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Abstract: Interferon gamma (IFN-γ) may be potential adjuvant immunotherapy for COVID-19
patients. In this work, we assessed gene expression profiles associated with the IFN-γ pathway
in response to SARS-CoV-2 infection. Employing a case-control study from SARS-CoV-2-positive
and -negative patients, we identified IFN-γ-associated pathways to be enriched in positive pa-
tients. Bioinformatics analyses showed upregulation of MAP2K6, CBL, RUNX3, STAT1, and JAK2 in
COVID-19-positive vs. -negative patients. A positive correlation was observed between STAT1/JAK2,
which varied alongside the patient’s viral load. Expression of MX1, MX2, ISG15, and OAS1 (four well-
known IFN-stimulated genes (ISGs)) displayed upregulation in COVID-19-positive vs. -negative
patients. Integrative analyses showcased higher levels of ISGs, which were associated with increased
viral load and STAT1/JAK2 expression. Confirmation of ISGs up-regulation was performed in vitro
using the A549 lung cell line treated with Poly (I:C), a synthetic analog of viral double-stranded RNA;
and in different pulmonary human cell lines and ferret tracheal biopsies infected with SARS-CoV-2.
A pre-clinical murine model of Coronavirus infection confirmed findings displaying increased ISGs
in the liver and lungs from infected mice. Altogether, these results demonstrate the role of IFN-γ and
ISGs in response to SARS-CoV-2 infection, highlighting alternative druggable targets that can boost
the host response.

Keywords: IFN-γ; ISGs; COVID-19

1. Introduction

Coronaviruses are a family of viruses that can cause several illnesses, such as the
common cold, severe acute respiratory syndrome (SARS), and Middle East respiratory
syndrome (MERS). Since 2002, there have been three different outbreaks caused by coro-
naviruses: in 2002, there was a SARS-CoV epidemic; in 2012, there was a MERS-CoV
outbreak; and in 2020 the novel Coronavirus SARS-CoV-2 became a pandemic, being the
third Coronavirus outbreak to emerge in the human population [1].

Viruses 2022, 14, 2180. https://doi.org/10.3390/v14102180 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v14102180
https://doi.org/10.3390/v14102180
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-5169-2006
https://orcid.org/0000-0003-1412-3506
https://orcid.org/0000-0003-2725-9760
https://orcid.org/0000-0001-9008-3302
https://orcid.org/0000-0002-3427-9527
https://orcid.org/0000-0001-8645-6890
https://orcid.org/0000-0002-0601-613X
https://orcid.org/0000-0002-0460-0236
https://orcid.org/0000-0002-9852-5563
https://orcid.org/0000-0003-4473-9854
https://orcid.org/0000-0002-9283-7451
https://doi.org/10.3390/v14102180
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v14102180?type=check_update&version=2


Viruses 2022, 14, 2180 2 of 19

Interferons (IFNs) are the most important innate antiviral cytokines. Type I and type III
IFNs (IFN-I and IFN-III, respectively) are expressed by most cell types and have the ability
to induce an antiviral response within infected and surrounding cells [2]. Regarding IFN-I’s
role in COVID-19, it was demonstrated that numerous SARS-CoV-2 proteins have the ability
to inhibit IFN-I production and/or IFN-I responses [3], producing resistance to this antiviral
mechanism [4]. Although viruses display strategies to evade the IFN antiviral activity,
there are host factors that affect the severity of the disease. For example, the generation
of auto-antibodies that target IFN-I has the potential to affect the course of SARS-CoV-2
infection, suggesting that IFN deficiency may result in severe COVID-19 [5,6]. Further,
an enrichment in loss-of-function variants in IFN-I pathway-related genes was reported
in severe COVID-19 cases [7]. In addition, Hadjadj et al. observed that peripheral blood
immune cells from severe and critical COVID-19 patients had diminished IFN-I production
and enhanced proinflammatory cytokines [8]. Hence, severe COVID-19 patients might be
potentially relieved from the IFN-I deficiency through IFN administration [8]. Concerning
the IFN-III association with COVID-19, reduced protein levels of IFN-λ were also correlated
with higher disease severity [9]. Regarding IFN-II, there is scarce evidence linking it to
COVID-19. Interestingly, serum levels of IFN-γ, the type II IFN (IFN-II), were significantly
increased when comparing symptomatic vs. asymptomatic COVID-19 groups [10]. IFN-
γ is predominantly produced by immune cells. However, the IFN-γ receptor (IFNGR),
which is composed of two subunits (IFNGR1 and IFNGR2), is ubiquitously expressed.
Therefore, all cell types are capable of responding to IFN-γ signals. Binding of IFN-γ to the
IFNGR1/2 results in the activation of the Janus Kinases 1 and 2 (JAK1 and JAK2), leading
to the phosphorylation and homodimerization of the Signal Transducer and Activator of
Transcription 1 (STAT1) [11]. STAT1 dimers, also known as the gamma interferon-activated
factor (GAF), translocate to the nucleus and promote gene expression by binding to the
gamma interferon-activated site (GAS) of IFN-stimulated genes (ISGs) [12]. In addition,
after IFNGR stimulation, STAT1 is able to interact with other proteins such as STAT2 and
Interferon Related Factor 9 (IRF9), which, in turn, regulate IFN-γ-responsive genes by
binding to the interferon-stimulated response elements (ISRE) [12]. Consequently, IFN
exposure triggers the induction of more than 300 ISGs, such as the Myxovirus resistance
genes 1 and 2 (MX1 and MX2), 2′,5′-oligoadenylate synthetase 1 (OAS1), and Interferon-
stimulated gene 15 (ISG15), that collectively promote an antiviral response [13,14].

There are several studies that highlight IFNs as key players in COVID-19 and propose
that a dysregulated IFN signaling pathway is associated with a poor prognosis [5,7,9].
SARS-CoV-2 has evolved several strategies to counteract not only IFN production but also
IFN signaling. In fact, 16 viral proteins target the host’s IFN pathway at several levels to
escape IFN-mediated restriction [15]. Although much attention has been placed on the
SARS-CoV-2 mediated evasion of the IFN response, not much attention has been given to
the role of IFN-γ-associated genes in COVID-19.

