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OBJECTIVE—Interleukin (IL)-21 is a type 1 cytokine that has
been implicated in the pathogenesis of type 1 diabetes via the
unique biology of the nonobese diabetic (NOD) mouse strain.
The aim of this study was to investigate a causal role for IL-21 in
type 1 diabetes.

RESEARCH DESIGN AND METHODS—We generated IL-
21R–deficient NOD mice and C57Bl/6 mice expressing IL-21 in
pancreatic �-cells, allowing the determination of the role of
insufficient and excessive IL-21 signaling in type 1 diabetes.

RESULTS—Deficiency in IL-21R expression renders NOD mice
resistant to insulitis, production of insulin autoantibodies, and
onset of type 1 diabetes. The lymphoid compartment in IL-
21R�/� NOD is normal and does not contain an increased
regulatory T-cell fraction or diminished effector cytokine re-
sponses. However, we observed a clear defect in autoreactive
effector T-cells in IL-21R�/� NOD by transfer experiments.
Conversely, overexpression of IL-21 in pancreatic �-cells induced
inflammatory cytokine and chemokines, including IL-17A, IL17F,
IFN-�, monocyte chemoattractant protein (MCP)-1, MCP-2, and
interferon-inducible protein-10 in the pancreas. The ensuing
leukocytic infiltration in the islets resulted in destruction of
�-cells and spontaneous type 1 diabetes in the normally diabetes-
resistant C57Bl/6 and NOD � C57Bl/6 backgrounds.

CONCLUSIONS—This work provides demonstration of the
essential prodiabetogenic activities of IL-21 on diverse genetic
backgrounds (NOD and C57BL/6) and indicates that IL-21 block-
ade could be a promising strategy for interventions in human
type 1 diabetes. Diabetes 58:1144–1155, 2009

T
he nonobese diabetic (NOD) mouse model is the
most well-characterized animal model of human
type 1 diabetes and has provided important
insights into the etiology and pathogenesis of

this increasingly prevalent autoimmune disease (1). Rigor-
ous genetic analysis of the NOD background has revealed
the existence of multiple defined chromosomal regions

known as insulin-dependent diabetes (idd) loci that confer
susceptibility to or protection from the development of
type 1 diabetes (2). Of the �15 regions identified, idd3 is of
particular importance, because congenic NOD lines con-
taining alleles from protected strains at this locus are
significantly less susceptible to diabetes. To date, idd3 is
the most potent disease modifying the non–major histo-
compatibility complex (MHC) locus (3). Therefore, some
of the genes within the idd3 interval must play a crucial
role in regulating immune destruction of pancreatic
�-cells.

Among the several candidate genes within the idd3
locus, interleukin (IL)-21 is of particular interest, because
dysregulated IL-21 production and signaling has been
found in the NOD mouse (4). IL-21 belongs to the type 1
cytokine family, which includes potent immune modula-
tors such as IL-2, IL-4, IL-7, and IL-15, whose high-affinity
receptor complexes all use the common �c receptor
subunit (5,6). The specificity of IL-21 signaling is achieved
through its specific interaction with the IL-21 receptor
subunit, which forms a heterodimer with the �c subunit
(7). This receptor complex delivers IL-21 signals to a
variety of immune cells including CD4� and CD8� T-cells,
B-cells, NK cells, NKT cells, and dendritic cells (8–13), all
of which can play some role in the pathogenesis of type 1
diabetes in the NOD mouse (14–20). Therefore, the aim of
our present study was to better understand the role of
IL-21 in type 1 diabetes. We demonstrate that loss of IL-21
signaling, via knockout of the IL-21 receptor, completely
abrogates diabetes development on the NOD background.
In addition, we demonstrate that overexpression of IL-21
in pancreatic �-cells induces a high incidence of sponta-
neous type 1 diabetes on the normally diabetes-resistant
C57Bl/6 genetic background. Together, these findings
clearly underline the potent prodiabetogenic activity of
IL-21.

