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ABSTRACT

Integrative analyses of epigenetic data promise a
deeper understanding of the epigenome. Epidaurus
is a bioinformatics tool used to effectively reveal
inter-dataset relevance and differences through data
aggregation, integration and visualization. In this
study, we demonstrated the utility of Epidaurus in
validating hypotheses and generating novel biologi-
cal insights. In particular, we described the use of Ep-
idaurus to (i) integrate epigenetic data from prostate
cancer cell lines to validate the activation function of
EZH2 in castration-resistant prostate cancer and to
(ii) study the mechanism of androgen receptor (AR)
binding deregulation induced by the knockdown of
FOXA1. We found that EZH2’s noncanonical activa-
tion function was reaffirmed by its association with
active histone markers and the lack of association
with repressive markers. More importantly, we re-
vealed that the binding of AR was selectively re-
programed to promoter regions, leading to the up-
regulation of hundreds of cancer-associated genes
including EGFR. The prebuilt epigenetic dataset from
commonly used cell lines (LNCaP, VCaP, LNCaP-
Abl, MCF7, GM12878, K562, HeLa-S3, A549, HePG2)
makes Epidaurus a useful online resource for epige-
netic research. As standalone software, Epidaurus
is specifically designed to process user customized
datasets with both efficiency and convenience.

INTRODUCTION

Epigenetic mechanisms, including DNA methylation, his-
tone modification and chromatin remodeling, play a critical
role in various cell functions and processes. Epigenetic aber-
rations have been linked to the initiation and propagation
of many diseases, and epigenetic dysregulation is currently
recognized as one of the hallmarks of cancer (1). Differ-

ent epigenetic mechanisms work cooperatively to regulate
gene expression. For instance, it is well known that hyper-
methylated DNA CpG islands (CGIs) function to maintain
the repressed chromatin state and therefore silence tran-
scriptional activity, whereas hypo-methylated CGIs are as-
sociated with active transcription (2–4). On the other hand,
the acetylated histone is a marker of open chromatin and
transcriptional activation whereas deacetylated histone is
associated with condensed chromatin and gene silencing.
Proteins binding to methylated DNA also form complexes
with proteins involved in deacetylation of histones, suggest-
ing that DNA methylation and histone acetylation act in
concert to regulate gene expression (3). EZH2 (enhancer of
homolog 2) represents another example of the collabora-
tion between DNA methylation and histone modification.
As the catalytic subunit of the PRC2 (Polycomb repres-
sion complex 2), EZH2 is a histone methyltransferase that
methylates lysine-27 of histone 3 (H3K27me3) located in
promoter regions, leading to the repression of target genes
(5–8). In addition, EZH2 also serves as a recruitment plat-
form for DNA methyltransferases (9). The above two exam-
ples highlight the connections between different epigenetic
mechanisms especially the DNA methylation and histone
modification, and suggests that the epigenome, as an inte-
grated system, should be studied as a whole.

Driven by the Encylopedia of DNA Elements Consor-
tium (ENCODE) and the NIH Roadmap Epigenomics
Project, tremendous efforts have been spent to decipher
the human epigenome. Large amounts of data have been
generated to map transcription factors binding sites (TF-
BSs), characterize histone modifications and measure DNA
methylation levels. For example, the Gene Expression Om-
nibus (GEO) database contains more than 10 000 ChIP-seq
experiments, 50% of which were generated from human tis-
sues. However, most of these datasets have been individu-
ally analyzed, although, in the context of epigenome study,
analysis of the combined datasets can offer a much deeper
understanding.
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Combining different epigenetic data types requires two
types of data combination methods, implemented in two
consecutive steps. The first step, referred to as data aggrega-
tion, consists of accumulating the epigenomics information
across many loci throughout the genome. Aggregation anal-
ysis is a holistic approach that summarizes epigenetic scores
from many genomic regions and therefore provides a global
view of the epigenomic landscape of these genomic regions.
Such an analysis could be applied to genome regions such
as TFBSs, histone modification sites, regions sharing a cog-
nate DNA motif, transcription start sites (TSS). For ex-
ample, genome-wide aggregation analysis on androgen re-
ceptor (AR) binding sites reveals the repositioning of nu-
cleosomes from their original (central) positions to two
flanking positions (10). Another study using the aggrega-
tion analysis approach finds that 20 nucleosomes are well-
positioned around CCCTC-binding factor (CTCF) bind-
ing sites, highlighting the important role of CTCF in nu-
cleosome positioning (11). These results demonstrate the
power and usefulness of genome-wide aggregation analy-
ses. The second step, referred as data integration, consists
of integrating aggregated data of different types such as TF
ChIP-seq, histone ChIP-seq, DNA methylation (MeDIP-
seq) and DNase-seq. Data integration facilitates the side-
by-side comparison of different data types.