In this work, we undertook an extensive bioinformatics analysis in human patients,
positive or negative for SARS-CoV-2, to evaluate gene expression profiles associated with
the IFN pathways, focusing on the canonical and non-canonical IFN-γ axes. Validation of
results was performed in vitro and in vivo in ferrets and in a murine Coronavirus model
of infection. Our results evidence the involvement of the IFN-γ signaling pathway in
COVID-19, pointing out a potential mechanism involved in SARS-CoV-2 infection, high-
lighting alternative druggable targets that may boost the host response against SARS-CoV-2.

2. Materials and Methods
2.1. Transcriptome Datasets Selection

To identify potential relevant studies with transcriptome data related to SARS-CoV-2
infection and COVID-19 patients, we browsed the following databases: Gene Expression
Omnibus (GEO) repository [16], Genotype-Tissue Expression (GTEx) project [17], Genome
Sequence Archive (GSA) on the National Genomics Data Center [18], PubMed [19], and
Google Scholar [20]. We used the following keywords and expressions: [(COVID) OR
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(COVID-19) OR (CORONAVIRUS) OR (SARS-CoV-2) OR (2019-nCoV)] AND [(transcrip-
tomics) OR (RNA-seq) OR (microarray) OR (expression) OR (transcriptome)].

All potentially relevant datasets were further evaluated in detail by 2–3 authors. The
eligibility criteria included: (i) publicly available transcriptome data (gene expression
microarray, RNA-seq); (ii) detailed sample information; (iii) detailed protocol information.
We selected the following datasets that complied with these criteria:

GSE147507 [21]: RNA-seq data from (i) human cell lines derived from primary
bronchial/tracheal epithelial cells (NHBE), lung carcinoma (hACE2 A549), and lung ade-
nocarcinoma (Calu-3) infected with SARS-CoV-2 (MOIs: 2, 0.2 and 2, respectively) or
mock-PBS; and (ii) tracheal samples from ferrets intranasally infected with 5 × 104 PFU of
SARS-CoV-2 or mock-PBS.

GSE152075 [22]: RNA-seq data from 430 SARS-CoV-2-positive (COVID-19) and
54 negative patients (non-COVID-19) diagnosed by RT-qPCR. Clinico-pathological infor-
mation included age, sex, and viral load. The cycle threshold (Ct) by RT-qPCR for the N1
viral gene at the time of diagnosis was used to determine the viral load. The interpretation
for the viral load was: the higher the viral load, the lower the Ct.

GSE32138 [23]: Whole Human Genome Microarray from human airway epithelial cells
from non-cystic fibrosis patients resected at lung transplantation. Cells were infected with
Influenza A Virus (IAV, 2 × 105 PFU) or Respiratory Syncytial Virus (RSV, 1 × 106 PFU) or
mock and harvested 24 h or 48 h post infection, respectively.

GSE100504 [24]: Whole Human Genome Microarray from human airway epithelium
cultures. Cells were infected with wild-type MERS-CoV (MOI 5) or mock for 48 h.

GSE47963 [25]: Whole Human Genome Microarray from human airway epithelium
cultures. Cells were infected with wild-type SARS-CoV (MOI 2) or mock for 48 h.

2.2. Bioinformatics Analyses
2.2.1. RNA-Seq Analysis

For the GSE147507 dataset, we downloaded the raw RNA-seq data and checked the
quality of reads by FastQC software. Sequences were aligned to the reference genome
GRCh38 using STAR aligner [26], normalized by transcript length and GC content using
the hg38 genome annotation with metaseqR package in R [27]. Additionally, within and
between lanes, normalization was performed using the EDAseq package in R [28]. For the
GSE152075 dataset, we proceeded as previously described in Bizzotto et al. [29].

The comparisons were plotted using pheatmap [30], ggplot2 [31], and ggpubr [32]
packages in R. Student’s t-test was performed to determine statistical differences.

2.2.2. Microarray Analysis

For the GSE32138, GSE100504 and GSE47963 datasets, we downloaded the normalized
gene expression data from all microarray datasets. The comparisons were plotted using
pheatmap [30], ggplot2 [31], and ggpubr [32] packages in R. Student’s t-test was performed
to determine statistical differences.

2.3. Gene Correlation

Pairwise gene correlation between the IFN-γ-associated genes that were differentially
expressed in COVID-19-positive vs. -negative patients was analyzed with the ggcorrplot
package in R. Correlation coefficients were classified as weak (|r| ≤ 0.33), intermediate
(0.33 < |r| < 0.66), and strong (|r| ≥ 0.66). Statistical significance was set at p < 0.05.

2.4. Profiling of Immune Cell Type Abundance from Bulk Gene Expression Data Using
CIBERSORT

CIBERSORT web tool [33] was used to estimate the abundances of immune cell types
based on the LM22 signature on normalized bulk RNA-seq gene expression data. Results
were displayed as heatmaps by non-supervised clustering on rows and columns using
pheatmap function in R [30].
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2.5. Gene Set Variation Analysis (GSVA)

Assessment of gene set enrichment was performed on normalized RNA-seq gene
expression data using Gene Set Variation Analysis (GSVA) tool in R [34]. GSVA uses a
non-parametric, unsupervised method that allows the estimation of the relative enrichment
of pathways across samples. “C2:KEGG”, “C2:REACTOME”, “C5” and “C7” geneset
collections were downloaded using msigdbr [35] package in R. Results were filtered, and
only genesets that include “interferon”, “IFN”, and “gamma” were used for subsequent
analysis and visualization.