RESEARCH DESIGN AND METHODS

Mice. All mice were housed in microisolator cages under specific pathogen-
free conditions at the Harvard School of Public Health and the La Jolla
Institute for Allergy and Immunology. All animal studies were performed
according to institutional and National Institutes of Health guidelines for
animal use and care. Blood glucose levels were monitored weekly using
OneTouch Ultra (LifeScan) or Ascensia Contour glucometers (Bayer). Diabe-
tes in NOD mice was defined as two consecutive blood glucose values �250
mg/dl. IL-21 receptor knockout mice were generated by homologous recom-
bination as previously described (11). NOD/Ltj mice were purchased from The
Jackson Laboratories, and the IL-21 receptor–null allele was backcrossed to
the NOD background for 10 generations. The IL-21 transgenic (IL-21Tg)
construct was generated by cloning the full-length murine IL-21 cDNA into a
transgenic expression vector between the 5� human insulin promoter and 3�
hepatitis virus B terminator sequence (21). The purified plasmid was linear-
ized using the SacI and HindIII restriction sites, injected into C57Bl/6
fertilized embryos and implanted into pseudopregnant females. Founder lines
were identified by Southern blot and maintained as heterozygotes for
experimentation.
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Tissue isolation, fixation, and immunohistochemical staining. Pancreata
were harvested from IL-21R�/� and IL-21R�/� NOD mice, immersed in OCT
Compound (Tissue-Tek, Sakura) and quick-frozen on dry ice. The 6-	m
sections were cut at three nonoverlapping levels (200 	m apart) and fixed in
acetone for 10 min at room temperature. Sections were incubated for 1 h at
room temperature with guinea pig anti-swine insulin (Dako, 1:500), biotin–
anti-mouse CD8 (BD clone 53–6.7, 1:50), and biotin–anti-mouse CD4 (BD,
clone RM4-5, 1:50). Next, goat anti–guinea pig alkaline phosphatase (Sigma,
1:50) and Avidin-HRP (Vector, 1:2,000) were incubated for 45 min at room
temperature. Alkaline phosphatase or horseradish peroxidase (HRP) activity
was visualized using Vector Blue Alkaline Phosphatase III (blue signal) and
AEC substrate (red precipitates). Slides were mounted without hematoxylin
counterstain (Dako Faramount Aqueous Mounting Medium). Islets were
scored visually by light microscopy and categorized as no insulitis, peri-
insulitis, mild infiltration (
25%), and heavy infiltration and scars.

Pancreata were harvested from IL-21Tg and littermate controls and fixed
overnight with 4% paraformaldehyde (Sigma-Aldrich) before routine paraffin
embedding. After dewaxing, 6-	m sections were cut and treated with 3% H2O2

in MeOH (20 min at room temperature) to quench endogenous peroxidase
activity. Antigen retrieval was performed using trypsin or proteinase K
digestion. Next, slides were blocked in 1% BSA and 3% normal serum in PBS
for 30 min at room temperature. Primary antibodies were incubated overnight
at 4°C at the following concentrations: insulin 1:100 (#A0564, Dako), IL-21
1:1,200 (#AF594 R&D Systems), CD4 1:100 (BioLegend), B220 1:100 (#550286,
BD Biosciences), F4/80 1:100 (BD Biosciences), CD11c 1:100 (#553800, BD
Biosciences), and LGL-1 1:50 (#555314, BD Biosciences). Primary antibodies
were visualized using sequential detection with HRP-conjugated secondary
antibodies (Jackson ImmunoResearch), tyramide signal amplification (Perkin-
Elmer), streptavidin-HRP (Jackson ImmunoResearch), and diaminobenzidine
(Sigma-Aldrich). Slides were counterstained with hematoxylin before mount-
ing. Cell type–specific islet infiltration was scored using an arbitrary scale
ranging from 0 to 4: 0, no islet inflammation; 1, scattered cells surrounding
islets; 2, foci of cells surrounding islets; 3, foci of cellular infiltrates surround-
ing and cells within islets; and 4, dense foci of cellular infiltrates surrounding
and within islets.
Lymphocyte preparations, transfers, and flow cytometry. Single-cell
suspensions were prepared from spleen and peripheral lymph nodes by
mechanical disruption, filtration through a 70-	m cell strainer (BD Bio-
sciences), erythrocyte lysis using ACK buffer, and two washes inFACS buffer
(PBS/0.5% BSA/0.01% NaN3). Pancreatic lymphocytes were prepared as pre-
viously described (22).

