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ABSTRACT
Cancer-associated fibroblasts (CAFs) are essential for tumor microenvironment remodeling and correlate 
with tumor progression. However, interactions between CAFs and tumor cells and immune cells in triple- 
negative breast cancer (TNBC) are still poorly explored. Here, we investigate the role of CAFs in TNBC and 
potential novel mediators of their functions. The clustering of classic markers was applied to estimate the 
relative abundance of CAFs in TNBC cohorts. Primary fibroblasts were isolated from normal and tumor 
samples. The RNA and culture medium of fibroblasts were subjected to RNA sequencing and mass 
spectrometry to explore the upregulated signatures in CAFs. Microdissection and single-cell RNA sequen-
cing datasets were used to examine the expression profiles. CAFs were associated with hallmark signalings 
and immune components in TNBC. Clustering based on CAF markers in the literature revealed different 
CAF infiltration groups in TNBC: low, medium and high. Most of the cancer hallmark signaling pathways 
were enriched in the high CAF infiltration group. Furthermore, RNA sequencing and mass spectrometry 
identified biglycan (BGN), a soluble secreted protein, as upregulated in CAFs compared to normal cancer- 
adjacent fibroblasts (NAFs). The expression of biglycan was negatively correlated with CD8 + T cells. 
Biglycan indicated poor prognostic outcomes and might be correlated with the immunosuppressive 
tumor microenvironment (TME). In conclusion, CAFs play an essential role in tumor progression and the 
TME. We identified an extracellular protein, biglycan, as a prognostic marker and potential therapeutic 
target in TNBC.
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Introduction

Breast cancer is the most common malignant tumor in women 
worldwide.1 Triple-negative breast cancer (TNBC) is a special 
molecular subtype that is characteristic of negative hormone 
receptors (estrogen and progesterone receptors) and human 
epidermal growth factor receptor 2 (HER2). Neither endocrine 
therapy nor routine targeted therapy is effective for TNBC. 
There are limited therapeutic selections for TNBC and some 
patients are still burdened by low efficacy of treatment response 
and high risk of recurrence or metastasis.2 Hence, it is crucial 
to explore the mechanism underlying TNBC development and 
progression, which may lay a foundation for its diagnosis and 
treatment.

The crucial role of the tumor microenvironment (TME), 
which serves as the soil for seeds (cancer cells), has been proven 
in many studies.3–5 Cells in the TME mainly include stromal 
cells and immune cells. Recently, increasing evidence has high-
lighted that appropriate stromal cells are crucial for the devel-
opment of tumors.6–8 Among them, cancer-associated 

fibroblasts (CAFs) represent the main fraction, and accumulat-
ing evidence has indicated their role in cancer proliferation, 
progression and invasion.9,10 It is well acknowledged that CAFs 
interact with malignant cells and orchestrate the metastasis of 
breast cancer.11–13 Although various clinical trials targeting 
CAFs have been performed in recent years, such as targeting 
surface markers, reducing CAF infiltration and normalizing 
CAF functions, most of them are still ongoing.10 Previous 
studies have identified many CAF markers, but few of them 
have moved into clinical practice.14 This may be due to the 
internal heterogeneity of CAFs. The CAFs seemed to originate 
from diverse cell types, such as fibrocytes, stellate cells, 
endothelial cells and mesenchymal stem cells.14 It is well 
accepted that most activated fibroblasts are derived from fibro-
blasts of adjacent normal tissues and induced by oxidative 
stress or specific cytokines and chemokines from cancer 
cells.15 Hence, distinct subclusters have been identified by 
previous studies. CAFs in human breast cancer can be divided 
into CAF-S1 to CAF-S4 according to specific signatures, such 
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as CD29, FAP, FSP1, α-SMA, CAV1 and DPP4.16 Furthermore, 
the CAF-S1 cluster contributes to a poor response to 
immunotherapy.17 Immunotherapy has become a novel strat-
egy for breast cancer treatment in recent years.18 Therefore, 
focusing on the function and mechanism of fibroblasts in the 
tumor microenvironment may provide a strategy for breast 
cancer treatment, especially immunotherapy.

In this study, we explored the relative infiltration level of 
fibroblasts in triple-negative breast cancer and the correlation 
between CAFs and immune components in the TME. We 
further identified an upregulated secreted protein, biglycan, 
in CAFs compared with normal cancer-adjacent fibroblasts 
(NAFs) using RNA sequencing and mass spectrometry meth-
ods. Biglycan is encoded by the BGN gene and is mainly 
expressed in the stromal part of tumors. Biglycan is a protein 
that belongs to the small leucine-rich proteoglycan (SLRP) 
family. We found that the expression level of BGN is correlated 
with the extracellular matrix, lymphangiogenesis, epithelial- 
mesenchymal transition, angiogenesis and TGF-β signaling. 
Single-cell sequencing results show that BGN is mainly 
expressed in stromal fibroblasts. Moreover, BGN is highly 
expressed in CAFs of TNBC compared with other cell subpo-
pulations. The role of BGN in the TME and its mechanism 
underlying how to affect the microenvironment remain 
unknown.