2.6. Cell Culture Conditions

Human lung carcinoma A549 (ATCC® CCL-185™) cells were grown in Dulbecco’s
modified Eagle’s medium (DMEM, Gibco, Rockville, MD, USA) plus 10% fetal bovine
serum (FBS) (Internegocios, Buenos Aires, Argentina), penicillin 100 U/ml, streptomycin
100 µg/mL, amphotericin 0.5 µg/mL, 2 mM glutamine, and 80 µg/mL gentamycin in
monolayer culture, at 37 ◦C in a humidified atmosphere of 5% CO2. Cells were harvested
using a trypsin/EDTA solution (Gibco) diluted in PBS and routinely tested for mycoplasma.

2.7. Poly (I:C) Treatment

Poly (I:C) intracellular administration was performed by transfection with Lipofec-
tamine LTX (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions at
a final concentration of Poly (I:C) of 10 µg/mL. Briefly, A549 cells were plated in 6-well flat
bottom plates at a density of 2 × 105 cells in complete DMEM, allowed to attach overnight,
and then transfected with Poly (I:C) or distilled water as mock in DMEM without FBS and
antibiotics. After 6 h, the media were replaced, and 24 h later, total cell lysates and RNA
isolation was carried out [36].

2.8. In Vivo Experiments

BALB/cJ female mice (n = 10; 8–10 weeks old) were bred at the animal facility of the
Laboratory Animals Biotechnology Unit of Institut Pasteur de Montevideo under specific
pathogen-free conditions in individually ventilated racks (IVC, 1285L, Tecniplast, Milan,
Italy). The housing environmental conditions during the experiment were as follows:
20 ± 1 ◦C temperature, 30–70% relative humidity, negative pressure (biocontainment), and
a light/dark cycle of 14/10 h. All procedures were performed under Biosafety level II
conditions. Mice were randomly distributed into two experimental groups: non-infected
(n = 5) and infected (n = 5) groups. Mice were infected by intraperitoneal injection of
100 µL of MHV-A59 (6000 PFU) (ATCC VR-764) diluted in sterile PBS. Five days after
intraperitoneal infection, mice were weighed and euthanized by cervical dislocation to
dissect the liver and lung for RT-qPCR analyses. The experimental protocols were approved
by the institutional Comisión de Ética en el Uso de Animales (protocol #008-16) and were
performed according to national law #18.611 and relevant international laboratory animal
welfare guidelines and regulations.

2.9. RNA Isolation, c-DNA Synthesis, and Quantitative Real-Time PCR (RT-qPCR)

Total RNA was isolated with Quick-Zol (Kalium technologies, Buenos Aires, Ar-
gentina) according to the manufacturer’s protocol. cDNAs were synthesized with TransS-
cript One-Step gDNA Removal and cDNA Synthesis SuperMix (Transgen Biotec, Beijin,
China) using random primers. Taq DNA Polymerase (Invitrogen, Waltham, MA, USA) was
used for real-time PCR amplification in a QuantStudio 3 Real-Time PCR System (Thermo
Fisher Scientific, Waltham, MA, USA), using the primers listed in Table 1. PPIA and
Gapdh were used as the internal reference genes. Data were analyzed using the method
of 2−∆∆CT [37]. Quantification of viral load was performed as previously described [38],
using the following primers for MHV detection.
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Table 1. List of primers used in RT-qPCR.

Gene Forward (5′-3′) Reverse (5′-3′) T ann (◦C) *

MX1 AGGACCATCGGAATCTTGAC TCAGGTGGAACACGAGGTTC 60
MX2 GGCAGAGGCAACCAAGAAAGA AACGGGAGCGATTTTTGGA 60
ISG15 GTCCTGCTGGTGGTGGACAAA GTCCTGCTGGTGGTGGACAAA 61
OAS1 GGGATTTCGGACGGTCTTGG TCTCCACCACCCAAGTTTCC 60
PPIA GGTATAAAAGGGGCGGGAGG CTGCAAACAGCTCAAAGGAGAC 60
Mx1 TGCCAGGACCAGGTTTACAAG CCCCTTTTGAGGAAACTGAGA 58
Mx2 CCTATTCACCAGGCTCCGAA TCTCGTCCACGGTACTGCTT 58
Isg15 TGAGAGCAAGCAGCCAGAAG CCCCCAGCATCTTCACCTTT 57
Oas1 ACTTCCTGAACTGTCGCCC ACTCGACTCCCATACTCCCAG 61

Gapdh TGCCAAGGCTGTGGGCAAGG CGAAGGTGGAAGAGTGGG 60
MHV GGAACTTCTCGTTGGGCATTATACT ACCACAAGATTATCATTTTCACAACATA 60

* T ann = Annealing temperature.

2.10. Statistical Analyses

Wilcoxon rank sum test was performed to determine statistical differences between
categorical groups. Age was categorized according to the WHO guidelines (“World Health
Organization 2020—Novel Coronavirus (2019-nCoV) Situation Report-1,” n.d.): <30 years
old, every 10 years between 30–70 years old, and ≥70 years old. Two-sided, increasing, and
decreasing Jonckheere–Terpstra trend tests (with 500 permutations) were used to determine
gene expression trends among age groups. To standardize the color scale when plotting
heatmaps of multiple gene expression values stratified by age, all values were normalized
to the youngest age group (<30). To study pairwise correlations between continuous
variables, Spearman’s rank correlation coefficient was calculated. Multilinear regression
analyses were performed to determine the correlation between the expression of two genes
and viral load. To estimate the regression coefficients of the different models, we used
a multivariable regression, including gene expression, viral load, and age as covariates.
Statistical significance was set as p ≤ 0.05.