Splenocyte transfers were performed from newly diabetic IL-21R�/�NOD
mice or age-matched IL-21R�/�NOD mice. The 2 � 107 splenocytes were
transferred intravenously into 6-week-old female NOD/scid mice. Blood
glucose levels were monitored twice weekly for 4 weeks and then once
weekly. Insulitis was scored as above. Diabetic animals or nondiabetic
animals at 7 weeks after transfer were killed.

FITC-, PE-, PerCP-, APC-, cascade blue–, and cascade orange–conjugated
monoclonal antibodies to CD3, CD4, CD8, CD21, CD23, B220, IgM, and IgD (all
BD) were used according to the manufacturer’s instructions. Cells were
analyzed using an LSRII flow cytometer (BD Biosciences).
Tissue collection and quantitative RT-PCR. Mice were killed using CO2

narcosis, and harvested tissues were snap-frozen in liquid nitrogen. Total RNA
was purified using Trizol reagents, and 2 	g was used for cDNA synthesis.
Real-time quantitative PCR was performed using a Stratagene M�3005P
QPCR system using �-actin as an internal reference control.
Insulin autoantibody assay. Levels of autoantibodies to murine insulin
(mIAA) were determined by a radioactive assay as described (23). The limit of
normal (0.010) was chosen based on historical data (23).
Statistical analysis. For diabetes incidence, significance was calculated
using the log-rank test or one-way ANOVA followed by a Bonferroni’s post
test. For all other parameters, significance was calculated by Student’s t test,
indicated as follows in the figures: *P 
 0.05, **P 
 0.01, and ***P 
 0.005.

RESULTS

Genetic and cellular studies have suggested that IL-21
could be important for the pathogenesis of type 1 diabetes
in the NOD mouse model (3,4). To begin, we defined the
expression patterns of IL-21 and IL-21R mRNA in the
pancreas and pancreatic draining lymph nodes in pre-
diabetic and diabetic NOD mice. IL-21 mRNA levels,
essentially unaltered in pancreas draining lymph nodes,
showed an upward trend in the pancreas as diabetes
developed in the NOD (Fig. 1A, P � 0.057, pre-diabetic vs.

diabetic NOD). Levels of IL-21R mRNA remained un-
changed in both pancreas and associated draining lymph
nodes as diabetes develops (Fig. 1B). IL-21R is clearly
detectable on the surface of pancreatic CD4� and CD8�

T-cells (Fig. 1C), including diabetogenic nrp-V7 tetramer�

CD8� T-cells (data not shown), at levels comparable to
splenic CD4� and CD8� T-cells from NOD (data not
shown) and other strains (24). These data indicate that
increased pancreatic IL-21 production correlates with di-
abetes onset in NOD mice and that T-cells infiltrating the
pancreas express IL-21 receptor (IL-21R).

To assess the importance of signaling through the
IL-21R during spontaneous type 1 diabetes development,
we generated a colony of IL-21R–deficient NOD mice and
compared disease parameters with littermate control ani-
mals. The IL-21R�/�NOD littermates developed type 1
diabetes beginning at week 11, with a median onset at 19
weeks and �90% penetrance of disease (Fig. 2A), compa-
rable to our NOD colony (2,3). In contrast, IL-21R�/� NOD
animals were completely protected from type 1 diabetes
development up to 60 weeks of age (Fig. 2A). Heterozy-
gotes displayed an intermediate phenotype with delayed
onset (median onset 29 weeks) and reduced penetrance of
disease (�50%). The effect of IL-21R deficiency on mono-
nuclear cell infiltration in the pancreas was determined by
immunohistochemistry on pancreatic tissue sections. The
severity of insulitis in IL-21R�/�NOD littermates in-
creased with age. At 13–18 weeks, IL-21R�/�NOD islets
were highly infiltrated or destroyed, before diabetes onset
(Fig. 2B). The observed infiltrate was composed predom-
inantly of CD4� T-cells that preferentially resided in the
islet zones where �-cell destruction had occurred (Fig.
2C). CD8� T-cells were found scattered throughout the
islet (Fig. 2C). In contrast, we observed minimal mononu-
clear cell infiltration in islets of IL-21R�/�NOD mice up to 40
weeks of age. In keeping with the lack of insulitis, autoim-
munity to islet antigens was reduced in IL-21R�/�NOD.
Quantitation of serum insulin autoantibodies revealed
seropositivity in 10/27 IL-21R�/�NOD mice (8 –12 weeks
old), in contrast to only 1/20 IL-21R�/�NOD mice (Fig.
2D). Thus, loss of IL-21 signaling protects NOD mice
from diabetes, islet inflammation, and the generation of
islet autoantibodies.