Establishing the relevance of the role of fibroblasts and 
biglycan in human triple-negative breast cancer using publicly 
available datasets and clinical samples raises the probability 
that targeting biglycan may yield clinical utility.

Methods

Datasets and tissue specimens

The Cancer Genome Atlas (TCGA) dataset was obtained 
using the TCGAbiolinks package in R software.19,20 The 
transcripts per million (TPM) value was estimated at the 
transcript level. Patients who were diagnosed with breast 
cancer histologically and available for transcriptomic data 
were included. To further distinguish triple-negative breast 
cancer samples from the breast cancer cohort (BRCA), 
patients with immunohistochemically negative estrogen 
receptor (ER), progesterone receptor (PR) and human epi-
dermal growth factor receptor 2 (HER2) were included. 
A total of 116 patients were enrolled in the TCGA-TNBC 
cohort. Overall survival (OS) was assessed using vital status 
and days from diagnosis to death or the last follow-up date. 
Only patients with active follow-up information were 
included in survival analysis.

The processed data of the Molecular Taxonomy of 
Breast Cancer International Consortium (METABRIC) 
dataset were downloaded from cBioPortal (http://www. 
cbioportal.org/) according to the website’s guidance.21 No 
identification information of participants was involved 
during download and analysis. Patients diagnosed with 
breast cancer and available for active follow-up informa-
tion were included. Triple-negative breast cancer samples 
were also enrolled in the METABRIC-TNBC cohort as 
described above.

For other TNBC datasets (GSE25066, GSE103091, 
GSE21653 and GSE88715), the expression matrices were 
downloaded from the Gene Expression Omnibus (GEO) 
(https://www.ncbi.nlm.nih.gov/geo/).22–25 The probes were 
mapped using the corresponding annotation platforms. The 
expression values were further normalized by the limma pack-
age if necessary.26 The secreted genes were predicted as pre-
viously reported.27 Single-cell sequencing (scRNA-seq) 
datasets were acquired and analyzed according to the guidance 
of previous studies. The cell types were annotated using the 
SingleR package if necessary.28,29 GSE114727, GSE136206, 
GSE138536 were used to observe the expression of CAF mar-
kers in single-cell level.30–32 The BGN expression was also 
analyzed in cohorts (Bassez A, et al.; GSE118389; Wu SZ, 
et al.).33–35 These datasets are shown in Table S1. No identifi-
cation information of participants was involved during down-
load and analysis.

Tissues for immunohistochemistry and primary cell isola-
tion were obtained at Sun Yat-sen University Cancer Center 
(SYSUCC) between January 2010 and June 2021. The clinical 
breast cancer specimens were collected with permission from 
the Institutional Review Board of the SYSUCC and informed 
consent was obtained from participants. The study was con-
ducted according to the principles stated in the Declaration of 
Helsinki.

Tumor microenvironment estimation

The Estimate the Proportion of Immune and Cancer cells 
(EPIC), xCell, and Microenvironment Cell Populations- 
counter (MCP-counter) algorithms were applied to calculate 
the cancer-associated fibroblast scores in datasets.36–38 To ana-
lyze the correlation among fibroblasts and immune cells, frac-
tions of 22 immune cells were estimated using the Cell-type 
Identification By Estimating Relative Subsets Of RNA 
Transcripts (CIBERSORT) algorithm.39–41 The estimation of 
stromal and immune cells in malignant tumor tissues using 
expression data (ESTIMATE) was applied to calculate the over-
all stromal and immune scores in cancer.42

Molecular markers and CAF clustering

Representative immune-related genes (IRGs) and CAF signa-
tures were obtained from previous studies.3,43,44 The IFN-γ 
signature (IFNG1, STAT1, CXCL10, IDO1, CXCL9), myeloid 
lineage (CD14, CD163, ARG1, CD68, OLR1, NOS2, CD33), 
inhibitory immune ligands/receptors (HAVCR2, CTLA4, 
LAG3, PDCD1, CD274), immune modulators (ENTPD1, 
NT5E) and activating immune receptors (TNFRSF4, 
TNFRSF9, CD40, CD80, CD27, ICOS) were analyzed as pre-
viously reported.45 The edgeR and limma packages were used 
to calculate the fold change of genes between groups.26,46

Several classic CAF markers were adopted from previous stu-
dies to estimate the relative abundance of fibroblasts in cancer 
samples, including PDGFRA, PDGFRB, ACTA2, THY1, PDPN, 
COL1A1 and FAP.47–50 Clustering was performed in individual 
datasets, and the samples were further classified into high-, med-
ium-, and low-infiltration groups using the ComplexHeatmap 
package.51 To further confirm the clustering results, the principal 
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components analysis (PCA) method was applied as previously 
desribed.52 Inflammatory and myofibroblastic CAF features were 
also included to assess the internal characteristics. Comparisons of 
biological markers among different CAF infiltration groups are 
shown by the ggheatmap and ComplexHeatmap packages.

