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The fingerprints of climate 
warming on cereal crops phenology 
and adaptation options
Zartash Fatima1,11, Mukhtar Ahmed2,3,11*, Mubshar Hussain1,4, Ghulam Abbas1,11, 
Sami Ul‑Allah5, Shakeel Ahmad1,11*, Niaz Ahmed6, Muhammad Arif Ali6, Ghulam Sarwar7, 
Ehsan ul Haque8, Pakeeza Iqbal9 & Sajjad Hussain10

Growth and development of cereal crops are linked to weather, day length and growing degree-
days (GDDs) which make them responsive to the specific environments in specific seasons. Global 
temperature is rising due to human activities such as burning of fossil fuels and clearance of woodlands 
for building construction. The rise in temperature disrupts crop growth and development. Disturbance 
mainly causes a shift in phenological development of crops and affects their economic yield. Scientists 
and farmers adapt to these phenological shifts, in part, by changing sowing time and cultivar shifts 
which may increase or decrease crop growth duration. Nonetheless, climate warming is a global 
phenomenon and cannot be avoided. In this scenario, food security can be ensured by improving 
cereal production through agronomic management, breeding of climate-adapted genotypes and 
increasing genetic biodiversity. In this review, climate warming, its impact and consequences are 
discussed with reference to their influences on phenological shifts. Furthermore, how different cereal 
crops adapt to climate warming by regulating their phenological development is elaborated. Based on 
the above mentioned discussion, different management strategies to cope with climate warming are 
suggested.

Cereal crops are typically grasses grown for their edible grains. Globally, cereal grains are produced in higher 
quantities than any other type of crop and deliver more food energy to human beings and livestock than other 
crops1,2 (Fig. 1). The cereal production of the top 20 countries in the world is presented in Table 1.  

Wheat (Triticum aestivum L.), rice (Oryza sativa L.), maize (Zea mays L.), barley (Hordeum vulgare L.) and 
oat (Avena sativa L.) are important cereal crops in most countries. Other includes rye (Secale cereal), sorghum 
(Sorghum bicolor), and millet (Pennisetum glaucum). These crops belong to the family Poaceae or Gramineae 
subfamily Oryzeae (Genus Oryza: Rice), Triticeae (Genus Triticum: Wheat, Hordeum: Barley, Scecale: Rye), 
Aveneae (Genus Avena: Oat), Paniceae (Genus Pennisetum: Millet), Andropgonee (Genus Sorghum, Zea: Maize, 
Coix: Jobs’s tears) and Cynodonteae (Genus Eleusine, Ragi). They contribute over 50% of world’s total production 
of cereals in million tonnes3–6. Cereals as whole grain are a rich source of minerals, carbohydrates, vitamins, oils, 
fats, protein, fiber content and are preferred for consumption7–10 (Table 2).

Local and regional climatic conditions are a primary determinant of agronomic crop productivity. Plant 
metabolic processes are controlled by weather variables like maximum and minimum temperature, solar radia-
tion, carbon dioxide concentration and availability of water11–17. Cereal crop production is influenced by extreme 
climatic conditions, like heat waves, storms, drought, salinity and flooding17–22. Similarly, Nicholson et al.23 
reported change in the seasonality of rainfall in large part of Africa. Similar kind of spatiotemporal changes in 
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aridity and shifts of dryland in Iran was concluded by Pour et al.24 which could have severe effect on agricultural 
production and food security. The release of greenhouse gases due to different anthropogenic activities have 
affected agricultural activities across geographical regions7. Distant changes in air temperature resulted to sig-
nificant change in plant phenology8,25–32. During the previous century, but predominantly over the most recent 
decades, the earth has experienced noteworthy climate change, particularly warming trends across globe. The 
average air temperature has increased almost 0.95 °C from 1980 to 2018, and it is predicted to increase almost 
3.0–5.0 °C (depending on region) by the end of this century. In the meantime, world population has grown 
considerably and will continue to grow at an increasing rate. It is expected that the world will need 70% more 
food by the middle of the current century15,33.

Food security and climate change mitigation are major challenges in developing countries. Changes in man-
agement practices such as fertilizer use efficiency, use of organic fertilizers, use of legume with grasses, optimi-
zation of irrigation water, plant breeding and genetic modifications and selection of cultivars in field could be 
good mitigation strategies to coup climate change15,34,35. These adaptive mitigation strategies could help to design 
resilience systems to future climate change. Similarly, promotion of climate smart agriculture (CSA) could help 
to mitigate the challenges of climate change. CSA aims to transform and redirect agricultural system to support 
sustainable development and food security under changing climate. It integrates three elements of sustainable 
development (economic, social, and environmental) by addressing food security and climate change. It has 
three main pillars (i) Sustainably increasing agricultural productivity and incomes (ii) Adapting and building 

Figure 1.   Cereals grain production.

Table 1.   World cereal production of top 20 countries during 2012–2016 (metric tonnes). (Source: FAOSTAT).