Data visualization assists researchers in exploring rele-
vance and differences among datasets, and in generating
and validating hypotheses. UCSC genome browser, En-
sembl and IGV provide user-friendly interfaces to visual-
ize and compare genomic and epigenomic signals of many
different types as vertically piled-up tracks for a single lo-
cus (12–14). However, they are not designed to visualize
the results of genome-wide aggregation analyses. Therefore,
complementary tools are needed to summarize and visu-
alize epigenomic features and enable the identification of
novel associations between these features. Spark is a tool
designed to fulfill this goal (15). However, its visualization
has limited capability to reveal the relevance and differences
between datasets (see ‘Results and Discussion’ section).

In this study, we presented Epidaurus, a bioinformatics
tool that can simultaneously perform aggregation analysis
of thousands of genome regions and integrative analysis for
many epigenetic datasets. To demonstrate its usefulness, we
used Epidaurus to analyze the epigenome of castration re-
sistant prostate cancer (CRPC) in Abl cells (16). Use of Ep-
idaurus enabled us to confirm that transcription repressor
EZH2 works in solo to activate gene expression in CRPC
(16). When applying Epidaurus to another prostate cancer
epigenome dataset in LNCaP cells (17), we revealed a novel
regulating mechanism of AR. Specifically, knockdown of
the pioneer factor FOXA1 selectively induced AR to bind
promoters, thus reprograming AR to regulate a set of genes
including EGFR that are not normally androgen stimulated
(17). We therefore exemplified in this study that Epidaurus
cannot only validate hypotheses, but can also generate novel
biological insights, leading to a deeper understanding of the
epigenetic landscape.

MATERIALS AND METHODS

Data collection

Epigenetic data for LNCaP, VCaP, LNCaP-Abl (Abl),
MCF7, GM12878, K562, HeLa-S3, A549 and HePG2 cells
were assembled from published data deposited into GEO
and Sequence Read Archive. Histone ChIP-seq datasets
include H3K4me1, H3K4me2, H3K4me3, H3K9me2,
H3K9me3, H3K27me3, H3K36me3, H3K79me2,
H4K20me1 H4K5ac, H3K27ac, H2A.Z, H2AZac and
H3K122ac. Transcription factor ChIP-seq datasets include
AR, CTCF, FOXA1, MED12, P300, EZH2, SUZ12,
NKX3.1, Pol2, CEBPB, ELF1, FOSL2, FOXM1, GABP,
GATA3, E2F1, HDAC2, JUND, MAX, NR2F2, ERG1,
CMYC, etc. Chromatin accessibility datasets include
DNase-seq and FAIRE-seq. DNA methylation datasets
include MeDIP-seq and RRBS. Gene expression datasets
include RNA-seq, small RNA-seq and GRO-seq. MNase-
seq data from hematopoietic stem cells (CD34+ cells) and
their differentiated erythroid lineage cells (CD36+ cells),
a leukemia cell line (K562) and a lymphoblastoid cell
line (GM12878) were collected. We also prepared genome
feature datasets including sequence conservation (Phast-
Con and PhyloP score), GC content and CpG density.
The current Epidaurus database contains 233 datasets
(Supplementary Tables S1–S9). This number will increase
as more data become available.

Software implementation

Epidaurus was implemented in Python and C: the source
code and documentation are freely available from our web-
site (http://epidaurus.sourceforge.net/). Epidaurus can be
invoked from the command line as well as from our on-
line web server (http://bioinformaticstools.mayo.edu:8080/
Epidaurus/). When running from the command line, Ep-
idaurus took two files as input: a configuration file spec-
ifying the parameters and paths of all BigWig files (18),
and a BED file containing genome regions of interest such
as TFBS. Epidaurus was configured by four parameters:
HALF WINDOW SIZE, specifying the window size added
to both sides of the middle point of regions defined in
the BED file (default = 1000 bp), HEAD ROWS, spec-
ifying number of rows Epidaurus would take into cal-
culation (default = 2000), HM FORMAT, specifying the
output graphic format (pdf, png or tiff, default = pdf)
and DIST METRIC, specifying metric to measure distance
between two datasets (Pearson, Kendall, Spearman, Eu-
clidean, default = Kendall). The conceptual design of Ep-
idaurus is illustrated in Supplementary Figure S1. Briefly,
Epidaurus analysis procedure is detailed in the following
steps:

