therefore, to create knowledge regarding both the dynamic interactions between biomolecular components of
a complex biological system and how perturbing these interactions with active substances alters homeostasis and leads
to adverse reactions and disease.”.177 Consequently, systems toxicology will also enable the development of more com-
plex and detailed AOPs and AOP networks that will guide in silico toxicology assessments in the future.

6 | PITFALLS AND CAVEATS

All methods described in this review have a commonality: all require datasets that can be analyzed or used for model
training. Depending on the dataset size some methods might not be feasible. Especially deep learning requires large
amounts of data to prevent overfitting. However, if the datasets for the derivation of structural alerts, AOPs or traditional
machine learning are small, their applicability also becomes very limited. Read-across requires the least amount of data
with only a few high similarity compounds being sufficient for an extrapolation of the activity. Nevertheless, this specific
type of data might be even harder to find, especially for novel structural classes. As all methods build upon data, it is of
utmost importance to ascertain that this data contain as few errors as possible, since they have a direct impact on the
modeling outcome. Therefore, data curation is essential. Data curation, on one hand, is the removal of uncertain or incon-
clusive activity values,178 and on the other hand, it involves structural curation.179–181 The removal of data points always
is a balancing act between having very few reliable data points or a large dataset with more (less reliable) data points. It
always has to be considered carefully and adapted to the method. Whereas deep learning can handle—and might even
profit from—noise in the dataset,182 for read-across the activities need to be highly curated and reliable to allow a high
certainty in the extrapolation. Structural curation is also necessary to remove duplicates and ensure a similar representa-
tion of functional groups.179 This, in turn, is needed to ensure a unified calculation of molecular descriptors.

For machine and deep learning, the model evaluation is also crucial. In any case overtraining has to be avoided and
the model should be carefully evaluated. Models can be validated by (a) cross-validation, (b) a train-test split of the
dataset, or (c) an external evaluation dataset (see Figure 4). Cross-validation is the easiest to use and can be used for
cases where data availability is very limited. However, one has to be aware that it only gives an estimate for the model
performance and it can be biased by highly similar cross-validation folds. Therefore, it might not reflect the perfor-
mance in real-world scenarios. Train-test splits are commonly used when the dataset size is large enough to allow for
the retention of data solely for testing. With this method, the “real world” performance can be much better estimated,
with the drawback that parts of the available data are not used for training. This implies that the model does not benefit

FIGURE 4 Schematic drawing

of possible ways to train a machine

learning model. The left path

highlights that cross-validation is

possible without splitting the

dataset; however, the obtained

performance is only an estimate.

The left path highlights that a train

and test split is needed for example,

if hyper-parameters need to be

tuned (in this case second inner

cross-validation can be used) or, in

general, if a “real world” situation
should be mimicked. It is important

to note that, once the test set was

used to evaluate the model

performance, one should never go

back to adjusting parameters with

the training set to obtain a better

performance on the test set as this

would introduce bias into the model
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from all available information. Just like cross-validation, it can also be biased by a high similarity between the splits.
Thus, the best training method is the evaluation with a true external test set which was compiled independently from
the training dataset. Naturally, the external test set has to be within the applicability domain of the model. An interest-
ing approach to first asses the real-world performance and secondly evaluate the impact of different external datasets is
the nested cross-validation suggested by Baumann and Baumann.183 In addition, with the clustered cross-validation
suggested by Mayr et al. in their challenge-winning DeepTox pipeline,116 this could lead to more stable and generalized
training of QSAR and deep learning models.

Special care has to be taken when training is conducted with imbalanced datasets. Due to training with greedy algo-
rithms, many machine learning algorithms (including neural networks) tend to ignore the minority class, as the error
becomes quite small when all labels are predicted as the majority class. Therefore, the training procedure might have to be
modified by the use of cost-sensitive learning or by over- or undersampling techniques.184 Examples for such techniques are
meta-cost,185 bagging,186 or SMOTE.187 A model-independent method to overcome imbalance is conformal predictions as
shown by Sun and coworkers.114 Lately, it also was shown that for neural networks SMILES enumeration could be a viable
method to oversample datasets.188 Despite such methods, appropriate evaluation metrics need to be used to determine the
models performance. For imbalanced datasets the confusion matrix itself, the Matthews correlation coefficient,189,190 the bal-
anced accuracy or the positive or negative predictive value, are appropriate, with the final choice depending on the purpose
of the model. The most important measure is always the confusion matrix itself. It already highlights model biases towards a
class, which is important especially for imbalanced data. Since from the confusion matrix all other measures can be derived,
it just seems logical to always report this for predictive models, along with the modeler's favorite choice of metrics. This
allows the reader to in turn calculate their favorite metrics and compare their models to the reported one.

One exception is the area under the receiver operating curve (AUC). This metric cannot be derived from the confusion
matrix. However, this already highlights the biggest drawback. It does not evaluate the model at its current state, rather the
model's capability regarding different thresholds. However, although the performance at one point might be high, the respec-
tive classification threshold is not necessarily useful—just imagine a model with a sensitivity and specificity of 0.8, but a clas-
sification threshold of 0.01—here the threshold already highlights the models bias towards one class. Therefore, the AUC
should only be used with great care and concomitantly with the confusion matrix to allow an unbiased model evaluation.
This brings us back to the OECD validation guidelines for QSAR models. So far, points (1) to (4) were discussed and their
importance stressed. The last point—a mechanistic explanation—is probably the hardest to achieve, but might be the most
important point to establish confidence in predictions. Whereas structural alerts derived by an expert will mostly have some
rational explanation, most automated methods are black-boxes. For statistically generated structural alerts a literature search
can highlight the importance of different structural classes or substructures, while for machine learning methods there is no
easy explanation. Although some methods can provide feature importances, no method can yet give a human-like explana-
tion of a prediction. This is one of the reasons why in silico toxicology is often used as an indicator, but the final call will
always be made by expert review, in vitro or in vivo studies. A very comprehensive work, defining how in silico toxicology
should be used to become the powerful tool it could be, was published by Myatt and coworkers.191