3. Results
3.1. Analysis of IFN-γ Pathway in COVID-19-Positive and -Negative Patients

To study the relevance of the IFNs production and downstream signaling during
SARS-CoV-2 infection, we used the publicly available RNA sequencing (RNA-seq) dataset
GSE152075, which consists of transcriptomic data from nasopharyngeal swabs from
430 SARS-CoV-2-positive and 54 SARS-CoV-2-negative patients (Figure 1A). Patient demo-
graphics are available in Supplementary Table S1. To assess whether COVID-19 infection
was associated with differential activation of the IFN pathways, we performed a gene
set enrichment analysis (GSEA) among COVID-19-positive vs. COVID-19-negative pa-
tients. Regarding the IFN-γ pathway, results showed that both regulation and response
to IFN-γ were differentially activated at the RNA level in COVID-19-positive patients
(Figure 1B). As expected, IFN-I and IFN-III pathways were significantly activated at the
RNA level in positive patients (Supplementary Figure S1). Results showed that the degree
of pathway activation was associated with viral load in COVID-19-positive patients, while
non-COVID-19 patients presented the lowest GSVA scores (Figure 1C and Supplementary
Figure S2). We also evaluated whether activation of the IFN-γ pathway was associated
with the immune response by estimation of immune cell type proportions from bulk gene
expression data using the CIBERSORT tool [33]. We performed an unsupervised clustering
analysis, which grouped patients in 5 different clusters, and we observed a group of pa-
tients with a higher proportion of M1 macrophages, enriched in patients with higher viral
load (Figure 1D). No other immune population showed a clear clustering correlated with
viral load in this analysis.
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Figure 1. Global assessment at the transcriptional level of pathways and immune cell types related
to IFN-γ production, signaling, and regulation of response in COVID-19-positive (light blue and
blue) and -negative (pink) patients. (A) Experimental design of the GSE152075 dataset, composed of
transcriptome data from nasopharyngeal swabs collected from 430 COVID-19 and 54 non-COVID-19
patients. (B) Non-supervised clustering of patients according to their GSVA score in each IFN-γ
geneset. Higher GSVA scores indicate higher activity of the geneset at the RNA level. Each column is
labeled according to the COVID-19 viral load of each patient (negative: pink, low: light blue, high:
blue). (C) Waterfall plots of selected genesets that were highly activated in COVID-19 patients vs.
non-COVID-19 patients. Patients are ordered from the highest to the lowest GSVA score in each
geneset. (D) Unsupervised clustering of non-COVID-19 and COVID-19 patients according to the
relative proportions of immune cell types estimated by CIBERSORT (LM22 signature) in RNA-seq
data. Each column is labeled according to the COVID-19 viral load of each patient. Viral load is
represented as a color scale and was categorized as Negative (pink), Low (first quartile; light blue), or
High (fourth quartile; blue). COVID-19 patients with intermediate viral load were excluded from
the analysis.
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Next, we performed extensive bibliographic research to obtain a list of the IFN-γ-
associated genes and classified them into two categories: (1) genes belonging to the canoni-
cal pathway and (2) genes belonging to the non-canonical pathways [39] (Figure 2A and
Supplementary Figure S3, respectively). First, we evaluated the expression of the six
IFN-γ-canonical pathway genes (Figure 2B). Results showed a differential expression of
three out of six genes analyzed when comparing COVID-19-positive vs. -negative patients:
IFNGR1 expression was decreased (p = 0.028) (Figure 2B(ii)), while JAK2 and STAT1 ex-
pressions were increased (p ≤ 0.001 for both genes) (Figure 2B(v,vi), respectively). No
significant differences were observed for the rest of the genes. Next, we analyzed the
expression of 26 IFN-γ-related genes included in the non-canonical pathways related to
the immune response, cell proliferation, and cell cycle regulation (Figure 2A and Sup-
plementary Figure S3). A decrease in the expression of the following genes was also
observed in COVID-19-positive patients: RAPGEF1 (p = 0.0091), MAP2K1 (p = 0.038),
CEBPB (p = 3.3 × 10−6), STAT6 (p = 0.041), JUN (p = 1.4 × 10−8), PRKACA (p = 0.021), and
AKT1 (p = 1.3 × 10−6) (Supplementary Figure S4A). Additionally, an increase in the expres-
sion of MAP2K6, CBL and RUNX3 was observed in COVID-19-positive patients (p = 0.047;
p = 0.00093; and p = 0.0044, respectively) (Supplementary Figure S4A).

Next, we evaluated whether gene expression might be associated with patients’ sex and
age as COVID-19-associated risk factors. Although no significant differences were found
when comparing gene expression based on patients’ sex (Figure 2C(i) and Supplementary
Figure S4B), the expressions for the following genes belonging to the IFN-γ canonical pathway,
decreased with age in COVID-19-positive patients: IFNG (p-trenddecreasing = 0.002), IFNGR2
(p-trenddecreasing = 0.04), JAK1 (p-trenddecreasing = 0.002), JAK2 (p-trenddecreasing = 0.002)
and STAT1 (p-trend decreasing = 0.002) (Figure 2C(ii), right panel). Additionally, the ex-
pressions of STAT3 (p-trenddecreasing = 0.01), RUNX3 (p-trenddecreasing = 0.002), RAPGEF1
(p-trenddecreasing = 0.004), RAP1A (p-trenddecreasing = 0.004), RAC1 (p-trenddecreasing = 0.002),
PTK2B (p-trenddecreasing = 0.01), MAPK1 (p-trenddecreasing = 0.002), MAP3K1 (p-tre-
nddecreasing = 0.004), MAP2K6 (p-trenddecreasing = 0.02), CPKL (p-trenddecreasing = 0.004),
CBL (p-trenddecreasing = 0.002), AKT1 (p-trenddecreasing = 0.008), and CREBBP (p-tre
nddecreasing = 0.01) decreased with age (Supplementary Figure S4C(ii)). On the contrary,
there was no association between gene expression and age in non-COVID-19 patients
(Figure 2C(ii), top panel and Supplementary Figure S4C(i)). Of note, both STAT1 and JAK2,
whose expression is significantly increased during SARS-CoV-2 infection, decrease their
expression in older patients (Figure 2C(ii)).