(i) For each row in input BED files, Epidau-
rus built the genomics window by extending
HALF WINDOW SIZE (bp) up- and downstream
from the middle point. If HALF WINDOW SIZE
was set to 0, Epidaurus used the original regions
provided in BED file without extension: in this case all
genomic regions in input BED file must be the same
size.

http://epidaurus.sourceforge.net/
http://bioinformaticstools.mayo.edu:8080/Epidaurus/
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(ii) Using parameters defined in the configuration file, Ep-
idaurus extracted signals from BigWig files. For exam-
ple, if there were K BigWig files representing K datasets,
n (specified by HEAD ROWS) rows in the BED file
and the HALF WINDOW SIZE was set to w (note the
total window size will be 2w + 1). After signal extrac-
tion, Epidaurus generated K data matrixes with each
matrix having n × (2w + 1) values.

(iii) For each data matrix, Epidaurus calculated the mean
of each column resulting K lists with each list having
2w + 1 values. The K lists represented signal profiles of
K datasets

(iv) Epidaurus then built the matrix K × (2w + 1). Values
in each row were scaled into range (0,1) using:

V′
i = Vi − Vmin

Vmax − Vmin
, i ∈ {0, 1, 2, . . . , 2k}

(v) Finally, the heatmap and line graph were generated.
The order of datasets displayed in the heatmap was de-
termined by the distances to ‘seed’ dataset specified in
configuration file. Distance was measured by one of the
four metrics: Pearson correlation coefficient, Kendall
rank correlation coefficient, Spearman rank correla-
tion coefficient or Euclidean distance. Details are pro-
vided in the section below.

Measuring similarity between two epigenetic datasets

The majority of high-throughput sequencing data (such as
RNA-seq, ChIP-seq, MNase-seq) could be represented as
a set of genomic positions and the associated scores. Re-
gardless of the data type, Epidaurus computed an epigenetic
profile for each selected dataset with single nucleotide res-
olution. When visualizing these profiles using heatmap, we
grouped similar profiles together to facilitate comparison
and interpretation.

The similarity between two profiles (X and Y) was mea-
sured by the distance between the corresponding arrays of
values (x ∈ {x0, x1, x2, . . . x2k} and y ∈ {y0, y1, y2, . . . y2k}).
We used four different metrics to measure such distance.
Euclidean distance (d), Pearson’s correlation coefficient (r),
Spearman’s rank correlation coefficient (ρ) and Kendall’s
rank correlation coefficient (τ ) are defined as:

d(X, Y)
=

√
(x0 − y0)2 + (x1 − y1)2 + · · · + (x2k − y2k)2

=
√

2k∑
i=0

(xi − yi )2

r (X, Y) = cov(x, y)
σxσy

= E [(x − x̄)(y − ȳ)]
σxσy

ρ(X, Y) =

2k∑
i=0

(
x′

i − x̄′) (
y′

i − ȳ′)
√

2k∑
i=0

(
x′

i − x̄′)2 (
y′

i − ȳ′)2
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Figure 1. Distinct epigenome landscapes between EZH2 ensemble (a) and
solo peaks (b). Ensembl and solo peaks were defined by Xu et al. from
prostate cancer cell line Abl (16). For each EZH2 peak, we took the peak
center and then extended 1-kb to up- and downstream. In the heatmap,
each row is a dataset and each column is genomic position around EZH2
peak center. Signals of each dataset were normalized into range (0,1). Ma-
genta and cyan colors indicate high and low signals, respectively. All ChIP-
seq data were generated from Abl cell line. CpG density was computed
from the human reference genome (hg19/GRCh37) and PhastCon score
was downloaded from UCSC annotation database. Both heatmaps were
generated by Epidaurus.

τ (X, Y)
= {# of concordant pairs}−{# of disconcordant pairs}

1
2 ×2k×(2k−1)

Where cov is the covariance, σ x is the standard deviation of
X, x̄ is the mean of X, x′ is the rank of X, and E is the expec-
tation operator. A pair of observations, (xi, yi) and (xj, yj),
were considered concordant if the ranks for both elements
agreed (i.e. if both xi > xj and yi > yj or if both xi < xj and
yi < yj), and they were considered as discordant, if xi > xj
and yi < yj or if xi < xj and yi > yj. If xi = xj or yi = yj, the
pair was neither concordant nor disconcordant.