Sr. No Countries & Years 2016 2015 2014 2013 2012

1 China 580,898,372 572,045,000 557,417,296 552,691,792 539,346,800

2 USA 475,983,881 431,865,458 442,849,090 434,308,450 356,210,124

3 India 294,711,871 284,333,000 296,010,000 294,909,510 293,290,000

4 Russia 117,749,733 102,450,556 103,141,153 90,369,572 68,757,301

5 Indonesia 97,667,060 95,010,276 89,854,891 89,791,565 88,443,150

6 Brazil 84,128,482 106,029,517 101,402,184 100,901,726 89,908,244

7 Argentina 67,024,441 55,650,667 55,876,126 50,703,913 47,449,657

8 Ukraine 65,211,480 59,623,480 63,378,190 62,679,750 45,742,860

9 Bangladesh 56,388,892 54,904,305 55,759,375 54,344,578 52,798,736

10 Canada 55,251,252 53,361,100 51,535,801 66,405,701 51,799,100

11 France 54,654,565 72,875,854 72,579,315 67,537,681 68,341,731

12 Vietnam 48,685,089 50,393,869 50,178,378 49,231,389 48,712,795

13 Germany 45,364,400 48,866,800 52,010,400 47,757,100 45,396,500

14 Pakistan 43,075,694 41,081,682 41,895,811 40,109,711 36,496,350

15 Mexico 38,466,082 34,704,514 36,526,602 33,210,301 33,614,212

16 Turkey 35,276,615 38,632,438 32,708,005 37,475,610 33,370,865

17 Australia 35,230,376 37,195,488 38,419,610 35,587,287 43,362,415

18 Thailand 30,420,758 32,786,514 37,751,337 41,962,227 43,367,009

19 Poland 29,849,223 28,002,726 31,945,433 28,455,154 28,543,870

20 Myanmar 28,109,023 28,634,939 28,792,954 28,626,124 28,344,271
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resilience to climate change and (iii) Reducing and/or removing greenhouse gas emissions. Climate change can 
greatly influence overall food security by influencing cereal crop phenology and changing spatial allocation of 
crops. According to earlier work, it has been predicted that a 2.0 °C rise in average temperature can lead to a more 
than 20 to 40% reduction in cereal grain production, particularly in Asia and Africa. Furthermore, temperature 
rise can have either negative or positive impacts on crop productivity depending upon regions36–48. Shift in the 
seasonality is the one of the big example of rise in temperature49.

Temperature is the most important environmental attribute influencing growth and development, and hence, 
ultimate productivity of agronomic cereal crops. Rise in temperature also leads to higher evapotranspiration, 
more crop water and nutrients loss thus resulting to lower water use and nitrogen use efficiency. The effect of tem-
perature on crop phenology could be documented by using GDD or heat units. Heat units, expressed in growing 
degree-days (GDD), are frequently used to describe the timing of biological processes. The basic equation used is

GDD =

[

(Tmaximum − Tminimum)

2

]

− Tbase

Table 2.   Nutritional values of cereals per 100 g.  (Source: Price and Welch9).

 Nutritional values/Crops Rice Maize Wheat Barley Oat Rye Sorghum Millet

Water (g) 13.9 12.2 14 10.6 8.5 15 12 11

Energy (kJ) 1518 1517 1320 1535 1644 1268 1422 1468

Energy (kcal) 357 357 310 360 388 298 335 346

Carbohydarte (g) 81.3 77.2 63.9 83.6 69.4 65.9 69.9 68.1

Protein (g) 6.7 9.4 12.7 7.9 11.8 8.2 10.7 11.8

Fat (g) 2.8 3.3 2.2 1.7 9 2 3.3 4.8

Dietary fiber (g) 1.9 2.2 9 5.9 7 11.7 7.5 6.9

Essential amino acid (g/100 g protein)

Phenylalanine 5.2 4.8 4.6 5.2 5.4 5 5.1 5.5

Histidine 2.5 2.9 2 2.1 2.4 2.4 2.1 2

Isoleucine 4.1 3.6 3 3.6 4.2 3.7 4.1 3.8

Leucine 8.6 12.4 6.3 6.6 7.5 6.4 14.2 10.9

Lysine 4.1 2.7 2.3 3.5 4.2 3.5 2.1 2.7

Methionine 2.4 1.9 1.2 2.2 2.3 1.6 1 2.5

Threonine 1 3.9 2.4 3.2 3.3 3.1 3.3 3.7

Tryptophan 1.4 0.5 2.4 1.5 – 0.8 1 1.3

Valine 5.8 4.9 3.6 5 5.8 4.9 5.4 5.5

Fatty acid profiles (g/100 g food)

Total fat 2.8 – 1.2 1.7 9.2 2 – –

Saturated fatty acids 0.74 – 0.16 0.29 1.61 0.27 – –

Cis-monounsaturated fatty acids 0.66 – 0.13 0.14 3.34 0.21 – –

Polyunsaturated fatty acids:

 Total cis 0.98 – 0.51 0.77 3.71 0.95 – –

 n−6 (as 18:2) 0.94 – 0.48 0.7 3.52 0.82 – –

 n−3 0.04 – 0.03 0.07 0.19 0.13 – –

Nutrient White Brown Wholemeal

Typical Nutrient composition per 100 g of cereal bread

Energy (kcal/kJ) 219/931 207/882 217/922

Protein (g) 7.9 7.9 9.4

Carbohydrate (g) 46.1 42.1 42

Total sugars (g) 3.4 3.4 2.8

Starch (g) 42.7 38.7 39.3

Fat (g) 1.6 2 2.5

Fibre (g) 1.9 3.5 5

Thiamine (mg) 0.24 0.22 0.25

Niacin equivalents (mg) 3.6 4.9 6.1

Folate (μg) 25 45 40

Iron (mg) 1.6 2.2 2.4

Calcium (mg) 177 186 106
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where Tmaximum and Tminimum are daily maximum and minimum air temperature, respectively, and Tbase is the base 
temperature. It also controls the rate of development from emergence to physiological maturity50–54. All cereal 
crops have a basic requirement of temperature for completion of a given phenological phase, or the entire life 
cycle55–58. The daily maximum and minimum temperature play a significant role in determining the optimum 
sowing time or window and defining the seasonal duration, thus both can affect the achievable yield, produce 
quality, and along with their sustained productivity59–64. Normally, the longer the optimum growing season, 
then higher the duration for maximum grain production. Luo65, reviewed threshold temperature of different 
crops and stated that identification of threshold temperature is very important aspect of climate change risk 
assessment. Furthermore, cardinal T (Base T = Tbase, optimum T = Topt1 and Topt2, and failure point T = Tfp) and 
lethal T (Lethal minimum T = Tlmin and lethal maximum T = Tlmax) have strong association with crop production. 
Cardinal and extreme temperature thresholds for the major cereal crops were reviewed by Ramirez-Villegas 
et al.66 as shown in Table 3. Threshold temperature for the different phenological stage/phase of the wheat crop 
have been presented in Table 4. 