Functional analysis

The GSVA package was used for gene set variation analysis 
(GSVA).53 The GSVA results were compared between the 
high- and low-CAF infiltration groups and are displayed. Gene 
set enrichment analysis (GSEA) was used to explore the biolo-
gical functions of BGN and performed using GSEA 4.1.0.54 

Hallmark and gene ontology gene sets were obtained from the 
MSigDB Collections (http://www.gsea-msigdb.org/gsea). The 
TGF-β response signatures (TBRS) of T cells (T-TBRS), fibro-
blasts (F-TBRS), endothelial cells (End-TBRS) and macrophages 
(Ma-TBRS) were calculated and compared between different 
CAF infiltration groups as previously reported.55

Primary cell culture, RNA sequencing and mass 
spectrometry

Primary fibroblasts were isolated from immunohistochemi-
cally confirmed breast cancer samples obtained from surgery. 
For normal cancer-adjacent fibroblasts (NAFs), tissues >2 cm 
away from cancer were used. Primary fibroblasts were isolated 
as described in previous studies.56 Briefly, tissues were digested 
with hyaluronidase (Sigma), collagenase type I (Sigma) and 
collagenase type III (Worthinton) at 37°C with agitation for 
3–4 hours. The digested tissues were then incubated without 
shaking for 10 min, and the supernatant enriched with stromal 
cells was moved to new tubes and centrifuged at 250 g for 
10 min. The supernatant was discarded, and the pellet was 
harvested and cultured in DMEM with 10% FBS. Fibroblasts 
were passaged within 5 population doublings after isolation. 
The RNA of the primary cells was extracted using TRIzol 
reagent (Invitrogen). More than 2 μg of high-quality RNA 
with a 260/280 absorbance ratio of 1.8–2.2 per sample was 
used for subsequent experiments. The rRNA-depleted RNA 
was prepared by the Ribo-off™ rRNA depletion kit (Vazyme, 
N406-01) and further applied to synthesize the first cDNA 
using Total RNA-seq Library Prep Kit (Vazyme, NR603). 
After library construction, fragments were further enriched 
by PCR amplification (NEST Biotechnology) and screened 
before sequencing. The Illumina NovaSeq 6000 sequencing 
platform was used for sequencing and raw reads were gener-
ated following the recommended protocol from the vendor. 
The transcripts per million (TPM) were calculated at the tran-
script level based on counts data.

The culture medium of primary cells was collected and 
centrifuged at 500 g for 10 min at 4°C and 10,000 g for 
30 min at 4°C to remove cellular debris. The supernatant 
was further filtered using a 0.22 μm filter. Briefly, the 
protein was extracted, digested by trypsin and further 
applied for label-free mass spectrometry. The results were 
further searched in Maxquant software and quantified 
using LFQ method.

Immunohistochemistry

The samples were fixed with paraformaldehyde and embedded 
in paraffin. The samples were then sectioned into 3 μm slides. 
Antigen retrieval was performed using a pressure cooker with 
citrate buffer (CWBIO) for 10–15 min. Goat serum (ZSGB- 
BIO) was used to block nonspecific binding to the samples. The 
samples were further incubated with specific anti-biglycan 
(1:150, Proteintech) or anti-CD8 (ready to use, ZSGB-BIO) 
antibodies at 4°C overnight and a secondary antibody (ZSGB- 
BIO) at room temperature for 1 hour. The expression of 
protein was detected using DAB (Dako) following the manu-
facturers’ instructions. The density of infiltrating CD8 + T cells 
was estimated using HALO software (Indica Labs).

Western blot

For cell lines, cells were lysed using RIPA buffer (Beyotime) at 
4°C directly. Phenylmethanesulfonyl fluoride (PMSF, 
Beyotime) was added to reduce protein degradation during 
extraction. Proteins were separated in SDS-polyacrylamide 
gels and transferred to PVDF membranes, and nonfat milk 
was used to block the nonspecific binding sites on the mem-
brane. The membranes were incubated with primary antibo-
dies against biglycan (1:1000, Proteintech) and GAPDH 
(1:3000, SAB) at 4°C overnight. The secondary antibody 
(1:5000, Bioss) was applied on the following day, and the 
reaction was detected using enhanced chemiluminescence 
solution (ECL, Affinity).

Statistical methods

The best cutoff values for specific markers in each cohort were 
determined using the survminer package. The survival package 
was used for Kaplan-Meier overall survival analysis, and the 
log-rank test was applied for comparison. The hazard ratio 
(HR) was calculated via univariate Cox regression. Immune 
signatures were divided into two groups according to the 
median value and calculated by Cox regression in. Student’s 
t-test or Wilcoxon rank-sum test were used for comparison of 
normally and non-normally distributed variables in unpaired 
groups, respectively. The paired Student’s t-test was performed 
for paired samples. Chi-square test and Fisher’s exact test were 
applied for comparison of clinical features. The Spearman 
method was applied for correlation analysis. All P values were 
two-tailed. Statistical analysis was performed using R software 
(Version 3.5.3, https://www.r-project.org).