RESULTS AND DISCUSSION

Validate noncanonical transcription activation function of
EZH2 in castration-resistant prostate cancer cells

EZH2 is a well-known transcription repressor that co-
operates with other PRC2 components including SUZ12,
EED and RBBP4 (19). However, Xu et al. demonstrated
that EZH2 switches its transcriptional repressive function
in androgen-dependent prostate cancer to a gene activat-
ing function in CRPC, using LNCaP cells as a model of
androgen-dependent prostate cancer and Abl cells as a
model of CRPC (16). In Abl cells, Xu et al. identified two
groups of EZH2 binding sites based on H3K27me3 en-
richment. Ensemble peaks (i.e. EZH2 binding peaks with
H3K27me3 enrichment) repress gene expression and solo
peaks (i.e. EZH2 binding peaks lacking H3K27me3 enrich-
ment) activate gene expression. Using Epidaurus, we sys-
tematically reanalyzed the epigenome landscapes at both
EZH2 ensemble and solo peaks.

Upon reanalyses, we found that solo peaks were narrow
and sharp and ensemble peaks were wide and flat (Figures
1 and 2a). The sequence conservation profiles of these two
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Figure 2. Comparison of signal intensity between EZH2 ensemble peaks
(red curves) and solo peaks (blue curves). (a) EZH2 ChIP-seq signal in-
tensity profile, (b) PhastCon conservation score profile, (c) - (f) ChIP-seq
signal intensity profiles for Pol2, AR, H3K4me1, H3K4me2, H3K4me3,
H3K9me3 and H3K27me3 , respectively. All ChIP-seq data were gener-
ated from Abl cell line. EZH2 ensemble (red) and solo (blue) andpeaks
were defined by Xu et al. (16). In each panel, the x-axis is the distance to
peak center (bp) and the y-axis is tag intensity.

types of peaks further confirmed this observation (Figure
2b). This was presumably due to the fact that physical di-
mension of EZH2 protein alone was much smaller than the
PRC2 complex, which consists of EZH2 and other cofac-
tors. Here we showed that genome-wide aggregation anal-
ysis was able to provide new evidence to validate existing
findings.

From the perspective of the epigenome, we reaffirmed
that EZH2 ensemble peaks were primarily associated with
transcription repression and that solo peaks were associ-
ated with transcription activation with multiple evidence.
First, Pol II and AR binding signals were much higher in
solo peaks than those in ensemble peaks (Figure 2c and
d). Second, we found that in agreement with its repres-
sive role, EZH2 ensemble peaks were mainly located in
closed chromatin (Figure 1a), and consistent with its acti-
vating role, EZH2 solo peaks were located in nucleosome-
free regions delineated by the decreased signal in the middle
of H3K4me1, H3K4me2, H3K4me3 and H3K9me3 peaks
(Figures 1b and 2e–h). Third, H3K4me2 and H3K4me3,
promoter-specific histone modifications associated with ac-
tive transcription (20–22), had much higher enrichment in
solo peaks than that in ensemble peaks (Figure 2f and g).
Similarly, enhancer-specific histone marker H3K4me1 sig-
nals were much higher in solo peaks than in ensemble peaks
(Figure 2e). Finally, H3K9me3 is well known for its re-
pressive role in transcriptional regulation (23,24). Our data
showed that H3K9me3 signals were almost undetectable in
solo peaks but were enriched in ensemble peaks (Figure 2h).
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Figure 3. Distinct epigenome landscapes between ‘lost’, ‘conserved’ and
‘gained’ AR programs. Comparison of epigenome landscapes between lost
(a), gained (b) and conserved (c) AR programs. The loss, gained and con-
served AR binding sites induced by siFOXA1 were defined by Wang et al.
in LNCaP cells (17). For each AR binding site, we extended 1-kb to up- and
downstream of the peak center. In the heatmap, each row is a dataset and
each column is genomic position. Signals of each dataset were normalized
into range (0,1). Magenta and cyan colors indicate high and low signals, re-
spectively. MeDIP-seq, DNaseI-seq, GRO-seq and all ChIP-seq data were
generated from LNCaP cells treated with dihydrotestosterone. CpG den-
sity was computed from the human reference genome (hg19/GRCh37) and
the PhastCon score was downloaded from the UCSC annotation database.
All heatmaps were generated by Epidaurus.