The predicted changes in temperature during the next 40 to 70 years are expected to be in the range of 2–3 °C 
in different regions. Intensity and duration of warming trends and heat wave events are predicted to become 
more extreme in future than at present and during last decade67–69. Extreme temperature events have short-term 
spells of a few days with temperature increases over 5.0 °C above normal. Frost caused sterility and abortion 
of grain whilst extreme heat caused a decrease in the number of grains and reduced grain filling duration70–72. 
Day-to-day minimum temperatures will rise more rapidly compared to daily maximum temperatures leading 
to increased mean temperatures. These variations have detrimental effects on yield52,73. The work by Srivastava 
et al.74 concluded that maximum temperature affects the maize grain yield more than the minimum temperature 
under variable CO2 levels in both irrigated and rainfed conditions. Furthermore, their study confirmed that maize 

Table 3.   Cardinal (Base (Tb), optimum (Topt) and maximum (Tmax)) and extreme temperature thresholds 
(Ceiling vegetative temperature (TC1) and Ceiling reproductive temperature (TC2)) for cereal crops. (Source: 
Ramirez-Villegas et al66).

Crops Tb(°C) Topt (°C) Tmax (°C) TC1 (°C) TC2 (°C)

Barley 0.0–5.0 25.0–31.0 50.0 30.0 40.0

Maize 8.0 30.0 38.0 33.0 44.0

Millet 10.0 34.0 40.0 30.0 40.0

Oat 0.0–5.0 25.0–31.0 31.0–37.0 – –

Rice 20.0 28.0 35.0 22.0 30.0

Rye 0.0–5.0 25.0–31.0 31.0– 37.0 – –

Sorghum 8.0 34.0 40.0 32.0 44.0

Wheat 0.0 13.2 35.0 34.0 40.0

Table 4.   Temperatures (Base (Tb), optimum (Topt) and maximum (Tmax)) for different phenological phases and 
stages in wheat. (Source: Porter and Gawith53).

Phenological stage/phase Tb (°C) Topt (°C) Tmax (°C)

Leaf initiation − 1.0 22.0 24.0

Shoot growth 3.0 20.3 > 20.9

Root growth 2.0 < 16.3 > 25.0

Sowing 5.0 20.0 30.0

Germination/emergence 0–4.5 24.0–28.0 35.0

Vernalization − 5.0 0.0–12.0 > 12.0

Tillering < 3.0 6.0–9.0 > 9.0

Double ridges 4.0 20.0 –

Spikelet Initiation 0.0 15.0 20.0–25.0

Terminal spikelet 3.0 8.0–12.0 –

Shoot elongation < 12.0 15.0–22.0 > 40.0

Heading 3.9 24.3 –

Anthesis < 10.0 18.0–24.0 > 32.0

Pollination > 10.0 18.0–24.0 32.0

Grain–filling 12.0 20.0 35.0

Maturity < 15.0 22.0–25.0 > 32.0

Tlmin Tlmax

Lethal Limits –17.2 47.5
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yield was low for RCP 2.6, 4.5, 6.0, and 8.5 under irrigated as compared to rainfed condition. If such changes 
in temperature will remain occurring in future, then adaptation strategies such as change in sowing date and 
cultivars shifts are needed to offset such impacts75–78.

Crop phenology is the most significant feature of crop adaptation, and spatial and temporal changes in phe-
nological stages and phases provide well-built indications of the biological influence of thermal trend. Change 
in phenological seasonality is having both direct and indirect effects on natural vegetation and cereal crop 
productivity25,26,79–81. Measured climate-warming trends have been implicated as a reason for accelerated cereal 
crop growth rates and reduced growing durations. Since phenology is highly sensitive to climate change and 
has significant impact on carbon balance. Thus the asymmetric and opposing response of phenology to daytime 
and night-time was studied by Wang et al.82 and concluded that Tmax and night-time Tmin had opposite effects 
on the timing of start of the season, delayed end of the season and prolonged length of growing season. Further-
more, several earlier studies documented that the intensity of the response of phenological stages and phases of 
agricultural crops to warming trend is variable at spatio-temporal scales79,83,84. Phenology is well known climate 
change indicator. However, there is a lack of critical analysis of climatic warming impacts on cereal phenology 
shift and management of climatic impacts to ensure future global food security. Therefore, a major objective of 
this review is to analyze the phenological fingerprinting of cereal crops in response to climate warming, and to 
discuss important management strategies to overcome the climate warming impacts on phenological shift of 
cereal crops.