We next analyzed the constitution of the lymphoid
compartment of various IL-21RNOD genotypes. We found
roughly equal splenocyte numbers in IL-21R�/�NOD, IL-
21R�/�NOD, and IL-21R�/�NOD at both early (7–9
weeks) and late pre-diabetic stages (12–15 weeks) (data
not shown). The proportion of CD4� and CD8� T-cells
within the lymphocyte population in spleen and the pan-
creas draining lymph node was not significantly influenced
by IL-21R deficiency (Fig. 3A and B; supplementary
Fig. 2, found in an online appendix at http://care.
diabetesjournals/cgi/content/full/db08-0882/DC1). More-
over, the fraction of B-cells and NK cells at 12–15 weeks of
age was similar between all genotypes (data not shown).
Enumeration of pancreatic CD4� and CD8� T-cells cor-
roborated the insulitis index scores (Fig. 2B) as CD4� and
CD8� T-cell numbers increased from early to late pre-
diabetic stage in IL-21R�/�NOD but were significantly
reduced in IL-21R�/�NOD pancreata (Fig. 3A and B, lower
panels). We hypothesized that an increased regulatory
compartment could explain the observed diabetes resis-
tance of IL-21R�/�NOD mice. Whereas no significant
differences in CD4�FoxP3� Tregs were observed in the
spleen of late-stage pre-diabetic mice (Fig. 3C), the Treg
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fraction in the pancreatic lymph nodes of IL-21R�/�NOD
mice was reduced (�50%) compared with controls. This may
represent a relative reduction of Tregs in IL-21R�/�NOD
mice or an increase in IL-21R�/�NOD related to disease
onset (25). Regardless, we conclude that the peripheral
lymphoid compartment in IL-21R�/�NOD is essentially nor-
mal, with the unexpected exception of reduced Treg num-
bers in the pancreatic lymph nodes, which suggests that
diabetes resistance is not due to an increased regulatory
compartment.

Given the absence of obvious cellular defects, we rea-
soned that modulation of Th effector responses from
pathogenic (Th1, Th17) to protective (Th2) may account

for diabetes protection in IL-21R�/�NOD mice. Lympho-
cytes from spleens and pancreatic lymph nodes of 8- to
9-week-old IL-21R�/�NOD and IL-21R�/�NOD mice were
restimulated in vitro with phorbol 12-myristate 13-acetate/
ionomycin for 3 h for intracellular cytokine detection by
flow cytometry. We found a slight increase in the propor-
tion of CD4� T-cells that produce IL-17 or interferon
(IFN)-� in the splenic and pancreatic lymph node cells of
IL-21R�/�NOD mice (Fig. 4A). We next used enzyme-linked
immunosorbent spot assays to confirm these data.
Splenocytes from IL-21R�/�NOD and IL-21R�/�NOD
mice were stimulated for 72 h with anti-CD3/anti-CD28
under nonpolarizing conditions. We observed significantly