The distinct epigenetic landscapes between EZH2’s ensem-
ble and solo binding sites strongly supported the dual role of
EZH2 in transcription regulation in prostate cancer. These
results also highlighted the usefulness of Epidaurus and the
strength of integrative analysis.

Altered epigenetic landscape of AR binding induced by
FOXA1 knockdown

FOXA1 is a transcription factor involved in embryonic de-
velopment and establishment of tissue-specific gene expres-
sion and acts as a pioneer factor in chromatin remodeling.
As a master regulator of AR, FOXA1 has been extensively
studied in prostate cancer (10,17,25–29). It was reported
that FOXA1 opened the local chromatin to facilitate AR
binding (30). Wang et al. defined three groups of AR bind-
ing sites after FOXA1 knockdown: lost binding (1881 loci,
referred as lost AR program), conserved binding (1234 loci,
referred as conserved AR program) and gained binding (10
869 loci, referred as gained AR program) (17).

Using Epidaurus, we reanalyzed the genome and
epigenome datasets generated from LNCaP cells for these
three groups of AR binding sites. We demonstrated that all
three groups of AR binding regions were highly conserved
across 100 vertebrate genomes, hypersensitive to DNase I
and enriched for AR and P300 ChIP-seq signals, suggest-
ing the reliability of these AR binding sites (Figure 3, Sup-
plementary Figure S2k and l, o and p). From the Epidau-
rus results, we observed dramatically different epigenome
landscapes between the gained and lost AR programs. In
the lost AR program, all histone ChIP-seq data consis-
tently delineated a nucleosome free region flanking the cen-
ter of AR binding sites (Figure 3a). In particular, active en-
hancer markers H3K4me1, H3K4me2, H3K27ac and hi-
stone variant H2A.Z clearly exhibited a symmetrical, bi-
modal pattern with reduced nucleosome occupancy at the
central nucleosome and concomitant increased occupancy
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at two flanking nucleosomes (Supplementary Figure S2g–
j). In contrast, for the gained AR program, most AR bind-
ing sites were located to the central, well-positioned nu-
cleosome, as shown by the unimodal signal of H3K4me1,
H3K4me2, H3K27ac, H3K36me3, H4K5ac, H2A.Z and
H3K9me2 (Figure 3b, Supplementary Figure S2d–j). This
distinct nucleosome architecture between gained and lost
AR programs highlighted the dynamics of nucleosome and
the role of FOXA1 as pioneer factor in chromatin remold-
ing (27,31,32). The epigeneitc profile of the conserved AR
program was very similar to that of the lost AR program
(Figure 3c). However, signals of enhancer-specific histone
markers such as H3K4me1, H3K4me2 and H3K27ac were
much higher in the conserved AR program than those in the
lost AR program, suggesting the conserved AR binding sites
had much higher intrinsic enhancer activity and thus were
independent of the pioneer effect of FOXA1 on gene activa-
tion (Supplementary Figure S2g, i and j). This assumption
was substantiated by the observation that the eRNA abun-
dances as measured by GRO-seq as well as the Pol II ChIP
signals were also much higher in the conserved AR program
than those in the lost AR program (17,33–35) (Supplemen-
tary Figure S2m and n).

Cytosines in CpG dinucleotides can be methylated to
5-methylcytosine, which spontaneously deaminate to form
thymidine residues over time. Therefore, the CpG dinu-
cleotide is greatly under-represented in the human genome
at only about one-fifth than would be expected (36) (Sup-
plementary Figure S3). Genome regions with a high con-
centration of CpG sites are known as CGIs (37). About
70% of CGIs are located within 2-kb regions flanking TSS
(Supplementary Figure S4). On the other hand, the major-
ity (>85%) of AR binding sites are distal from the TSSs of
AR regulated genes (26,27,38). Because of this, the chance
of observing overlaps between AR binding sites and CGIs
is conceivably very slim. To estimate how many AR bind-
ing sites overlapped with CGIs by chance, we shuffled AR
binding sites and then overlapped them with CGIs (28 691
regions, total 21 842 742 bp or 0.7% of the human reference
genome) downloaded from the UCSC annotation database.
We estimated that 0.97 ± 0.09% of the AR binding sites
would overlap with CGIs by chance (Supplementary Fig-
ure S5). Interestingly, we found that the average CpG den-
sity was much higher in gained AR binding sites than that
in the lost and conserved AR binding sites (Figure 3, Sup-
plementary Figure S6). This suggested the co-localization
of CGIs with AR binding sites in the gained AR program.
As shown in Figure 4a, 3.06% (333/10 867) of gained AR
binding sites overlapped with CGIs, which is 3.15-fold en-
richment (P < 2.2E-16, χ2 test) compared to background
(0.97%), suggesting gained AR binding sites tended to colo-
calize with CGIs. As a comparison, only 0.05% (1/1860) of
lost AR binding sites overlapped with CGIs, a 23.4-fold de-
pletion (P = 1.02E-4, χ2 test) compared to the background
control, suggesting that lost AR binding sites tended to lo-
calize outside of CGIs. The overlap between conserved AR
binding sties and CGIs was about 1.0% (13/1297), approx-
imating background control.