Results

CAF marker-based classifier identified three clusters with 
different CAF infiltration in TNBC cohorts

The relative abundance of fibroblasts in TNBC was estimated 
by expression profile clustering using classic CAF markers 
reported in previous studies, including ACTA2, FAP, 
PDGFRA, PDGFRB, PDPN, THY1 and COL1A1. The expres-
sion level of the above markers in CAFs of breast cancer was 
examined using single-cell sequencing datasets (Figure S1). 
Samples from the TCGA-TNBC, METABRIC-TNBC, 
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Figure 1. Clustering of classic CAF markers in the TCGA-TNBC cohort. a, Heatmap showing the expression level of CAF markers and clustering of CAF infiltration in the 
TCGA-TNBC (N = 116) cohort. Bars under the heatmap display the distributions of clinical features and ESTIMATE scores. b, Scatter plots showing the PCA result of the 
TCGA-TNBC cohort based on the classic CAF markers (x and y axes). External circle, 98% confidence interval; Internal circle, 95% confidence interval; Eclipse, 80%. 
Arrows, the tendency of marker profiling; low, medium and high infiltration levels are shown as green, blue and red, respectively.

Figure 2. Fibroblastic and immune features in CAF infiltration groups. Box plots comparing the fibroblastic scores from MCP-counter (upper) and xCell (lower) in 
different infiltration groups of the METABRIC-TNBC (a), TCGA-TNBC (d) and GSE25066-TNBC (g) cohorts. P values from Student’s t-test. Heatmap showing the expression 
profile of myCAF and iCAF features in different infiltration groups of the METABRIC-TNBC (b), TCGA-TNBC (e) and GSE25066-TNBC (h) cohorts. Heatmap showing the fold 
change of the immune features in high and medium groups compared with the low CAF infiltration group (high vs. low, medium vs. low) in the METABRIC-TNBC (c), 
TCGA-TNBC (f) and GSE25066-TNBC (i) cohorts. P values are reported as: ns, nonsignificant; *, P < .05; **, P < .01; ***, P < .001; ****, P < .0001.
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GSE25066-TNBC, GSE21653 and GSE103091 cohorts were 
analyzed. The clustering results of TCGA-TNBC, METABRIC- 
TNBC and GSE25066-TNBC are shown in Figure 1a, S2a and 
S2c, and patients were divided into different CAF infiltration 
groups, namely, low, medium and high infiltration. The dis-
tributions of clinical or biological features, such as the 
ESTIMATE stromal score, immune score, mutation type, age 
at diagnosis, TNM stage, subtypes, amongst others, were dis-
played under the heatmap. PCA plots were employed to verify 
the clustering efficacy in the cohorts (Figure 1b, S2b, S2d). To 
further examine whether the clustering groups reflect the rela-
tive abundance of CAFs in the TME, we compared the CAF 
scores reported in previous studies and demonstrated an 
ascending tendency of MCP-counter and xCell scores in the 
low, medium and high CAF infiltration groups of representa-
tive cohorts (Figure 2a, 2d, 2g). Moreover, the expression of 
iCAF and myCAF markers was also compared. The results 
showed that lots of CAF markers were upregulated in the 
high and medium infiltration groups (Figure 2b, 2e, 2h). The 
results indicated that samples in these groups showed abun-
dant infiltrating CAFs. The CAF infiltration clusters of all 

TNBC cohorts in this study are shown in Figure S3a. The 
overall survival did not show a significant difference among 
the CAF infiltration groups (Figure S3b-f).

Correlation between CAFs infiltration and immune 
features

Previous studies have indicated the crucial role of CAFs in 
immune modulation of the microenvironment. Here, we 
sought to examine the correlation between CAFs and the 
immune landscape. First, we calculated the fold change of 
genes between different infiltration groups (high vs. low, med-
ium vs. low) in METABRIC-TNBC, TCGA-TNBC and 
GSE25066-TNBC cohorts and the immune-related genes 
were shown (Figure 2c, 2f, 2i). The results indicated that 
some of them were upregulated in the high and medium 
infiltration groups of different cohorts, such as CD14, 
TGFB3, ENTPD1, NT5E and BMP1. Other upregulated mar-
kers were not consistent in different cohorts, such as LAG3, 
CD33, CD68, CXCL9, and IL6. Second, the GSVA scores of 
hallmark signaling pathways in cancer were compared between 

Figure 2. Continued.
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the high- and low-infiltration groups (Figure 3a-c). Some of the 
immune-related signaling pathways were significantly enriched 
in the high infiltration group, such as TGF-β, IL2-STAT5, 
complement, TNF-α-NF-κB and IL6-JAK-STAT3 signaling. 
Finally, as CAFs are one of the producers of TGF-β, we com-
pared the expression levels of the TGF-β response signatures of 
fibroblasts (F-TBRS), T cells (T-TBRS), macrophages (Ma- 
TBRS) and endothelial cells (End-TBRS). Most signatures 
showed an ascending tendency from the low- to high- 
infiltration groups (Figure S4).