FIG. 1. Expression of IL-21 and IL-21R in pancreas and
pancreatic lymph nodes of NOD mice. A: IL-21 mRNA
analyzed in pancreas and pancreatic lymph node at
indicated ages by quantitative PCR (n � 6 per group).
B: IL-21R mRNA analyzed in pancreas and pancreatic
lymph node at indicated ages by quantitative PCR (n �
6 per group). C: IL-21R expression on CD4� (left panel)
and CD8� T-cells (right panel) from pancreas of pre-
diabetic NOD mice was determined by flow cytometry
using the three-step staining protocol described before
(24). Specific and control staining are represented by
the solid line and tinted area, respectively. AU, arbi-
trary units.
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increased numbers of IL-17– and IL-4–producing cells in
IL-21R�/�NOD splenocytes compared with controls. We
also found a trend toward increased IFN-�– and IL-10–
producing cells that failed to reach statistical significance.
Thus, whereas there are increases in IL-4 production,
concomitant increases in IL-17 and possibly IFN-� make it
unlikely that skewing toward protective Th2 response
explains the diabetes resistance in IL-21R�/�NOD mice.

To decipher whether an IL-21R�/�NOD environment
was sufficient to restore the diabetogenic potential of
IL-21R�/�NOD lymphocytes, we performed parallel
transfers of IL-21R�/�NOD and IL-21R�/�NOD spleno-
cytes into lymphopenic NOD/scid recipients. As previ-
ously published, splenocytes from recently diabetic
IL-21R�/�NOD mice induced diabetes upon transfer to
NOD/scid mice starting at 3 weeks post-transfer (Fig.
5A). In contrast, transfer of age-matched IL-21R�/�NOD
splenocytes could not induce diabetes in NOD/scid
mice (Fig. 5A). Immunohistochemistry on pancreatic

sections revealed limited islet infiltration by CD4� and
CD8� T-cells in NOD/scid recipients of IL-21R�/�NOD
splenocytes, but abundant infiltration by transferred IL-
21R�/�NOD splenocytes. Defective reconstitution of lym-
phoid space by IL-21R�/�NOD lymphocytes could not
explain these observations, as we found equivalent
numbers of lymphoid cells in spleen or pancreatic
lymph nodes of NOD/scid mice receiving either IL-
21R�/�NOD or IL-21R�/�NOD splenocytes (Fig. 5D).
These observations indicate that IL-21R�/� NOD mice
lack auto-aggressive splenocytes compared with their
wild-type littermates and that lymphopenia-induced pro-
liferation of IL-21R�/�NOD lymphocytes does not con-
fer them with diabetogenic properties.

We showed that pancreatic levels of IL-21 increase
during diabetes development in NOD (Fig. 1A) and that
loss of IL-21 signaling protects NOD mice from islet
infiltration and diabetes development (Fig. 2). We there-
fore hypothesized that elevated levels of IL-21 would
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exacerbate disease pathogenesis. To test this, we gener-
ated transgenic C57Bl/6 mice in which IL-21 is under the
control of the human insulin promoter, resulting in pan-
creatic �-cell–specific overexpression of IL-21 (Fig. 6A).
Next, we measured IL-21 levels by quantitative RT-PCR
(Fig. 6B) and by immunohistochemistry using a polyclonal
anti-mouse IL-21 antibody (Fig. 6C). These data revealed
distinct overexpression of IL-21 mRNA and protein in
pancreatic islets of IL-21 transgenic animals.

Analysis of lymphoid compartments revealed spleno-
megaly and lymphadenopathy in IL-21Tg mice. We identi-
fied an �2.5-fold increase in total cell numbers in spleen
(Fig. 6D) and pancreatic draining lymph nodes (Fig. 6E)
resultant from expansion of both the T-cell (CD3�) and

B-cell (B220�) compartments (data not shown). Most
B-cells in our IL21Tg mice displayed a mature pheno-
type, while expressing reduced levels of CD21 and CD23
(IgD�, IgM�, CD21lo, CD23lo) (Fig. 6F). Other studies
have shown that IL-21 can downregulate surface CD21
and CD23 on B-cells, and expansion of IgD�IgM�

CD21loCD23lo B-cells was also observed in other IL-21Tg
mouse lines driven by ubiquitous promoters (10). Thus,
these data suggest that bioactive IL-21, expressed spe-
cifically by pancreatic �-cells, is released systemically from
the endocrine pancreas to mediate effects in peripheral
lymphoid compartments.