We further investigated the genome position of gained
AR binding sites overlapped with CGIs. Since the majority
of CGIs are located in promoters, as expected, we found,
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islands. X-axis indicates the FDR-adjusted binomial P-values were cal-
culated using GREAT (http://bejerano.stanford.edu/great/public/html/).
(d) Transcription factor targets oncology analysis of AR binding sites
overlapped with CpG islands. X-axis indicates the FDR-adjusted bino-
mial P-values calculated using GREAT. P-values are calculated using χ2

test with continuity correction. (e) Expression analysis for KLK3, EGFR,
SUN2 and GAS2L1 using Illumina Human-6 v2.0 expression beadchip in
LNCaP cells treated with dihydrotestosterone. Three biological replicates
of siFOXA1 (siFOXA1 r1, siFOXA1 r2, siFOXA1 r3) were compared with
three biological replicates of siControl (siCtrl r1, siCtrl r2, siCtrl r3). (f)
Percentage of AR binding sites containing FOXA1 motif. Conserved, lost
and gained AR bindings are indicated by black, red and purple bars, re-
spectively. AR bindings that overlapped with CGI are indicated by blue
bar and random control is indicated by gray bar.

as expected, that these AR binding sites were primarily lo-
cated in promoter regions (Figure 4b). De novo motif search
using MEME-ChIP (39) showed significant enrichment of
palindromic AR motifs (E-value = 2.4E−158), suggesting
the reliability of these AR binding sites (Supplementary Fig-
ure S7). We then investigated the genes targeted by gained
AR binding sites that overlapped with CGIs. Disease on-
tology analysis suggested that the target genes were signif-
icantly associated with various types of cancers as well as
other transcription factors such as SOX2, ETS1, HNF4α
and CREB (Figure 4c and d). Genes such as KLK3, EGFR
and GAS2L1 play critical roles in prostate cancer pathogen-
esis and progression. Overexpression of KLK3 was widely
used as a marker for early prostate cancer detection (PSA
test) for decades until its recent suspension. Activation of
EGFR is one of the mechanisms accounting for the main-
tenance of AR signaling in hormone poor environments
(such as CRPC) (40,41), and intense efforts have been fo-
cused on the development of therapeutic strategies to block
EGFR signaling in prostate cancer (42–47). GAS2L1 is an
ERG-dependent AR activated gene and frequently silenced
in prostate cancers (48–50). We analyzed the expression
of these four genes using Illumina human-6 v2.0 beadchip
(GSE27682) (17), and found that their expressions were sig-
nificantly up regulated in siFOXA1 LNCaP cells treated
with androgen. The t-test P-values for KLK3, EGFR, SUN2
and GAS2L1 were 0.0003, 0.049, 0.01 and 0.044, respec-

http://bejerano.stanford.edu/great/public/html/
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Figure 5. Examples of gained AR binding (highlighted in light blue)
at promoters after FOXA1 knockdown. Screenshots taken from UCSC
genome browser showing 4 genes that had AR binding at their promoters.
From top to bottom: KLK3 (a), EGFR (b), SUN2 (c) and GAS2L1 (d). Six
tracks are displayed for each panel: AR binding in normal condition (red),
AR binding with siFOXA1 (brown), H3K4me3 promoter marker (blue),
CpG density in 50-bp window (green), CpG islands defined by UCSC
(dark green) and gene model (dark blue). AR, AR (siFOXA1), FOXA1 and
H3K4me3 ChIP-seq data were all generated from LNCaP cells treated with
dihydrotestosterone.

tively (Figure 4e). The upregulation of EGFR protein in
CRPC was also reported in a previous study (51). As il-
lustrated in Figure 5, AR bound to the H3K4me3-positive
promoters of KLK3, EGFR, SUN2 and GAS2L1 in FOXA1
knockdown cells. The promoter regions of three of the four
genes (EGFR, SUN2 and GAS2L1) contained CGIs. In-
creased AR binding at the promoters of all four genes was
also confirmed by ChIP-qPCR in LNCaP cells (Figure 6).
Genes targeted by gained AR binding sites overlapping with
CGI are listed in Supplementary Table S10, and more exam-
ples are shown in Supplementary Figure S8.