3.2. Gene Correlation Analysis of Dysregulated IFN-γ-Associated Genes in COVID-19-Positive
and -Negative Patients

Further, in order to increase the interpretability of the data and to acquire a better
understanding of the results obtained in the differential gene expression study, we per-
formed a pairwise correlation analysis between the 13 genes that showed a differential
expression between COVID-19-positive and -negative patients (Figure 3A). Patients were
segregated into three groups: all patients (group 1), non-COVID-19 patients (group 2),
and COVID-19 patients (group 3). Results showed significant (p < 0.05) and intermedi-
ate (0.33 < |r| < 0.66) correlations among several IFN-γ-associated genes for COVID-19-
positive patients: MAP2K6/JAK2 (r = 0.569, p < 0.001); CEBPB/JAK2 (r = 0.466, p < 0.001);
CEBPB/CEBL (r = 0.457, p < 0.001); CEBPB/RUNX3 (r = 0.440, p < 0.001); JUN/JAK2 (r = 0.480,
p < 0.001); JUN/STAT1 (r = 0.410, p < 0.001); JUN/CBL (r = 0.385, p < 0.001); JUN/RAPGEF1
(r = 0.495, p < 0.001); JUN/MAP2K6 (r = 0.346, p < 0.001); PRKACA/JAK2 (r = 0.419, p < 0.001);
PRKACA/CBL (r = 0.518, p < 0.001); AKT1/JAK2 (r = 0.441, p < 0.001); AKT1/STAT1 (r = 0.510,
p < 0.001) and AKT1/CBL (r = 0.525, p < 0.001), whereas correlations for the same pairs of
genes in non-COVID-19 patients were non-significant (Figure 3A). Interestingly, although
JAK2 and STAT1, two of the main genes involved in the IFN-γ canonical pathway, presented
a positive and significant correlation for non-COVID19 (r = 0.390, p < 0.01), this correlation
was significantly increased in COVID-19-positive patients (r = 0.82, p < 0.001) patients
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(Figure 3A). Further, this correlation was associated with viral load in univariate analysis
and multivariable analysis, including age as covariable (Figure 3B,C). These results suggest
that STAT1 and JAK2 might be key responders to SARS-CoV-2 infection.
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Figure 2. Expression of genes belonging to the canonical IFN-γ pathway in non-COVID-19 and
COVID-19 patients. (A) Schematic representation of IFN-γ signaling pathway associated genes. The
canonical IFN-γ pathway is represented in green. (B) Gene expression analysis (log2 (norm counts
+1)) for (i) IFNG, (ii) IFNGR1, (iii) IFNGR2, (iv) JAK1, (v) JAK2, and (vi) STAT1 in COVID-19 (purple)
vs. non-COVID-19 (pink) patients from the GSE152075 dataset, assessed by RNA-seq. p-values
correspond to Wilcoxon rank-sum test. Black squares represent the median. (C) Heatmaps depicting
the fold change (high = pink; low = blue) for gene expression of genes belonging to the canonical
IFN-γ pathway considering sex (i) and age groups 30 s, 40 s, 50 s, 60 s, and 70 s vs. <30 (ii) in
non-COVID-19 (left panel) and COVID-19 (right panel) patients from the GSE152075 dataset, assessed
by RNA-seq. p-values correspond to decreasing Jonckheere–Terpstra trend test. Statistical significance
* p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 3. Correlation analysis. (A) Pairwise Spearman correlation matrix analysis between all
genes of interest using the GSE152075 dataset. The upper half displays the Spearman coefficients (r)
considering all patients (Corr.; black), non-COVID-19 patients (Neg.; pink), or COVID-19 patients
(Pos.; purple). Black boxes highlight pairs of genes that have significant correlation only in COVID-
19-positive patients, except for JAK2/STAT1, which was the pair with the highest coefficient in
COVID-19-positive patients. The lower half displays the scatterplots. (B) Dot plot representing
pairwise Spearman correlation for JAK2 and STAT1, considering viral load in COVID-19-positive
patients from the GSE152075 dataset. Viral load is represented as a color scale and was categorized
as Negative (pink), Low (first quartile; light blue), Intermediate (second and third quartile; purple),
or High (fourth quartile; blue), and was considered as an independent variable expressed as cycle
threshold (Ct) by RT-qPCR for the N1 viral gene at time of diagnosis. The interpretation for viral load
is the lower the Ct, the higher the viral load. (C) Box plot representing the combined expression of
JAK2 + STAT1 and their association with the viral load. Viral load was categorized as Negative (pink),
Low (first quartile; light blue), Intermediate (second and third quartile; purple), or High (fourth
quartile; blue). p-values correspond to Wilcoxon rank-sum test. Statistical significance * p < 0.05;
** p < 0.01; *** p < 0.001.