In general, it is important to know how a model was built and especially for which purpose. A model for toxicity
prediction in an early stage should not be overly sensitive. In this stage, hazards should be specific to be able to decide
if a compound should be advanced. However, a missed alert is not crucial as further tests for safety are conducted. For
example, for consumer safety, a missed hazard might lead to subsequent risks. Similarly, the absence of structural alerts
never indicates any hazard at all, unless the model was developed to indicate specifically negatives. AOPs are also an
example: while they are able to indicate events leading to an apical toxicity endpoint, they are not complete pathways
and thus should not be used as such. Especially without any known exposure or kinetic modeling, they only indicate
hazards. In fact, different exposures, such as repeated low doses or one-time high-dose, could lead to different AOPs.
Thus, modifying or compensatory reactions, which are not (yet) part of the AOP framework, can diminish or even abol-
ish the apical toxicity thus negate a possible hazard.

Overall, it can be concluded that all methods have benefits and drawbacks. It is important for modelers and users to
specify those and to be aware of limitations, especially during result interpretation.

7 | WHERE ARE WE HEADED?

A lot has been achieved in the field of in silico toxicology. Emerging technologies are boon and bane. While the modeling
gets much more complex with deep learning technologies, it might offer new paths for higher predictivity of models.
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Especially for ”black-box” models, which do not allow the users to understand a prediction, the modelers need to build
trust. An emerging technology is explainable AI which tries to open the black box. There are many already existing possi-
bilities to explain model prediction, as shown by Polishchuk.192 Newer technologies are emerging, especially with regard
to neural networks. Two model-independent approaches are often used: The LIME193 and SHAP194 frameworks utilize
local explainable models to assess the importance of the input feature. In contrast to random forests or regression, this
importance is on a per prediction, instead of a per-model basis. For deep learning, layer wise relevance propagation195 is a
method that can calculate the contributions of the input features. Many more methods are emerging which could be bene-
ficial for in silico toxicology.196 Such methods could generate insights into the structural features or properties which are
used by the model. Informing a user about such choices could also improve the trustability. Especially with new tech-
niques such as graph-based training of neural networks we could gain novel insights into the genesis of a prediction, and
maybe leverage such information by discovering novel structural patterns relevant for in silico toxicology.

In addition to better interpretability, studies to evaluate models on a large scale (i.e., across multiple companies, as
pursued in the eTOX and eTRANSAFE projects) would not only enhance the confidence, but also improve the models.110

However, even with such approaches the current lack of large datasets makes it hard to provide generalized assumptions
for modeling or risk assessment. To generate models, as well as read across, or structural alerts with higher generalization
potential, data mining and thus a compilation of larger datasets is essential. A drawback is that mined data is never as reli-
able as manually curated datasets.197 However, as stated previously there will always be a trade-off between reliable data
and large datasets. Certainly, with the availability of more data, the amount of reliable data will also increase. An interest-
ing approach could also be the utilization of high throughput screening outcomes as biological fingerprints.198,199 Such
data is already generated in early drug screening and should, therefore, be leveraged as much as possible.

High throughput data will also enable studies for the combination of structure based and deep learning methods.
Lenselink and coworkers showed that proteochemometric modeling, in combination with deep learning, can out-
perform other approaches for target bioactivity predictions.200 Consequently systems toxicology will be able to general-
ize the modeling approaches not only to singular endpoints but towards an network based prediction. Such approaches
could lead to dynamic and computable biological networks, able to predict outcomes based on network perturbances.177

The possibilities of such networks are highlighted by Yepiskoposyan and coworkers, who used networks for
mucociliary clearance to assess the network perturbance as well as the related mechanism for pyocynanine and IL-13
treatment.201 The relating datasets and information gained from systems toxicology need to be stored in a useful format.
In contrast to traditional relational databases, pathway related data is best stored in graph databases which are able to
encode the relevant structures such as proteins or genes in the vertices and the relevant relationships such as binding
or upregulation, in the edges of the graph.202

While we have large public resources for chemical datasets, sadly a plethora of data is only available in proprietary
environments. Gedeck and coworkers published an exciting study where models were trained with proprietary data,
without the necessity to enclose the structure.203 This, in combination with the development of distributed learning,204

can also pose a big opportunity to leverage available information in spite of sensitive data.
The AOP framework is also a powerful tool, not only to complement read across or structural alerts, but also to

bridge the gaps between all in silico disciplines. If an AOP (or parts of it) is known, respective machine learning models
for the MIE(s) or key events could be further used to guide the decision-making process.

8 | CONCLUSIONS

In silico toxicology is a cheap and fast tool to detect hazards. Although it is already used within regulatory frameworks,
there is still a lot of uncertainty concerning the application and especially the interpretation of such approaches. Once
protocols are established and the users get more confident, in silico, along with in vitro tests certainly will in some cases
be used as a replacement for in vivo testing. In addition, modelers have to adhere to the OECD guidelines and make
sure that the user is informed about the process and intended use of a model. This will establish more trust in models
and may overcome the often too rigorous assessment of computational models, as they are expected to outperform the
in vitro or in vivo test predictivity. The more we use in silico models the more we can learn about their benefits and lim-
itations and understand where further research could offer new paths.
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ENDNOTE
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