Despite the higher CpG density in gained AR binding
sites, these CpGs were mostly hypo-methylated compared
to flanking regions as measured by MeDIP-seq, and the
DNA methylation levels in gained AR binding sites were
comparable to those in lost and conserved AR binding
sites (Supplementary Figure S9). On the other hand, the
FOXA1 motif was under represented (P = 1.09E-10, χ2

test) in gained AR binding sites that overlapped with CGIs,
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Figure 6. ChIP qPCR validations. ChIP (Chromatin immunoprecipita-
tion) qPCR analyses to confirm gained AR binding on promoters of
KLK3 (a), EGFR (b), SUN2 (c) and GAS2L1 (d). NT, non-target shRNA;
shFOXA, shRNA knockdown FOXA1.

confirming that these binding events were independent of
FOXA1 (17) (Figure 4f).

Although FOXA1 has been extensively studied, its func-
tions in prostate cancer are controversial and not fully un-
derstood. FOXA1 expression levels have been associated
with both good and bad clinical outcomes depending on the
patient cohort (17,26,28). It was reported that FOXA1 ex-
pression is slightly up-regulated in localized prostate cancer
because cell proliferation is the main feature in this stage,
but is remarkably down-regulated in CRPC because cell
motility and epithelial-to-mesenchymal transition are es-
sential at this stage (52). Systematic analysis also suggested
that FOXA1 is a key factor in the initiation of lung can-
cer metastasis (53). Therefore, FOXA1 plays different roles
in cancer development and progression. Through integra-
tive analysis of the prostate cancer epigenome using Epi-
daurus, we revealed a novel mechanism for FOXA1 regu-
lation of AR binding to promoter regions. Specifically, we
found that knockdown of FOXA1 increased binding of AR
to promoter regions. Consistent with our finding, Sharma
et al. also found that a larger proportion of AR binding sites
were associated with promoter regions in CRPC than in
castration-responsive prostate tumor or cell lines (54). We
found that the knockdown of FOXA1 induced AR to bind
the promoter of EGFR and up-regulate its expression. Inter-
estingly, EGFR activation is one of the mechanisms to acti-
vate AR via phosphorylation in androgen-poor conditions
such as CRPC to maintain AR signaling (40,41). However,
the exact regulatory mechanisms of this feedback loop re-
mained unclear.

Comparing Epidaurus to the existing platform Spark

When compared to the existing data exploration platform,
Spark, Epidaurus produced a more accurate representa-
tion for the same datasets using the same list of lost AR
bindings (Figure 7). This was most likely due to the ca-
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Figure 7. Comparison of the visualization effect of Spark to Epidau-
rus. Comparison of Epidaurus with Spark (15) using the same epigenetic
datasets and genome coordinates. (a) Heatmap generated by Spark. (b)
Heatmap generated by Epidaurus.

pability of Epidaurus to normalize each dataset indepen-
dently, compared to Spark, which normalizes the whole
datasets. In practice, it is difficult to render data from dif-
ferent datasets and different types of data comparable for
several reasons. First, sequencing depth and DNA fragment
size can be considerably different between datasets, often
with an order of magnitude difference between ChIP-seq
data published years ago and that published recently. Sec-
ond, even though sequencing depths and DNA fragment
size can be normalized onto the same scale, the signals of
a particular locus (or a list of loci) are still not compa-
rable between diffuse, broad-peak (e.g. H3K36me3) ChIP-
seq experiments and localized, narrow-peak (eg H3K4me3)
ChIP-seq experiments. Third, the total binding sites can be
considerably different between different transcription fac-
tors. Finally, high throughput sequencing-derived epige-
netic datasets and genome features (such as PhastCon con-
servation score, CpG dinucleotide density) cannot be nor-
malized onto the same scale. However, independent nor-
malization has its own drawbacks: for example, color depth
is not comparable between different datasets or between dif-
ferent heatmaps. To overcome these limitations, Epidaurus
generated a raw data table to facilitate the direct compari-
son of the absolute values between datasets (such as in Fig-
ure 2).