To determine whether IL-21 overexpression resulted in
diabetes onset, we monitored blood glucose levels of
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IL-21Tg mice and wild-type littermate controls weekly
from the time of weaning until �40 weeks of age. As
expected, wild-type animals (C57BL/6) remained normo-
glycemic over the duration of the study (Fig. 7A). In
contrast, IL-21Tg animals started developing diabetes from
�8 weeks of age (Fig. 7A), with a median onset at �22
weeks and �80% penetrance in both sexes of the experi-
mental population. To prove specificity of the IL-21 effect
and to exclude a transgenesis artifact, we crossed IL-
21TgB6 to IL-21R�/�B6 mice. IL-21TgxIL-21R�/� animals
were completely protected from diabetes onset (Fig. 7B).
Taken together, these data show that �-cell–specific over-
expression can induce type 1 diabetes on the diabetes-
resistant C57Bl/6 background.

Next, we determined �-cell mass and pancreatic islet
infiltration by immunohistochemistry. Pancreatic sections
stained for insulin and insulin-positive islets were quanti-
fied per visual field. Islet inflammation was scored based
on the presence of peri- and intra-islet cellular infiltration.
The number of islets in IL-21Tg mice was significantly
reduced at all time points compared with controls (Fig.
7C). In addition, �50% of the islets in pre-diabetic (10

weeks of age) IL-21Tg mice were infiltrated (Fig. 7D). The
severity of islet inflammation increased with age and, at 16
weeks of age, �90% of the islets revealed some level of
cellular infiltration.

�-Cell–specific IL-21 overexpression precipitates dia-
betes in diabetes-resistant C57BL/6 (Fig. 7A). To test
whether the presence of diabetes susceptibility alleles
from NOD influences disease onset, we crossed IL-21Tg
mice (C57BL/6) to NOD mice. We found that IL-21Tg F1
(B6xNOD) mice developed diabetes as early as 3 weeks of
age, with a median onset at �4 weeks and 100% pen-
etrance of disease at 6 weeks (Fig. 7E). This represents a
striking acceleration of diabetes onset in IL-21Tg on the
mixed B6�NOD versus the B6 background (median onset
4 vs. 22 weeks, respectively; Fig. 7A vs. E). We determined
�-cell mass and pancreatic islet infiltration by immunohis-
tochemistry and found a reduced amount of islets and
distinct infiltration of the remaining islets between 2 and 3
weeks of age in the IL-21Tg B6�NOD F1 compared with
wild-type B6�NOD littermates (Fig. 7F and G). Our data
show that one “dose” of NOD-derived alleles exacerbates
diabetes in IL-21Tg C57Bl/6 mice.

Next, we used immunohistochemistry to determine
which cell subsets infiltrate the islets in IL-21Tg C57Bl/6
mice. We analyzed the presence of B-cells (B220�), CD4�

cells (CD4�), NK cells (LGL-1�), macrophages (F4/80�),
and dendritic cells (CD11c�) in islet infiltrates from pre-
diabetic (8–10 weeks; Fig. 8A, top panel) and diabetic
IL-21Tg cohorts (24 weeks; Fig. 8A, bottom panel). We
observed more severe infiltration by all cell types in
IL-21Tg versus littermate controls, and in diabetic versus
pre-diabetic mice (Fig. 8B), corroborating our data in Fig.
7. The infiltrates in the pre-diabetic IL-21Tg cohort pre-
dominantly contained F4/80� macrophages but also CD4�

and dendritic cells. In diabetic IL-21Tg mice, the infiltrates
consisted mostly of macrophages and contained focal
accumulation of CD4� cells, B-cells, dendritic cells, and
NK cells. We reasoned that the distinct pattern of infiltra-
tion could result in part from the production of cytokines
and chemokines. Therefore, we performed quantitative
RT-PCR on pancreatic tissue from IL-21Tg and littermate
controls, which revealed significantly increased produc-
tion of IFN-�, IL-17A, and IL-17F in the pancreas of IL-21Tg
mice (Fig. 8C). In addition, we found a significant increase
in monocyte chemoattractant protein (MCP)-1, MCP-2,
and IFN-inducible protein (IP)-10 production (Fig. 8D).
Thus, pancreatic �-cell–specific overexpression of IL-21
results in the production of inflammatory cytokines and
chemokines and predominant infiltration of the islets by
macrophages and CD4� T-cells.