Based on the results above and previous studies, CAFs 
might exert their function by affecting tumors and immune 
cells. We evaluated the correlation between previously 
reported CAF scores and CIBERSORTx immune cells 
(Figure 3d-f). The CAF scores estimated by xCell, EPIC 
and MCP-counter were analyzed. CAFs were negatively 
correlated with cytotoxic cells, including CD8 + T cells 
and activated NK cells. In the METABRIC-TNBC cohort, 
MCP-counter-CAF and xCell-CAF were negatively corre-
lated with activated NK cell, respectively. But only MCP- 
counter-CAF was negatively correlated with CD8 + T cell. 
In the TCGA-TNBC cohort, EPIC-CAF, MCP-counter-CAF 
and xCell-CAF were all negatively correlated with CD8 + T 
cell. But only EPIC-CAF and MCP-counter-CAF were nega-
tively correlated with activated NK cell. In the GSE25066- 

TNBC cohort, only a negative correlation between xCell- 
CAF and CD8 + T cell was observed. Moreover, CAFs 
might exhibit significantly positive correlations with M2 
macrophages and this result was only observed in 
METABRIC-TNBC and GSE25066-TNBC cohorts. 
Furthermore, xCell-CAF and EPIC-CAF were risk factors 
for overall survival in METABRIC-TNBC and TCGA-TNBC 
cohorts, respectively.

BGN is upregulated and mainly expressed in stromal CAFs

Here, we sought to investigate effective biomarkers derived 
from CAFs and their corresponding prognostic value. 
Normal cancer-adjacent fibroblasts and cancer-associated 
fibroblasts were isolated from tissue samples after surgical 
resection. RNA sequencing and label-free mass spectrometry 
were further applied to explore the transcriptomic expression 
profile and differentially expressed genes (DEGs) in the NAF 
and CAF groups (Figure 4a). The top 40 expressed DEGs in 
CAFs are shown in Figure 4b. The label-free mass spectrometry 
identified the top 40 secreted proteins (Figure 4c). BGN, an 
extracellular protein, was upregulated in CAFs compared to 
NAFs. Previous studies indicated the roles of BGN in therapy 
resistance and immune activity.57–60 Overexpression of bigly-
can induced resistance to 5-FU and rapamycin in cancer cells 

Figure 2. Continued.
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via NF-κB signaling pathway. Besides, most mechanistic stu-
dies mainly focused on the interaction between biglycan and 
toll-like receptors (TLR2/4).61 However, the mechanism 
underlying how biglycan affects tumor microenvironment in 
other ways is still poorly understood despite its abundance in 
TME. The TPM values of BGN from RNA sequencing were 
compared (Figure 4d). We further compared the BGN level in 
the TCGA-TNBC cohort and observed a significantly higher 
level of BGN in tumor tissues (Figure 4e). We further verified 
our results at the protein level by Western blotting and 
observed a significantly higher level of biglycan protein in 
CAFs of patient 1, 2 and 3 (Figure 4f).

To further confirm the expression profile of BGN in different 
tumor components, we analyzed its expression pattern using 
microdissection and single-cell sequencing datasets. 
Microdissection analysis (GSE88715) indicated a higher level of 
BGN expression in the stromal part of the tumor (Figure 4g). 
Moreover, BGN expression showed an ascending tendency from 
the low to high CAF infiltration group described above (Figure 
S5a). The expression level of BGN was also positively correlated 
with classic CAF markers in each cohort (Figure S5b).

To further confirm its expression feature in TNBC, we sought 
to analyze the BGN expression level in TNBC scRNA-seq data-
sets. BGN was mainly expressed in the overall fibroblasts of 
TNBC cohorts (Bassez A, et al.; GSE118389; Figure 5a, 5b). In 
another dataset with more detailed cell clusters, BGN was mainly 
expressed in CAFs and perivascular-like (PVL) subpopulations 
(Wu SZ, et al.; Figure 5c-e). The BGN expression level was 
significantly correlated with the scores of fibroblasts and 
endothelial cells estimated by MCP-counter and xCell in these 
cohorts, respectively (Figure 6a-c-). This result provided addi-
tional evidence for the derivation of biglycan. These results 
further indicated that BGN might be a CAF-specific biomarker 
in TNBC and exert its function in the extracellular matrix.

Biglycan correlates biological features and clinical 
outcomes

The BGN gene encodes biglycan, an extracellular soluble protein 
that might exert its function via intercellular contact. Here, we 
sought to explore its role in tumor development and its prognostic 
value in clinical practice. GO signaling enrichment was performed 

Figure 3. Correlation between CAFs and hallmark signaling and immune cells. a-c, Bar plots showing the GSVA scores of cancer hallmark signaling in the high infiltration 
group compared with the low CAF infiltration group. Significantly upregulated and downregulated signaling pathways are shown in red and green, respectively. 
Nonsignificant signalings are shown as gray. d-f, Network showing the correlation among CAFs and CIBERSORTx-derived immune cells. Significantly positive and 
negative correlations are shown as red and blue lines, respectively. The color and size of the nodes indicate the type of cells and P values from Cox regression. Prognostic 
signatures for overall survival are marked with dark dots in the nodes.
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using BGN-correlated genes, and the representative results are 
shown in Figure 6d-f. Representative signaling pathways involved 
in cancer progression and TME modulation were significantly 
enriched in METABRIC-TNBC, TCGA-TNBC, GSE25066- 
TNBC cohorts (FDR<0.05). The high BGN level indicates the 
extension of new blood vessels from the existing vessels 
(SPROUTING_ANGIOGENESIS), lymph vessel formation 
(LYMPHANGIOGENESIS), extracellular matrix remodeling 
(COLLAGEN_CONTAINING_ECM) and promotion of tumor 
cell metastasis (POSITIVE_REGULATION_OF_EMT). Further 
more, BGN was also correlated with the formation of an immu-
nosuppressive microenvironment (TGF_BETA_RECEPTOR_ 
SIGNALING). These results indicated that biglycan might be 
associated with tumor angiogenesis, TME remodeling and tumor 
metastasis in TNBC. Hence it might serve as a protumor and 
immunosuppressive factor in these cohorts. Therefore, we further 
analyzed the association between BGN and the immune signa-
tures. First, the correlation between BGN and immune-related 
genes was analyzed (Figure 7a). BGN was positively correlated 
with some immune-inhibitory molecules, including TGFB1, 
VEGFA, VEGFB and CD276, especially in METABRIC-TNBC 
and GSE21653 cohorts. However, we did not observe significant 