3.3. SARS-CoV-2 Viral Load Association with IFN-γ-Related Genes and ISGs

Taking into account our previous results, we next analyzed the association between
the expressions of JAK2, STAT1, and four key ISGs relevant to the antiviral response: MX1,
MX2, ISG15, and OAS1 (Figure 4A). The expression of these ISGs was higher in COVID-19-
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positive compared with COVID-19-negative patients (Figure 4B). Furthermore, results
evidenced that COVID-19-positive patients with higher expressions of JAK2 and STAT1
showed increased MX1, MX2, ISG15, and OAS1 mRNA levels (Figure 4C). Since MX1,
MX2, ISG15, and OAS1 showed a similar expression pattern in COVID-19-positive patients,
we next evaluated the association of their combined expressions with viral load. Results
showed that higher levels of these 4 ISGs are associated with a higher viral load (Figure 4D).
Moreover, the combined expression of MX1, MX2, ISG15, and OAS1 showed a significant
and positive correlation with the combined expression of JAK2 and STAT1 (Figure 4E).
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(log2 (norm counts +1)) for MX1 (i), MX2 (ii), ISG15 (iii), and OAS1 (iv) in COVID-19 (purple) vs.
non-COVID-19 (pink) patients from the GSE152075 dataset, assessed by RNA-seq. p-values corre-
spond to Wilcoxon rank-sum test. (C) Dot plots representing the pairwise Spearman correlation
between STAT1 and JAK1, considering the expressions of MX1 (ii), MX2 (ii), ISG15 (iii), and OAS1
(iv) in COVID-19-positive patients. The independent variable is plotted on the x axis, and the de-
pendent variable is plotted on the y axis. MX1, MX2, ISG15 and OAS1 expressions are represented
as a color scale (purple = high; pink = low). (D) Box plot representing the combined expression of
MX1 + MX2 + ISG15 + OAS1 and their association with the viral load. Viral load was categorized as
Negative (pink), Low (first quartile; light blue), Intermediate (second and third quartile; purple), or
High (fourth quartile; blue). p-values correspond to Wilcoxon rank-sum test. (E) Dot plot representing
pairwise Spearman correlation between JAK2 + STAT1 and MX1 + MX2 + ISG15 + OAS1 combined
expressions, considering viral load in COVID-19-positive patients from the GSE152075 dataset. Viral
load is represented as a color scale and was categorized as Negative (pink), Low (first quartile; light
blue), Intermediate (second and third quartile; purple), or High (fourth quartile; blue). (F) Forest plots
representing the coefficient of the viral load as predictor variable in regression analyses (considering
age and gender as covariables). (i) Model considering as response variable: combined expression of
JAK2 + STAT1 or MX1 + MX2 + ISG15 + OAS1; and (ii) model considering response variable: indi-
vidual expressions of JAK2, STAT1, MX1, MX2, ISG15 and OAS1. Coef.: Coefficient. CI: Confidence
interval. Statistical significance * p < 0.05; ** p < 0.01; *** p < 0.001.

Finally, we assessed the association between the combined expression of JAK2 + STAT1
and MX1 + MX2 + ISG15 + OAS1 with viral load using linear univariable regression
analysis. Results evidenced that viral load is associated with an increase in the combined
expression of JAK2 + STAT1 (p = 0.008) and MX1 + MX2 + ISG15 + OAS1 (p = 0.005)
(Figure 4F(i)). Furthermore, when analyzing the individual expression of the selected genes,
we observed that viral load can explain variations in JAK2 (p = 0.048), STAT1 (p = 0.007),
MX1 (p < 0.001), ISG15 (p = 0.002) and OAS1 (p < 0.001). Non-significant differences were
observed for MX2 association with viral load (p = 0.35) (Figure 4F(ii)). In conclusion, these
results suggest that viral load influenced JAK2, STAT1, MX1, ISG15, and OAS1 expression;
however, its effect is prominent in MX1 levels.

3.4. Targets of IFN-γ Pathway in Response to Viral Infection

To further assess the alterations in MX1, MX2, ISG15, and OAS1 in response to
viral infections and validate our results, we performed in vitro assays in A549 cells using
Poly (I:C), a synthetic analog of viral double-stranded RNA, to mimic a viral infection
(Figure 5A(i)). We found that MX1, MX2, ISG15, and OAS1 expressions were significantly
increased in A549 cells treated with Poly (I:C) 10 µM during 24 h (p < 0.05 for MX1, MX2,
and OAS1; and p < 0.001 for ISG15) (Figure 5A(ii)). Additionally, we evaluated the 4 ISGs
response against single-stranded RNA viruses, such as Influenza A virus (IAV), Respiratory
syncytial virus (RSV), Middle East respiratory Syndrome (MERS-CoV), and SARS-CoV-1
(Supplementary Figure S5A). As expected, MX1, MX2, ISG15 and OAS1 were up-regulated
in human airway epithelial cells (hAEC) infected with IAV (p < 0.001 for all genes), RSV
(p < 0.001 for all genes), MERS-CoV (p < 0.001 for MX1, ISG15 and OAS1; and p < 0.01 for
MX2) and SARS-CoV-1 (p < 0.001 for MX1 and ISG15; and p < 0.01 for MX2) compared
with mock treatment; confirming MX1, MX2, ISG15, and OAS1 overexpression during
different viral infections (Supplementary Figure S5B). We next assessed MX1, MX2, ISG15,
and OAS1 expression levels in response to SARS-CoV-2 infection (Figure 5B,C). We used
the GSE147507 dataset, which contains RNA-seq expression data from lung cell lines (A549,
Calu-3, and NHBE), as well as tracheal biopsies of SARS-CoV-2-infected ferrets. Results
showed that MX1, MX2 and OAS1 were over-expressed in SARS-CoV-2-infected A549 cells
(p < 0.01 for MX1, ISG15, and OAS1; and p < 0.05 for MX2), and Calu-3 cells (p < 0.05 for
MX1, ISG15, and OAS1; and p < 0.01 for MX2) compared with mock infection (Figure 5B). In
NHBE cells, only MX1, MX2, and OAS1 were significantly over-expressed in SARS-CoV-2-
infected cells compared with mock infection (p < 0.05 for MX1 and OAS1; and p < 0.01 for
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MX2) (Figure 5B). Further, SARS-CoV-2 infection significantly induced these ISGs in ferret
tracheal biopsy samples collected on day 3 after infection compared with mock-treated
animals (p < 0.01 for MX1; and p < 0.05 for MX2, ISG15, and OAS1) (Figure 5C). Altogether,
these results confirm that the expression of MX1, MX2, ISG15, and OAS1 was triggered by
SARS-CoV-2 infection.
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Figure 5. Analysis of ISGs expression in viral infections. (A) A549 cells were treated with Poly
(I:C) for 24 h, and RNA was extracted for RT-qPCR analysis. (i) Schematic representation of the
experimental design. (ii) MX1, MX2, ISG15, and OAS1 expressions assessed by RT-qPCR in A549
cells treated (purple) or not (pink) with Poly (I:C) (10 µg/ml; 24 h). Values were relativized using
PPIA as a reference gene and normalized to the control. (B) MX1, MX2, ISG15, and OAS1 expressions
(norm counts +1) in SARS-CoV-2-treated cells. (i) Schematic representation of the experimental
design. (ii) MX1, MX2, ISG15, and OAS1 expressions in SARS-CoV-2-infected A549 (n = 6), Calu3
(n = 6), and NHBE (n = 10) cell lines (purple) (MOIs: 0.2, 2, and 2, respectively for 48 h) compared
with mock (pink), assessed by RNA-seq, using the GSE147507 dataset. (C) MX1, MX2, ISG15, and
OAS1 expressions (norm counts +1) in SARS-CoV-2-treated ferrets. (i) Schematic representation
of the experimental design. (ii) MX1, MX2, ISG15, and OAS1 expressions in SARS-CoV-2-infected
(5 × 104 PFU) (purple) vs. mock-treated (pink) ferrets, assessed by RNA-seq in tracheal biopsy
samples (n = 7), using the GSE147507 dataset. Samples were collected on day 3 after SARS-CoV-2
infection. Student’s t-test was performed to determine statistical differences. Statistical significance
* p < 0.05; ** p < 0.01; *** p < 0.001.
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Finally, we validated our results by studying the expression of Mx1, Mx2, Isg15, and
Oas1 in a murine model of Coronavirus infection using the mouse hepatitis virus (MHV),
a type 2 family RNA Coronavirus similar to SARS-CoV-2. We selected this model as
an alternative pre-clinical model for the study of Coronavirus infection. BALB/cJ mice
were infected with 6000 PFU of MHV-A59 by intraperitoneal injection, and five days
after infection, liver and lung were dissected for RT-qPCR analyses (Figure 6A). First, we
confirmed that the infection was successful by qPCR analysis of the viral load. Results
showed that viral infection was detectable in the liver and lungs, the main organs affected
by MHV (Figure 6B(i,ii)). We next evaluated the expression of Mx1, Mx2, Isg15, and Oas1
in non-infected vs. infected mice and found that all four genes were increased in the liver
(p < 0.01 for Mx1 and Isg15; and p < 0.05 for Mx2 and Oas1) and lungs (p < 0.01 for Mx1,
Mx2 and Isg15; and p < 0.05 for Oas1) of infected mice (Figure 6C). Our results validate the
relevance of these four ISGs against Coronavirus infection.
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Figure 6. Analysis of ISGs expression in a pre-clinical model of Coronavirus infection. (A) Schematic
representation of the experimental design. BALB/cJ female mice (n = 10) were used for the in vivo
experiments. Mice were randomly distributed into two experimental groups: non-infected (n = 5) and
infected (n = 5) groups. Mice were infected with 6000 PFU of MHV-A59 by intraperitoneal injection of
100 µL of the virus diluted in sterile PBS. Five days after infection, mice were weighed and euthanized
by cervical dislocation to dissect the liver and lung for RT-qPCR analyses. (B) Viral load was assessed
by RT-qPCR in livers (i) and lungs (ii) of BALB/cJ mice infected (purple) or not (pink) with MHV-A59.
Viral load is expressed as-cycle threshold (-Ct) by RT-qPCR for MHV. UVL: undetectable viral load.
(C) Mx1 (i), Mx2 (ii), Isg15 (iii), and Oas1 (iv) expressions assessed by RT-qPCR in livers and lungs of
BALB/cJ mice infected (purple) or not (pink) with MHV-A59. Values were relativized using Gapdh as
a reference gene and normalized to the control. Student’s t-test was performed to determine statistical
differences. Statistical significance * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