Climate warming
The global environment is changing with increasing temperature and carbon dioxide concentration [CO2]. Gen-
erally, burning of fossil fuels are the principle source of climate warming. Jackson et al.85 reported that global CO2 
emissions by fossil fuel burning in 2017 were 36.2 billion tonnes, which reached to 37.1 billion tonnes in 201886. 
Additionally, CO2 emissions due to biomass combustion were approximately 1/3rd of the fossil fuel emissions 
during 1997–201087. These CO2 emissions contribute to global warming and the current fossil fuel reserves 
have the potential to increase the global temperature up to 2 °C by 2050. Phenology of crop is codetermined 
by environmental conditions (thermal time requirement) and agronomic practices (Sowing date and cultivar 
features). Detection of climate warming impact on phenology is not easy mainly because of change in sowing 
date and introduction of new cultivars. Warming accelerate crop development but it could result to delayed 
development for long duration cultivar or late sowing date. The impact of climate warming can be mitigated 
by use of new cultivars with longer thermal time requirement. It has been documented earlier that 1/3rd of the 
increased temperature impact on phenology was compensated by the introduction of new cultivars with altered 
temperature requirements. Globally, the climate warming and other stresses are contributing towards yield 
losses and advocating the necessity of changing the crop calendar (Fig. 2)57,88–91. This necessity for changing the 
crop calendar is mainly because of changes in the timing of plant phenological stages or events that respond to 
temperature (Fig. 2). This change in cropping calendar might have positive or negative impacts on productiv-
ity, depending on type of crop and geographical locations92. He et al.37 reported delayed sowing dates and use 
of longer duration cultivars are possible management adaptation options needs to be considered to adapt to 
climate change. Their results indicated that farmers have a wider sowing window in spring and can select frost 
tolerance and long growing season cultivars that can mitigate detrimental effects of climate warming. Thus, it is 
very significant to study the climate warming effect on cereal crops phenology.

Impact of climate warming on phenological shift
Phenological stages of the crop plant are set very strictly to the seasonality of the environment and are therefore 
influenced by changes in the environment. Furthermore, the duration of phenological stages is also associated 
with CO2 assimilation, so a shift in phenology may affect crop yield. Tao et al.38 explored the climate-crop-region 
relation for major crops, i.e., rice, maize and wheat over a period of 1951–2002 and reported a trend of 3.2 × 105, 
− 1.2 × 105, and − 21.2 × 105 t decade−1 change in production of rice, maize and wheat respectively. They found 
different impacts of climate warming in different regions. For instance, in northeast China; rice production 
increased, and in northeast and north regions maize and wheat yield decreased in all studied regions. Wang 

Figure 2.   A simple presentation of climate warming effects on growth and development of crop plants.
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et al.7 reported shortening of vegetative and reproductive growth phases of double rice grown across southern 
China in response to temperature increase.

Blecharczyk et al.93 investigated phenological and climate warming data of winter rye grown in Poland from 
1957 to 2012 and reported an increase of 2 °C in average temperature. During this period, they observed signifi-
cant delay in sowing dates and an advancement of 4 days decade−1 in flowering initiation. These changes occurred 
due to the relative thermal requirement of the crops and cultivar effects. They also reported compensatory effects 
of cultivars and management practices on crop phenology in response to climate warming. Increased temperature 
speeds growth, which leads to reduced yield. Ahmad et al.94, Huang and Ji95 and Wang et al.96 reported negative 
correlations of temperature rise with all the phenological stages besides cotton yield in central and lower Punjab 
regions of Pakistan. They further reported that about 30% of the negative consequences of climate warming are 
compensated by sowing new cotton cultivars with high thermal requirements.

Although climate warming is a long and continuous process, it has accelerated during the industrial revolution 
i.e., after the mid-twentieth century. With rapid industrialization, emission of CO2 increased in the atmosphere 
and increasing population lead to deforestation to clear new residential area. Earlier crop flowering and maturity 
have been observed during the last few decades, but crop management also has impacted the effect of climate 
warming. Siebert and Ewert52 reported spatial differences in climatic effects in different regions of Germany due 
to temperature and day length effects. Compensation of climatic warming effects on cotton, wheat and rice (30, 
21 and 35%, respectively) grown in Punjab, Pakistan, using new cultivars with higher thermal requirements are 
also reported88,94. However, they reported spatio-temporal differences in the crop species for response to climate 
warming. Sorghum (Sorghum bicolor L.) is a very important crop in arid, marginal and warm regions through-
out the world, and it is affected by climate warming. Srivastava et al.97 analyzed the impact of climate change 
on sorghum using the InfoCrop-SORGHUM simulation model. They reported regional variation in response 
to climate warming and projected a 7% yield reduction up to 2020. Sultan et al.98 assessed near-term climate 
warming impacts on sorghum yield using different crop models in West Africa. Based on 1961–1990 data, they 
projected an increase of 2.8 °C in mean temperature of 2031–2060 and robust change in rainfall pattern and 
projected 16–20% yield reduction in response to the climate changes. Shew et al.99 studied climate-warming 
impact on 71 cultivars across 17 locations in South Africa from 1998 to 2014 through extensive regression models. 
The outcomes showed that heat drives wheat yield losses. The reduction was 12.5% with an additional one-day 
(24 h) exposure to temperature above 30 °C. Furthermore, 8.5%, 18.4% and 28.5% yield reduction was observed 
for uniform warming scenario of + 1 °C, + 2 and + 3 °C respectively. They suggested that warming impact could 
be reduced by sharing gene pools with wheat breeding programs. Sonkar et al.100 reported 7% decrease in wheat 
yield per 1 °C rise in the mean temperature. Thus, there is a dire need of further research especially on the effects 
of climate change on the optimum temperatures required for different crop development stages. In short, climate 
warming has mostly negative impacts on crop species by disturbing their phenology, but these impacts can be 
compensated or converted into positive effects by proper management, ideotype designing and breeding of fast-
growing crops with higher thermal requirements37,88,101–106.