DISCUSSION

In this study, we demonstrate a causal relationship be-
tween IL-21 production and type 1 diabetes. First, IL-21
production increases as spontaneous diabetes develops in
the NOD model. Second, IL-21R–deficient NOD mice are
protected from type 1 diabetes. Third, �-cell–specific
overexpression of IL-21 precipitates diabetes in diabetes-
resistant C57Bl/6 mice.

Type 1 diabetes pathogenesis in the NOD model consists
of a sequence of stages. Initially, islet antigens are released
during postnatal remodeling of the pancreas and captured
by migratory and resident antigen-presenting cell that
prime anti-islet T-cells in the pancreatic draining lymph
nodes (20,26–28). At an early stage, macrophages are
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recruited to the islets (29) and are a necessary cellular
component of diabetes pathogenesis (30). Next, chemo-
tactic factors, produced by �-cells in response to inflam-
matory stimuli, attract mononuclear cells to the islets,
particularly CD4� and CD8� effector T-cells. The transi-
tion from nondestructive islet inflammation to a �-cell–
destructive state is a key event that precipitates type 1
diabetes (18,31). Because IL-21R is broadly expressed
throughout the immune system and other nonhematopoe-
itic lineages (6,32–35), there are multiple time points and
sites of action for IL-21 during the pathogenesis of type 1
diabetes.

We show here that IL-21 levels are increased in the
pancreas as NOD mice develop diabetes and that CD4�

and CD8� T-cells infiltrating the pancreas can respond to
local IL-21 as they express IL-21R. Our data are consistent
with recent studies by the labs of Leonard and Sarvetnick
(36,37) showing that IL-21R�/�NOD mice are protected
from insulitis and type 1 diabetes. Similar to Spolski et al.
(37), we find unaltered numbers of T-cells, B-cells, and NK
cells in IL-21R�/�NOD lymphoid organs (Fig. 3 and data
not shown). In contrast to ours and other studies, Datta
and Sarvetnick detected higher lymphocyte numbers in
IL-21R�/�NOD mice, interpreting this as a normalization
of IL-21–induced, type 1 diabetes–promoting lymphopenia
(4,36). We see no differences in the expansion of IL-21R�/

�NOD and IL-21R�/�NOD splenocytes when transferred
to lymphopenic NOD/scid recipients (Fig. 5D), yet IL-
21R�/�NOD splenocytes still fail to induce diabetes. We

therefore think it unlikely that IL-21 catalyzes diabetes devel-
opment by regulating homeostatic proliferation.

Given that T-cell numbers and responses are intact in
IL-21R�/� mice (8,11), we hypothesized that altered
cytokine production may partially account for the pro-
tection from type 1 diabetes. Our analyses show that
production of various effector cytokines was not im-
paired in IL-21R�/�NOD mice (Fig. 4A and B). One of
these cytokines, IL-17, has recently been shown to
modulate some aspects of the type 1 diabetes pathogen-
esis in NOD (38), and recent studies identify IL-21 as an
amplifying factor for Th17 responses (39,40). Spolski et
al. (37) identify defective polarization toward the Th17
lineage in IL-21R�/�NOD lymphocytes and reason that
defective IL-17 production may explain diabetes resis-
tance in IL-21R�/�NOD mice. We (data not shown) and
others (39) find similarly defective in vitro Th17 polar-
ization using IL-21R�/� T-cells. Moreover, our data
show increased IL-17 production in the pancreas of
�-cell–specific IL-21 overexpressing mice (Fig. 8D).
However, we show increased numbers of IL-17–produc-
ing cells in IL-21R�/�NOD mice when cells are restim-
ulated directly ex vivo, which is likely to be more
reflective of the in vivo context. Thus, we conclude that
reduced IL-17 production in IL-21R�/�NOD mice is
unlikely to be the mechanism for the protection from
type 1 diabetes.