4. Discussion

The aim of the present work was to assess the implication of the IFN-γ pathway in
response to SARS-CoV-2 infection. Results from extensive bioinformatics analyses in a case-
control study from COVID-19-positive (n = 430) and -negative (n = 54) patients identified
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a signature of 13 dysregulated IFN-γ-associated genes, including STAT1 and JAK2, both
key mediators of the IFN-γ signaling. STAT1/JAK2 positively correlated with MX1, MX2,
ISG15, and OAS1, four well-known genes regulated by IFN [14]. Further, higher levels of
these ISGs combined showed a significant association with the viral load. We validated the
relevance of MX1, MX2, ISG15, and OAS1 in the context of viral infections in cell cultures
in vitro and in a pre-clinical model of Coronavirus infection [40].

IFNs are essential key players against viral infections through the induction of ISGs,
that work in synergy to inhibit the replication and spread of the virus [41,42]. However,
IFNs show differential associations with clinical markers of poor prognosis and COVID-19
severity [43]. For example, IFN-β1, a type of IFN-I, is associated with an increased neu-
trophil to lymphocyte ratio, a marker of late severe disease; while IFN-γ, a type of IFN-II,
is strongly associated with C-reactive protein and other immune markers of poor prog-
nosis [44]. In this context, previous studies in SARS-CoV infections reported that IFN-β
might be a valid candidate to treat COVID-19, and a recent clinical trial demonstrated that
IFN-β1a reduced the duration of patients’ hospital stay and/or ameliorated their clinical
status [44].