Role of phenological stages and phases in cereal crop grain production
Cereal crop phenology is very sensitive to climate change88 as compared to other agronomic crops; consequently, 
phenological changes are frequently used to measure how climate warming influences the agricultural ecosys-
tems in a particular region107–109. Numerous methods have been utilized to elucidate the intensity of the effect 
of climate change on agronomic cereal crops. The methods include analysis of satellite images on vegetation 
greenness, measurement of net primary production with Normalized Difference Vegetation Index (NDVI), and 
particularly, determination of temporal and spatial variations in phenological seasonality26,79,110–115. The data 
on stages and phases of cereal crop phenology and climate meteorological data are collected from phenological 
networks or through designated observation stations.

Wheat phenology trend.  Wheat phenology has been affected by climate warming worldwide. Identifying 
phenological responses to climate warming is tough due to regularly shifting sowing dates and the introduc-
tion of new cultivars. Wheat phenological trend from sowing to maturity is presented in Table 5. The results 
showed that it remained maximum in northwest China during 1983 to 2004 (sowing = 13.2 days decade−1, emer-
gence = 9.8 days decade−1, anthesis = 11.0 days decade−1 and maturity = 10.8 days decade−1). However, highest 
trend in delaying of phenological stages was observed in north south regions of China during 1981–2010116. 
The highest reduction in phenological phases was also observed in northeast China11. Xiao et al.117 observed 
that since 1981 to 2009, climate-warming in North China Plain caused dates of green-up after winter dormancy, 
anthesis, and winter wheat maturity to happen in an average of 1.1, 2.7, and 1.4 days earlier decade−1, respec-
tively. Wheat phenology was recorded at three variable sites of rainfed Pothwar and it depicted significant vari-
ability. The highest days to flowering and maturity was observed at Islamabad while lowest were at Attock which 
might be due to variability in climatic conditions during wheat growing cycle (Fig. 3). Ahmad et al.88 reported 
that sowing (S), emergence (E), anthesis (A) and maturity (M) for wheat crop were delayed by 9.5, 1.3, 5.3 
and 5.4 days deacade−1 while phenological-phases S-A, A-M along with S-M were reduced by 5.4, 5.5, 4.6 and 
5.7 days decade−1 in Pakistan during 1980 to 2014 (Fig. 3). The S-M phase was reduced by 7.2, 10.7, 5.4, 4.0 and 
2.7 days decade−1 in Spain, Australia, Argentina, Romania and Germany, respectively. In India, Russia and USA, 
crop phenology was also affected due to climate change118,119.

Rice phenology trend.  Phenological stages and phases of rice were affected by the worldwide thermal 
trend. Table  5 shows that sowing, transplanting (T), anthesis and maturity were earlier by 7.9, 6.6, 5.0 and 
5.0 days decade−1, respectively in Punjab, Pakistan (Fig. 4) during 1980 to 201488. Both the highest and lowest 
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transplanting-to-maturity phases were reduced in Pakistan and China, respectively. Shrestha et al.108 reported 
that sowing, transplanting, anthesis and maturity were earlier by 5.4, 3.2, 6.2 and 4.8 days decade−1 in Madagas-
car. The phenological phases of sowing to transplanting, transplanting to anthesis and A-M were reduced by 2.9, 
1.6 and 5.2 days decade−1, respectively in China during 1981 to 2009 as well as in other parts of world46,70,104,120–122. 
Transplanting to maturity was more severely reduced than other phenological phases (Table 5).

Maize phenology trend.  Phenological stages of maize were delayed in most countries (Table  5). Phe-
nological phases of maize were also reduced in Pakistan (Fig. 4) during 1980 to 2014109. Lowest reduction of 
phenological phases was in China102. In USA, phenological stages S, E, A and M were earlier by 3.9, 3.2, 1.7 and 
2.9 days decade−1, respectively, while, S-A, A-M and S-M were shortened by 2.9, 1.8 and 3.0 days decade−1, respec-
tively during 1981 to 2005123,124. The S, E, A, and M were delayed by 3.0, 1.9, 2.8 and 4.4 days decade−1 in Pakistan 

Table 5.   Cereal crops observed phenology trends across regions (E Early, D Delay, S Sowing, T Transplanting, 
A Anthesis, M Maturity).

Crop Country Period

Phenological stages
(early/delay days/decade)

Phenological phases
(reduction days/
decade)