association with classic checkpoint molecules except for CTLA4 
and CD274 (PD-L1) in GSE103091 and BTLA in GSE21653. 
These results imply that BGN might affect immune cell infiltration 
or modulate immune activity. Hence, we calculated the correlation 
between BGN expression and ESTIMATE scores (Figure 7b). The 
BGN was significantly positively correlated with the stromal scores 
in each cohort. We observed significant correlations between BGN 
and the immune scores in METABRIC-TNBC (negative, P < .05), 
GSE21653 (negative, P < .05) and GSE103091 (negative, P < .1). 
Finally, we examined the correlation between BGN and immune 
components. BGN was significantly correlated with both CD8 + T 
cells (negative, P < .05) and activated NK cells (negative, P < .05) in 
the METABRIC-TNBC and TCGA-TNBC cohorts, respectively. 
Moreover, BGN was correlated with M0 macrophages in all 
cohorts (positive, P < .05) except for GSE21653 and M2 macro-
phages in METABRIC-TNBC, GSE25066-TNBC and GSE103091 
(positive, P < .05) (Figure 7c).

Since BGN plays an essential role in the biological process of 
cancer, we further sought to examine its clinical relevance. First, 
we observed a significantly lower level of BGN in TNBC than in 
non-TNBC samples of the TCGA and METABRIC cohorts 
(Figure S6a). BGN expression was significantly upregulated in 

Figure 4. BGN is upregulated in cancer-associated fibroblasts. a, Illustration showing the procedure of RNA sequencing and mass spectrometry analysis for tissue- 
derived fibroblasts and culture medium, respectively. Representative image of primary fibroblasts is shown. b, Heatmap showing the top 40 expressed genes 
upregulated in CAFs. c, Heatmap showing the top 40 secreted proteins identified by label-free mass spectrometry in culture medium derived from CAFs and the 
corresponding NAFs. d. Box plot comparing the RNA level of biglycan in NAFs and CAFs. P value from paired Student’s t-test. e, Box plot comparing BGN expression in 
normal and tumor tissues in the TCGA-TNBC cohort. P value from Student’s t-test. f, Western blot showing the expression of biglycan protein in fibroblasts isolated from 
normal and cancer tissues of TNBC. g, Violin plot comparing the BGN expression level in the epithelial and stromal components derived from microdissection 
(GSE88715). P value from paired Wilcoxon rank-sum test.
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tumors compared with paired normal tissues in the TCGA-TNBC 
cohort (Figure S6b). Second, the Cox regression model was con-
ducted according to the best cutoff value for overall survival and 
indicated that BGN was a poor prognostic predictor in the 
METABRIC-TNBC, GSE103091 and GSE21653 cohorts (Figure 
S6c). Besides, FAP predicted poor prognosis in TCGA-TNBC and 
GSE21653 cohorts. PDGFRB and COL1A1 predicted poor 
outcomes in TCGA-TNBC and GSE103091 cohorts. 

However, PDGFRA was predictive of favorable outcomes 
in cohorts except for TCGA-TNBC and PDPN predicted 
favorable prognosis in METABRIC-TNBC and GSE25066- 
TNBC cohorts. Kaplan-Meier analysis demonstrated that 
a higher BGN expression level predicted worse overall 
survival outcomes in each cohort (Figure 8a). Finally, we 
also validated the prognostic value and immunosuppressive 
function of biglycan in the SYSUCC cohort. Patients in the 

Figure 5. BGN expression in single-cell RNA sequencing datasets of TNBC. a-c, Violin plots showing the expression level of BGN in cells of scRNA-seq datasets (Bassez A ; 
GSE118389; Wu SZ). d, Scatter plot showing the cell clusters in c (Wu SZ). e, Scatter plot showing the distribution of cells expressing a high level of BGN in c.
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high-biglycan group showed a lower level of total infiltrat-
ing CD8 + T cells (Figure 8b, 8c). Survival analyses demon-
strated that biglycan might serve as a poor prognostic 
marker in TNBC (Figure 8d, Table S2). The univariate 
and multivariate Cox regression model for the SYSUCC 
cohort indicated that biglycan was an independent risk 
factor for overall survival (Table S3). 