In this work, we evidenced the alteration of IFN-γ-associated genes during SARS-
CoV-2 infection. Our results rendered 13 dysregulated genes when comparing COVID-
19-positive vs. -negative patients, suggesting an IFN-γ-related gene expression signature
characteristic of COVID-19 disease. Comparatively, Galbraith et al. performed a multi-
omics investigation of systemic IFN signaling in hospitalized SARS-CoV-2-infected patients
with varying levels of IFNs [43]. Of note, it has been reported that higher expression levels
of IFN-γ in the upper airway determine the pathogenesis of COVID-19 [45], as it correlates
with higher levels of ACE2, thus increasing susceptibility to infection [45]. It has also been
reported that IFN-γ-driven inflammatory responses contribute to SARS-CoV-2 replica-
tion [46]. Further, IFN-γ contributes to COVID-19 complications, such as cytokine storm,
tissue damage, and inflammation [47], since an exacerbated immune response may also
cause damage to the host. Previous reports evidenced that this cytokine is over-expressed
in patients that died of COVID-19 when comparing its expression in patients who survived,
highlighting it as a mortality risk factor [48]. Regarding age as a critical epidemiological
risk factor, we found that the expression levels of genes belonging to the IFN-γ canonical
pathway decreased with age in COVID-19-positive patients. This observation suggests
that there might be a correlation between immune antiviral response impairment and
age-associated changes in the expression of IFN-γ after SARS-CoV-2 infection. However,
we cannot rule out that this might be a random observation instead of a causative associa-
tion. Interestingly, Bastard et al. reported that neutralizing autoantibodies against IFN-I
increase with age [49]. Of note, extensive bibliography suggested the link between the
presence of IFN-γ autoantibodies and a lower immune response to several opportunistic
pathogenic agents is related to an increased risk of infections [50–54]. In light of this, we
hypothesized that IFN-γ autoantibodies could diminish COVID-19 response. Accordingly,
other studies reported that in critically ill COVID-19 patients, IFN-γ administration was
followed by viral clearance and clinical improvement [55,56]. Moreover, no information is
available about the expression of IFN-γ downstream genes in this cohort of patients. Addi-
tionally, it has also been suggested that enhancing STAT1’s activity might be an effective
COVID-19 treatment [57], thus bypassing the adverse effects of IFN-based therapeutics. On
the other hand, JAK inhibitors have been tested in hospitalized severe COVID-19 patients
showing an improvement in treatment results alone or combined with standards of care
(i.e., corticosteroids) [58–61].

The insights into the dysregulation of IFN pathways in COVID-19 patients provide
a biological basis for new therapies. Further, targeting IFN downstream genes might be
advantageous considering the pleiotropic activities of human IFNs [62]. Notably, in the
present work, we demonstrated that the expressions of the ISGs MX1, MX2, ISG15, and
OAS1 were upregulated in COVID-19-positive vs. -negative patients.
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MX1 encodes a guanosine triphosphate (GTP)-metabolizing protein that inhibits the
replication of RNA and DNA viruses in the nucleus, while MX2 is a GTPase that has a
reported potent antiviral activity in the cytoplasm [63]. In a recent work from our group, we
highlighted the relevance of MX1 as an antiviral SARS-CoV-2 host effector [29]. Here, we
validated MX1 and MX2 relevance in vitro and in a valuable murine model of Coronavirus
infection. Not much information is available concerning MX1 and MX2 during SARS-CoV-2
infection; however, in melanoma cell lines, it was reported that persistent IFN-γ stimulation
increases the expression and genome occupancy of STAT1 and induces the expression of
ISGs, such as IFIT1 and MX1 [64]. A study of red blood cells’ methylome demonstrated a
hypomethylation of MX1 in samples from COVID-19-hospitalized patients, highlighting
the relevance of the INF-γ pathway modulation during SARS-CoV-2 infection [65].

ISG15 encodes a ubiquitin-like protein that interacts with viral proteins during infec-
tion, resulting in their loss of function [66,67]. Further, free extracellular ISG15 acts as an
amplifier of inflammation, exacerbating the production of cytokines by macrophages [68].
Regarding the mechanisms that the SARS-CoV-2 employs in order to evade the antiviral
immune response, it has been reported that the viral papain-like protease (PLpro) acts as a
deISGylation enzyme that cleaves ISG15 from its substrates, contributing to the evasion of
the host immune system [69].

OAS1 participates in the innate cellular antiviral response. This enzyme synthesizes
oligomers that activate RNAse L, which degrades cellular and viral RNA and impairs viral
replication [70]. Danziger et al. found that OAS1 catalytic activity is required for antiviral
response against SARS-CoV-2 [71]. Moreover, a membrane-associated OAS1 form could act
as a ds-RNA sensor in infection sites. Further, OAS was identified as a COVID-19 risk locus
in association studies suggesting that the splice-site variant at this locus may reduce the
enzymatic activity of OAS-1, influencing COVID-19 outcomes [72–76]. Recent evolutionary
studies about the human immune response against viral infections point out that OAS1
plays an important role in SARS-CoV-2 pathogenesis [73,77]. Furthermore, Hurguin et al.
reported an over-expression of OAS1, MX1, and MX2 after IFN-γ induction of a HeLa-
derived cell line [78], confirming that the IFN-γ signaling promotes the expression of our
ISGs signature.

Taking into account the current public health emergency of international concern, it is
essential to increase the development of alternative treatment options against COVID-19.
Although much attention has been placed on virus host cell receptors, little has been
explored on COVID-19 therapies targeting effector pathways and antiviral proteins [79].
The main therapeutic avenues to halt respiratory virus infection consist of targeting the
virus directly or targeting the host system. Even though the first strategy is highly efficient,
it is limited by the sensitivity/resistance of the virus variants [80,81]. Thus, deciphering the
host response to viral infection appears critical. This study aimed to explore the relevance
of the IFN-γ signaling pathway during SARS-CoV-2 infection with the long-term goal of
delineating new therapeutic targets for COVID-19. However, all the knowledge about the
mechanisms that are triggered in the host cell as a consequence of the infection could also
be applied to treat other viral infections (i.e., Dengue or Zika).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14102180/s1, Table S1: Patient demographics for the GSE152075
dataset; Figure S1: Global assessment at the transcriptional level of pathways and immune cell types
related to IFN-I and IFN-III in COVID-19-positive and -negative patients; Figure S2: Global assess-
ment at the transcriptional level of pathways related to IFN-γ production, signaling and regulation of
response in COVID-19-positive and -negative patients; Figure S3: IFN-γ-associated genes; Figure S4:
Expression of genes belonging to the non-canonical IFN-γ pathway in non-COVID-19 and COVID-19
patients from the GSE152075 dataset; Figure S5: MX1, MX2, ISG15, and OAS1 expressions in human
primary airway epithelial cells (hAEC) that were infected with influenza A (IAV) (2 × 105 PFU, 24 h),
respiratory syncytial virus (RSV) (1 × 106 PFU, 48 h), Middle East respiratory Syndrome (MERS-CoV)
(MOI 5, 48 h) or SARS-CoV-1 (MOI 2, 48 h).
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