ReferencesSowing Emergence Anthesis Maturity S-A A-M S-M

Wheat

China 1983–2004 13.2 (E) 9.8 (E) 11.0 (E) 10.8 (E) 16.1 8.2 12.3 7

Pakistan 1980–2014 9.5 (D) 1.3 (D) 5.3 (E) 5.4 (E) 5.5 4.6 5.7 88

China 1981–2005 7.6 (E) 6.3 (E) 2.0 (E) 4.8 (E) 3.8 4.1 5.8 14

Spain 1986–2012 3.8 (E) 2.6 (E) 5.2 (E) 2.9 (E) 4.6 5.1 7.2 81

Australia 1995–2016 3.9 (E) 2.8 (E) 7.5 (E) 5.8 (E) 6.6 7.9 10.7 126

China 1981–2009 1.2 (D) 1.3 (D) 3.7 (D) 3.1 (E) 5.0 3.1 4.3 127

Argentina 1971–2000 3.0 (D) 2.9 (D) 4.2 (D) 4.9 (D) 7.5 6.9 5.4 25

China 1980–2009 4.1 (D) 3.7 (D) 6.3 (D) 8.1 (D) 6.1 2.3 3.6 128

Romania 1971–2006 3.5 (D) 2.5 (D) 2.2 (D) 3.0 (D) 2.3 3.2 4.0 61

China 1981–2010 9.0 (D) 8.5 (D) 11.0 (D) 16.2 (D) 3.7 2.5 1.3 27

China 1981–2009 1.5 (D) 1.7 (D) 2.1 (D) 2.5 (D) 2.0 1.8 3.1 11,28,42,50,128–133

China 1981–2000 3.4 (E) 2.9 (E) 3.0 (E) 3.3 (E) 0.4 0.3 1.0 38

Germany 1952–2013 2.0 (E) 1.8 (E) 4.1 (E) 5.0 (E) 1.9 0.8 2.7 134,135

Rice

Pakistan 1980–2014 7.9 (E) 6.6 (E) 5.0 (E) 5.0 (E) 1.4 4.1 6.4 88

Madagascar 2008–2010 5.4 (E) 3.2 (E) 6.2 (E) 4.8 (E) 4.1 3.2 6.2 108

China 1981–2006 1.0 (D) 1.4 (D) 2.7 (D) 3.1 (D) 3.3 1.2 4.1 70

China 1981–2000 5.7 (E) 5.2 (E) 6.2 (E) 3.6 (E) 0.5 2.6 3.1 38

China 1992–2013 2.2 (D) 1.9 (D) 2.8 (D) 3.4 (D) 0.8 1.7 2.4 136

China 1981–2012 4.9 (D) 4.2 (D) 3.8 (D) 5.2 (D) 2.4 3.2 5.1 137

China 1981–2009 3.7 (D) 3.0 (D) 2.0 (D) 4.0 (D) 2.8 1.9 2.2 138

China 1981–2009 6.5 (D) 5.8 (D) 1.5 (D) 2.4 (D) 2.9 1.6 5.2 139

Maize

Pakistan 1980–2014 3.0 (D) 1.9 (D) 2.8 (D) 4.4 (D) 5.5 2.2 7.8 109

Pakistan 1980–2014 4.6 (E) 3.7 (E) 7.1 (E) 9.2 (E) 2.4 1.9 4.6 109,140,141

China 1981–2010 5.4 (D) 4.8 (D) 5.2 (D) 7.1 (D) 1.3 0.8 2.2 142

China 1990–2012 10.0 (D) 9.4 (D) 10.5 (D) 5.6 (D) 4.1 3.9 5.7 143

China 1981–2008 8.1 (D) 7.8 (D) 6.2 (D) 3.7 (D) 5.2 2.6 3.7 136

USA 1981–2005 3.9 (E) 3.2 (E) 1.7 (E) 2.9 (E) 2.9 1.8 3.0 144

Germany 1961–2000 4.5 (E) 4.1 (E) 5.6 (E) 8.8 (E) 3.1 7.2 4.9 8

China 1981–2000 1.7 (D) 1.5 (D) 3.3 (D) 5.5 (D) 2.4 2.2 2.8 38

China 1981–2009 5.0 (D) 3.1 (D) 4.0 (D) 6.7 (D) 1.0 2.7 3.5 27,102

China 1992–2013 3.5 (D) 3.2 (D) 1.8 (D) 1.5 (D) 1.9 3.3 1.5 145,146

China 1981–2010 8.7 (D) 6.9 (D) 4.6 (D) 2.2 (D) 4.6 2.4 6.2 146,147

China 1992–2013 1.3 (E) 1.0 (E) 4.1 (E) 2.7 (E) 1.1 2.0 3.0 145

Oat
Germany 1959–2009 1.1 (E) 1.8 (E) 9.7 (E) 10.7 (E) 7.9 13.9 9.4 52

Germany 1951–2004 1.5 (E) 1.2 (E) 4.9 (E) 6.4 (E) 3.4 1.5 4.9 110

Barley
Lithuania 1961–2015 1.7 (E) 2.8 (E) 1.1 (E) 0.4 (E) 1.0 1.6 2.2 43

Spain 1986–2008 2.8 (D) 1.9 (D) 2.7 (D) 3.5 (D) 1.6 2.1 3.7 41

Rye
Poland 1957–2012 2.2 (D) 1.9 (D) 4.0 (D) 3.6 (D) 1.8 1.4 3.2 125

Germany 1960–2013 1.0 (E) 1.2 (E) 1.8 (E) 1.6 (E) 2.9 3.1 4.5 60
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during 1980 to 2014109. Phenological phases S-A, A-M and S-M were reduced by 3.1, 7.2 and 4.9 days decade−1, 
respectively in Germany during 1961–20008.

Oat phenology trend.  Phenology of oat was affected due to climate warming. Table 5 shows that in Ger-
many during 1959 to 2009, S, E, A and M of oat were earlier by 1.1, 1.8, 9.7 and 10.7 days decade−1 and phases 
S-A, A-M and S-M were significantly reduced by 7.9, 13.9 and 9.4 days decade−1, respectively. Estrella et al.110 
reported that during 1951 to 2004, sowing, emergence, flowering and harvesting of oat were earlier by 1.5, 
1.2, 4.9 and 6.4 days decade−1 and S-A, A-M besides S-M phases were significantly shortened by 3.4, 1.5 and 
4.9 days decade−1, respectively.

Barley phenology trend.  Phenological stages of barley were earlier in Lithuania and delayed in Spain 
with global warming (Table 5). Sujetovienė et al.43 observed that S, E, A and M were delayed by 1.7, 2.8, 1.1 and 
0.4 days decade−1 and phases S-A, A-M and S-M were reduced by 1.0, 1.6 and 2.2 days decade−1, respectively 

Figure 3.   Trend of phenological stages of wheat at three variable climatic sites of rainfed Pothwar.