Discussion

Recent studies have indicated the crucial roles of cancer- 
associated fibroblasts in breast cancer.15 Many of them 
focus on the heterogeneity and corresponding biological 
features of different CAF clusters in cancer.16,17,62 

However, the detailed mechanism underlying how CAFs 
affect the TME has been a prominent topic in recent 
years.

Here, we have included the expression profile of the tumor bulk 
and single-cell RNA sequencing to explore the characteristics of 
fibroblasts in triple-negative breast cancer. We evaluated the rela-
tive abundance of fibroblasts in TNBC and further identified an 
extracellular secreted protein, biglycan, as a biomarker for CAFs 
and a predictor for poor prognosis in TNBC.

CAFs have been reported to be a tumor-promoting compo-
nent of the stroma in most cancers.10 In previous studies, 
fibroblasts exerted their function by producing excreted fac-
tors, remodeling the extracellular matrix, influencing cancer 
cell metabolism and direct cell-cell interactions. For example, 

Figure 6. The correlation of BGN and CAF scores and pathway enrichment. a-c, Scatter plots showing the correlation between BGN and CAFs and endothelial cells. P and 
r values from Spearman correlation analyses. d-f, Enrichment scores of the representative enriched signaling pathways in the high-BGN group compared with the low- 
BGN group. Enrichment Score from the Gene Ontology enrichment.
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CAF-derived PLGF and BDNF promote NR4A1 expression in 
triple-negative breast cancer cells and enhance invasiveness.11 

In addition, CCL2/7 are produced by lung-resident fibroblasts 
to modify cancer cell metabolism by activating cholesterol 
synthesis in TNBC cells in the lung and promoting 
angiogenesis.63 Furthermore, CAFs serve as leading cells for 
cancer cells during cell migration.64 Fibroblasts pave the way 
for subsequent malignant cells and lead to tumor invasion by 
direct cell-to-cell contact. Here, we sought to explore the effect 
of the relative abundance of CAFs in TNBC. The CAF infiltra-
tion level affects tumor cells and the TME with different CAF, 
immune and tumor cell expression profiles. Although some 
immune markers show an ascending tendency from low to 
high CAF infiltration levels (CD14, NT5E and ENTPD1, 
etc.), some other markers do not. This is consistent with 
a previous study which indicates that fibroblast-enriched sam-
ples might be clustered into fibrotic (F) and immune-enriched 
/fibrotic (IE/F) groups with distinct features.65 Furthermore, 
the simple relative abundance of CAF infiltration did not 
necessarily seem to be a prognostic predictor. This is consistent 
with previous studies showing that CAFs are highly heteroge-
neous and different subpopulations display various features. 
Tumor-infiltrating fibroblasts are commonly divided into 

inflammatory CAFs (iCAFs) with lower α-SMA and higher 
cytokine production, and myofibroblastic CAFs (myCAFs) 
with higher levels of α-SMA.34 Recently, a novel cluster of 
antigen-presenting CAFs (apCAFs) was identified, and CAFs 
were confirmed to directly participate in immune reactions.44 

The reason why high infiltration group exhibited a higher level 
of BGN might be partially due to a larger amount of overall 
CAFs. But it is not capable of predicting the dominant role of 
BGN-expression CAFs. These results indicate that the hetero-
geneity of CAFs is more important than simply cell abundance. 
A single-cell sequencing cohort of TNBC with a large popula-
tion and active follow-up data will help to clarify the role of the 
amounts of overall CAFs and specific dominant subclusters in 
predicting clinical outcomes in future studies.

Furthermore, internal heterogeneity in the cellular popula-
tion poses a new challenge in modern medicine. In recent 
years, single-cell sequencing technology has helped to explore 
single-cell expression profiles and identify internal heteroge-
neous clusters of cells. Infiltrating CAF-S1 is enriched in 
TNBC, and further clustering by single-cell sequencing reveals 
8 subclusters with distinct features, in which Clusters 0/3 are 
linked to immunotherapy resistance in cancer.17 Together, 
these results imply that specific CAF subpopulations might 

Figure 7. The correlation between BGN and immune features. a, Heatmap showing the correlation between BGN and immune-related genes. b, Bubble plot showing 
the correlation between BGN and ESTIMATE stromal and immune scores. c, Bubble plot showing the correlation between BGN and CIBERSORT-derived immune cell 
scores. Positive and negative correlations are shown as red and blue, respectively. Correlation coefficients and P values from the Spearman method.
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truly matter instead of simply the number of infiltrating fibro-
blasts in TNBC. Hence, it is more important to explore the 
expression profile of CAFs.