CONCLUSION

We exemplified in this study that large-scale integrative
analyses of prostate epigenome could validate previous
findings as well as generate novel biological insights and
lead to a deeper understanding of prostate cancer. Obvi-
ously, the application of Epidaurus is not limited to prostate
cancer epigenome studies. Tremendous epigenetic data for
other cancer types have been generated, and the data vol-
ume is growing even faster thanks to the dramatic decrease
of sequencing cost. The interactions between different type
of epigenetic data have not been fully explored partially
due to the lack of convenient bioinformatic tools. Epidau-
rus is such a tool that facilitates the holistic analysis and
provides informative visualization of the epigenome. By as-
sembling epigenetic data from public resources, the Epi-

daurus web server is a useful centralized data hub for epi-
genetic research projects that use cancer cell lines includ-
ing LNCaP, VCaP, LNCaP-Abl (Abl), MCF7, GM12878,
K562, HeLa-S3, A549 and HePG2. For most of these cell
lines, ChIP-seq data of extensively used histone markers
(such as H3K4me1, H3K4me2, H3K4me3 and H3K27ac)
and chromatin accessibility data (such as DNase-seq and
FAIRE-seq) were prebuilt into our online database. How-
ever, since epigenome is highly dynamic and tends to be cell-
type-specific, standalone Epidaurus is specifically designed
to process user customized, arbitrary datasets with both ef-
ficiency and convenience.

AVAILABILITY

Source code and comprehensive documentation of Epidau-
rus are available at: http://epidaurus.sourceforge.net/. On-
line web server is available at: http://bioinformaticstools.
mayo.edu:8080/Epidaurus/

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors thank Drs Han Xu and Shirley X. Liu from
Harvard Medical School for providing the EZH2 solo
peaks identified from Abl cell. The authors also thank
Michael T. Kalmback for the help in building Epidaurus
web server.

FUNDING

Center for Individualized Medicine at Mayo Clinic
[CA15083-40C19 to J.-P.A.K.]; National Institute of
Health [CA130908, CA134514 to H.H.]. Funding for open
access charge: Center for Individualized Medicine at Mayo
Clinic [CA15083-40C19].
Conflict of interest statement. None declared.

REFERENCES
1. Baylin,S.B. and Ohm,J.E. (2006) Epigenetic gene silencing in cancer -

a mechanism for early oncogenic pathway addiction? Nat. Rev.
Cancer, 6, 107–116.

2. Suzuki,M.M. and Bird,A. (2008) DNA methylation landscapes:
provocative insights from epigenomics. Nat. Rev. Genet., 9, 465–476.

3. Nan,X., Ng,H.H., Johnson,C.A., Laherty,C.D., Turner,B.M.,
Eisenman,R.N. and Bird,A. (1998) Transcriptional repression by the
methyl-CpG-binding protein MeCP2 involves a histone deacetylase
complex. Nature, 393, 386–389.

4. Bird,A.P. and Wolffe,A.P. (1999) Methylation-induced
repression–belts, braces, and chromatin. Cell, 99, 451–454.

5. Cao,R., Wang,L., Wang,H., Xia,L., Erdjument-Bromage,H.,
Tempst,P., Jones,R.S. and Zhang,Y. (2002) Role of histone H3 lysine
27 methylation in Polycomb-group silencing. Science, 298, 1039–1043.

6. Czermin,B., Melfi,R., McCabe,D., Seitz,V., Imhof,A. and Pirrotta,V.
(2002) Drosophila enhancer of Zeste/ESC complexes have a histone
H3 methyltransferase activity that marks chromosomal Polycomb
sites. Cell, 111, 185–196.

7. Kuzmichev,A., Nishioka,K., Erdjument-Bromage,H., Tempst,P. and
Reinberg,D. (2002) Histone methyltransferase activity associated with
a human multiprotein complex containing the Enhancer of Zeste
protein. Genes Dev., 16, 2893–2905.

http://epidaurus.sourceforge.net/
http://bioinformaticstools.mayo.edu:8080/Epidaurus/
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gku1079/-/DC1


e7 Nucleic Acids Research, 2015, Vol. 43, No. 2 PAGE 8 OF 9

8. Müller,J., Hart,C.M., Francis,N.J., Vargas,M.L., Sengupta,A.,
Wild,B., Miller,E.L., O’Connor,M.B., Kingston,R.E. and Simon,J.A.
(2002) Histone methyltransferase activity of a Drosophila Polycomb
group repressor complex. Cell, 111, 197–208.
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