Figure 4.   Spatial and temporal variability of spring maize, fall maize, rice and wheat crops phenological 
phases as effected by climate warming in Punjab, Pakistan. S Sowing, E Emergence, A Anthesis, M Maturity, 
T Transplanting, PI Panicle Initiation. Alphabets with green and red colors represent previous and prevailing 
trends. [Modified and adapted from Abbas et al.109 and Ahmad et al.88].
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during 1961 to 2015 in Lithuania (Table 5). Phenological phases were reduced by 1.6, 2.1 and 3.7 days decade−1 
for S-A, A-M and S-M, correspondingly in Spain during 1986 to 200881.

Rye phenology trend.  Phenological phases of rye were also reduced in Germany and minimally in 
Poland125 (Table 5). The S, E, A and M were delayed by 2.2, 1.9, 4.0 and 3.6 days decade−1, respectively and phases 
S-A (1.8 days decade−1), A-M (1.4 days decade−1) and S-M (3.2 days decade−1) were reduced in Poland during 
1957 to 2012. Phenological stages S, E, A and M were earlier by 1.0, 1.2, 1.8 and 1.6 days decade−1 and phases 
S-A, A-M and S-M were shortened by 2.9, 3.1, 4.5 days decade−1, respectively in Germany during 1960–2013 
(Table 5).

Effect of phenological shifts on crop yield
Climate warming is shifting the phenological stages of the crop. Crop yield is very sensitive to the accumula-
tion of heat units or GDD during specific phenological events, thus by shifting the phenology, crop yield is also 
affected. Several studies reported/projected reduction in crop yields with climate warming due to shortening 
of phenological events without considering management practices37,137,139,148. The climate change adaptation 
strategies like cultivar shift and change of sowing dates could compensate warming effects. Although vegetative 
and reproductive phases are equally prone to climate warming37,145,149, the impact of high temperature on pollen 
viability, fertilization and post-fertilization processes leads to a marked decrease in final yield16,145,150. However, all 
phenological stages are not equally responsive to climate warming effects and do not have equal impacts to final 
yield12,103,127,151–153. Tao et al.38 investigated the effects of phenology shift on yield of wheat, maize and rice during 
1981 to 2000. They reported that earlier planting of 3–6 days decade−1 and earlier anthesis dates decreased yield 
up to 110 kg/ha/yr in wheat, 168 kg/ha/yr in maize, and 20 kg/ha/yr in rice. Zacharias et al.154 investigated the 
effect of induced high temperature on phenology and yield of wheat and rice cultivars. They observed that high 
temperature advanced dates of anthesis and crop maturity, and reduced the duration of vegetative and maturity 
phases, and led to reduction in yield. They reported 26% reduction in grain yield of rice due to reduction in 
the anthesis and maturity dates of around seven to 8 days, respectively. The reduction in yield was primarily 
attributed to less time for photosynthesis and accumulation of assimilates. Warmer temperature during the 
reproductive phase led to pollen sterility and high evapotranspiration, which led to fewer grains and lower grain 
weight, reduced photosynthetic rate, and reduced duration of phenological events90,91. Hatfield and Prueger90 
reported that temperature extremes during the reproductive phase could reduce the grain yield of maize up 
to 90% mainly due to pollen sterility and smaller grain size. Nahar et al.150 investigated the impact of climate 
warming on five cultivars of wheat. In their studies heat stress imposed by late sowing of the crop resulted in 
significant reduction in days to booting, anthesis and maturity across all cultivars (although cultivar differences 
existed). About 8–13 days reduction in days to anthesis and maturity resulted in 53–73% yield losses in differ-
ent cultivars. Meanwhile, Sadok and Jagadish155 reported that nighttime warming poses a threat to global food 
security (6% decrease in winter wheat yield per 1 °C rise in night temperature while 4–7% reduction in spring 
wheat and rice yield per 1 °C rise in night temperature) as it is driving yield declines worldwide. Thus, they 
proposed ecophysiological framework as a guide to implement future research efforts to mitigate yield declines. 
They further elaborated that efforts should include integrated approaches i.e. physiology with crop modeling, 
breeding and management to intensify sustainable pathways for mitigation as intensity of climate change is 
becoming stronger and stronger day by day.

Climate warming significantly impacts the crop phenology, which in turn leads to a reduction in yield mainly 
due to shortened phenological events coupled with less production of assimilates, pollen sterility and biochemi-
cal irregularities156. The climate warming impacts have been neutralized to some extend with shifting of sowing 
date and development of cultivars with longer duration of phenological events even under warming conditions. 
As climate warming is a continuous process, therefore, integrated research is required to understand the mitiga-
tion of climate warming impact for sustainable crop production to feed an ever-increasing world population.

Consequences of climate warming
Climate warming is threatening all living organisms including human beings. Rising temperatures at the poles 
and glaciers, increase the risk of floods, and many populated areas may be inundated, and fertile lands may 
become deserts157–161. The main consequences linked with a rise in sea level and desertification are salinity, heat 
and drought stresses, and these factors are major threats to agricultural production including primary cereals 
(Fig. 5). 

Adaptation strategies in response to climate change
Adaptation strategies in CSA are the only way to reduce negative effects of climate warming on cereal crops. 
Different adaptation approaches like better crop management practices, modern breeding, and biotechnological 
approaches can develop climate resilient cereals to help cope with climate warming56,105,106,111,127,162–165. Revo-
lutions in plant breeding (molecular and conventional for incorporation desired characteristics) and genetic 
engineering (integrated transgenic techniques like marker-trait associations and genome-wide selection) could 
assist to reduce overwhelming food security concerns against extreme-weather conditions, through producing 
climate adaptive cereal plants166–173. Thus coping with climate warming is an urgent concern globally and in order 
to adapt cereals to changing climatic conditions, the following approaches are mandatory.