As CAF-derived proteins represent the most common way for 
intercellular crosstalk and might serve as biomarkers for cancer, 
we used RNA sequencing and mass spectrometry technology, and 
identified the coding gene for biglycan, BGN, to be mainly 
expressed in CAFs. The biglycan protein belongs to the SLRP 
family and plays a role in the extracellular matrix (ECM).66 

Interestingly, although BGN was found to be upregulated in 
CAFs compared to NAFs, it also seemed to be expressed in 
endothelial cells. A previous study reported that BGN was 
approximately 100-fold more abundant in tumor endothelial 
cells than in corresponding normal endothelial cells.67 In another 
study, the results from scRNA-seq indicated that BGN is also 

expressed in perivascular-like subclusters except for CAFs.34 

However, this is not contradictory to our findings, as endothelial 
cells and pericytes are commonly recognized as crucial origins for 
CAFs and transform into CAFs under certain circumstances.14 

Furthermore, the number of fibroblasts was far greater than that of 
endothelial cells in scRNA-seq datasets, which indicates that CAFs 
are the major origin of biglycan proteins. BGN expression corre-
lates with poor overall survival, cancer biological processes and 
microenvironmental components. Biglycan is a nonfibrillar com-
ponent in the ECM, suggesting that extracellular biglycan might 
not only constitute the ECM but also exert other functions. BGN 
encodes a secreted protein that could bind to receptors on immune 
cells and it might also potentially interact with tumor cells, peri-
cytes or endothelial cells.60 The Gene Ontology enrichment in this 
study implies the potential role of BGN in tumor vasculature and 

Figure 8. Survival analysis of BGN in datasets and the SYSUCC cohort. a. Kaplan-Meier plots comparing the overall survival between the high-BGN and low-BGN groups 
according to the best cutoff value. P values from log-rank tests. High-BGN and low-BGN groups are shown as red and blue. b, Representative IHC staining images of 
stromal biglycan and CD8 in TNBC of SYSUCC (N = 100). Scale bar, 100 μm. c, Boxplot comparing the density of CD8 + T cells in high-biglycan and low-biglycan groups. 
P value from Student’s t-test. d, Kaplan-Meier plot comparing the overall survival between high-biglycan and low-biglycan groups. P value from log-rank tests. High- 
biglycan and low-biglycan groups are shown as red and blue.
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our findings are consistent with previous studies that CAFs pro-
moted tumor angiogenesis mainly by releasing secreted factors, 
such as SDF1, MMPs and VEGFs.68,69 Biglycan is a vital compo-
nent in bone and might promote the proliferation of osteosarcoma 
cells through an LPR6/β-catenin/IGFR-IR axis.70 Other studies 
indicate that biglycan might enhance drug resistance in cancer 
cells.58,59 These studies imply that biglycan promotes cancer pro-
gression by cell crosstalk. In previous studies, soluble biglycan was 
found to interact with CD14 and Toll-like receptor 2/4 (TLR2/4), 
leading to the activation of downstream NF-κB and ERK1/2 
signaling.57,60 TLR2/4 are membrane receptors for various 
immune cells and modulate the immune response in the TME.71 

Previous studies have confirmed the role of TLR4 in the polariza-
tion of tumor-associated macrophages and the conversion of 
CAFs, tumor-associated dendritic cells and myeloid-derived sup-
pressor cells.60,61,72 On the basis of previous studies, we might 
hypothesize that biglycan exerts its function as a secreted ligand 
and modulates the downstream signalings by interacting with 
corresponding receptors on other cells. These results suggest that 
biglycan might play a crucial role in immune modulation and 
tumor angiogenesis.

We also realize the limitations of our study. First, the 
relative abundance of fibroblasts was evaluated by 
a clustering method using classic CAF markers with higher 
specificity instead of all well-known fibroblast markers. 
Comprehensive clustering method and single-cell sequen-
cing data were applied to enhance the specificity, but the 
similarity of expression profiles in CAFs and vascular cells 
might still confound our analysis. Besides, the results are 
only comparable within each cohort. Second, sampling bias 
might occur because the fraction of the stromal part varies 
in different samples due to the internal heterogeneity of the 
tumor bulk. Bulk sequencing might not truly reflect the 
overall landscape of tumors. Third, the mechanical and 
chemical effects during isolation of primary cells from 
tissues and in vitro cells culture might change the pheno-
type of fibroblasts, leading to detection bias in the experi-
ments. Finally, the mechanism underlying how biglycan 
affects the TME was not explored in this study. Further 
investigations about how biglycan affects tumor cells and 
immune components, such as CD8 + T cells and macro-
phages, will advance our understanding of the roles of 
CAFs in TNBC.

Notably, we observed that biglycan was upregulated and 
secreted in cancer-associated fibroblasts compared with 
normal cancer-adjacent fibroblasts. The expression of 
BGN was significantly correlated with overall clinical survi-
val and biological processes in TNBC, suggesting that bigly-
can might play a crucial role in cell-to-cell crosstalk 
between CAFs and cancer cells. Moreover, we confirmed 
the prognostic value of biglycan in TNBC using the cancer 
tissue microarray. Interestingly, BGN was not significantly 
correlated with classic checkpoint molecules in most 
cohorts. But we observed an evident positive correlation 
between BGN and TGF-β, a well-known immunosuppres-
sive molecule, indicating that BGN might exert its effect on 
immune activity in a certain way. Besides, BGN might 
participate in tumor angiogenesis which is also 
a prominent target to synergize with immunotherapy.

In conclusion, we identified that CAF-derived biglycan is 
crucial for TNBC progression. The upregulation of biglycan 
and the mechanism underlying how biglycan exerts its function 
in the TME may serve as a promising diagnostic biomarker and 
may provide more promising strategies for cancer treatment.
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