The reduced frequency of insulin autoantibodies and
insulitis in IL-21R�/�NOD mice (Fig. 2B and D) shows
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that the anti-islet response is impaired at multiple levels.
Reduced autoantibody levels may reflect impairments in
CD4� T helper cell function or antibody production in the
absence of IL-21R (9,41,42). Anti-islet IL-21R�/� T-cells
may be primed ineffectively or possess inherent defects in
migration to islet tissue. Since IL-21R�/�NOD mice have
normal or fewer numbers of regulatory T-cells (Fig. 3C),
and the function of these cells is not altered (37), it is
unlikely that increased regulatory function explains the
reductions in autoimmunity. Transfer experiments using
diabetogenic T-cell receptor–transgenic T-cells may eluci-
date the existence of defects in priming or trafficking and
are the subject of ongoing studies.

Although IL-21R deficiency protects diabetes-prone
NOD mice from type 1 diabetes, �-cell–specific overex-
pression of IL-21 causes severe diabetes in otherwise
diabetes-resistant C57Bl/6 mice. Few other models of
cytokine overexpression in pancreatic islets cause diabe-
tes of similar severity (43,44). The phenotype of IL-21Tg
mice most closely resembles that of IFN-�Tg mice in terms
of onset and severity of disease. The IFN-�Tg model is
both T-cell and macrophage dependent (21,45,46). Similar
to the IFN-�Tg model, the high numbers of macrophages
in the islet infiltrates of IL-21Tg mice suggest an important
role for macrophages, since macrophage-derived inflam-
matory cytokines and reactive oxygen species are directly
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toxic to �-cells (47). In vitro stimulation of macrophages
with IL-21 enhances their T-cell priming capacity (48);
thus, phagocytosis of damaged islets and presentation of
�-cell antigens to CD4� T-cells may cause enhanced killing
of islets in the IL-21Tg model. In IL-21Tg pancreatic tissue,
we showed upregulation of chemokine transcripts such as

MCP-1, MCP-2, and IP-10, which recruit inflammatory cells
such as macrophages and CXCR3� T-cells (Fig. 8E) (49).
Previous studies identified �-cells as an important source
of chemokines during diabetes pathogenesis, but our
experiments have failed to identify IL-21R expression on
�-cells (supplementary Fig. 1). Regardless, we believe that
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IL-21–dependent inflammatory chemokine production
could be an important element of the pathogenesis of type
1 diabetes and partially explain the protection afforded by
IL-21R deficiency in the NOD model (33,50,51).

In conclusion, we demonstrate a critical role of IL-21 for
diabetes pathogenesis in animal models. The disease-
promoting activities of IL-21 involve the recruitment of
CD4� cells and macrophages to inflamed islets and may
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FIG. 8. Spontaneous type 1 diabetes in IL-21Tg mice is associated with a macrophage-rich islet infiltrate and the expression of inflammatory
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and plotted in B (<12 weeks, Tg�, n � 3; Tg�, n � 5; >12 weeks, Tg�, n � 4; Tg�, n � 7). Original magnification: �10. Total RNA was extracted
from pancreatic tissue harvested from a cohort of IL-21Tg mice and wild-type controls. Levels of transcripts for a panel of cytokines (C) and
chemokines (D) was measured using quantitative RT-PCR (24–30 weeks, Tg�, n � 3; Tg�, n � 5, *P < 0.05). (A high-quality digital representation
of this figure is available in the online issue.)
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reflect events that occur in response to IL-21 production
by infiltrating cells. In addition, the partial protection from
diabetes in IL-21R�/�NOD mice shows the sensitivity of
the diabetogenic response to alterations in IL-21 signaling
and, by inference, IL-21 levels. Thus, both of our experi-
mental models suggest that the use of IL-21 blocking
agents, antibodies, or IL-21R-Fc fusion proteins has poten-
tial therapeutic value for the prevention or treatment of
human type 1 diabetes.
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