Crop management practices.  Better and improved crop management practices can minimize nega-
tive impacts of temperature extremes. Under climate warming, all better crop management practices should 
be brought to the fields to get real benefits105,129,174–186. Usage of quality seed are big concerns and quality seed 
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availability to the farmers are under 20%. Good quality and genetically pure seed should be provided to farm-
ers to minimize negative impacts of climate change and achieve sustainable nutrition security6. Farmers’ access 
to good quality seed of cultivars adapted to diverse ranges is still obstructed by inadequate and incompetent 
seed production besides weak delivery systems, scanty seed policies, and excessive price of seed187. There are 
many helpful adaptation strategies related to crop husbandry reported by scientists, comprising abiotic factors, 
for example, changing sowing and harvesting date, crop rotation, irrigation techniques, deficit irrigation, soil 
management practices, improvement of irrigation efficiency and variation in cropping patterns etc.5,14,25,188–191 
(Table 6).

Raised bed planting method for maize and rye crop is useful to obtain maximum attainable grain yield. The 
most important approach is choosing the optimum sowing date for cereal crops under climate change. Changing 
sowing date to evade the harmful influences of high temperature at anthesis and during pollination and fertiliza-
tion has been suggested as an adaptation tactic for climate warming. A change in sowing window, for example, 
earlier sowing of winter and spring cereal crops and delayed sowing of summer and autumn cereals to escape 
hot and dry periods in growing seasons, is one useful adaptation to climate uncertainty. Therefore, sowing of 
cereals has been adjusted according to optimum temperature conditions, resulting in substantial yield increases 
by escaping temperature stress during grain filling phase60,127. Optimization of sowing time, planting density, 
and best irrigation techniques are dynamic strategies to confront weather-based stresses. Establishing innova-
tive and precision irrigation water management might contribute to the mitigation of negative issues related 
to climate change. Better irrigation management can improve cereal crop productivity under climate warming. 
Water-saving interventions such as direct-planted rice, a modified system of rice intensification and alternate 

Figure 5.   Effect of climate warming on productivity of primary cereal crops: wheat, rice and maize across 
various countries/continents. [Modified and adapted from Ishfaq et al.192].

Table 6.   Observed changes in trend of phenology of agronomic crops in different countries.

Crop Continent Adaptation strategies References

Wheat

Asia, Spain, Australia, South America, Europe Early Sowing, Sowing/planting dates adjustment 5,25,60,81,88,101,109,140,189,192–200

Asia Cultivars requiring higher GDDs; Improved culti-
vars; Use of heat tolerant cultivars;

14,109,127,140,198,201

Asia, South America Optimum plant population 178,198

Rice

Asia Sowing date 88,144,202,203

Asia Varieties requiring higher GDDs 70,106,107,204–208

Asia Direct planting 209,210

Asia Early maturing, Climate ready rice 211,212

Asia System of rice intensification with alternate wetting 
and drying

213

Asia Improved variety and management 214

Maize

South Asia Sowing date 78,92,140,141,145,149,215

Asia, America Early maturing cultivars; Varieties requiring higher 
GDDs

144,216

Asia Raised bed planting 216–220

Asia Precision nutrient management 221

Oat Europe Varieties with larger thermal time 52

Rye Poland, Europe Late maturing cultivars,
Plant density

60,125,134,199,200

Millet South Asia Planting time; Plant spacing 222–224
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wetting and drying (AWD) of rice were implemented in a cluster approach and resulted in enhanced water use 
efficiency225–229. Optimum fertilization rates are also very effective to decrease the impact of global warming. 
Optimizing fertilizer use provides for better adaptability by enhancing energy capture by plants, by maintaining 
soil fertility and pesticide use, and increasing productivity230–233. The significance of fertilizer in nourishing the 
world population is undeniable. Enhancing fertilizer use efficiency (minimizing losses like volatilization and 
leaching; ultimately nutrients availability to crops) is dynamic under climate change. Adaptation of integrated soil 
fertility management and precision nutrient management is helpful to minimize the negative influence of higher 
temperature221,234,235. Laser land leveling (through enhancing water application efficiency, uniform distribution 
in fields and availability to crop plants; thus increasing water use efficiency) can enhance cereal grain yield under 
warming climate. Agroforestry techniques could help growers to diversify their crops, and their profits, along 
with enhancing climate resilience. Integrated pest management are useful approaches to cope with the thermal 
trend impact in cereal based cropping systems173,235,236. Some important agronomic practices to cope with climate 
warming are described below in greater detail.

Sowing date.  Adjustment of sowing date to accommodate the thermal trend is significant for proper phe-
nology of cereal crops. Zhang et al.237 reported that delayed sowing might be an efficient way to coup with water 
stress. Climate warming accelerates crop growth and shortens duration of phenological phases of cereals. Physi-
ological processes including photosynthesis, starch conversion and nutrient metabolism are negatively affected 
by changing phenology due to heat stress31,200,238–241. The use of climate-smart cultivars, besides optimum plant-
ing dates, can reduce risk impacts due to warming149,242. Hence, decisions about seed rate, planting density, spa-
tial arrangement and other management practices including irrigation, nutrition and application of pesticides 
etc. are affected by planting date243–245. However, to get real benefits sowing date should coincide with growth 
cycle to make the optimal use of possible environmental circumstances and managements149,202,203,246–248.

Planting geometry.  Optimum planting geometry can be employed for the reduction of harmful effects on 
phenology due to climate change. Plant phenology is also affected by planting geometry130,249. Crop microclimate 
is changed by varying planting geometry like planting density, row spacing, seed rate etc. Management of plant-
ing geometry, e.g., decreased plant density, broader plant or row to row distance, and skip-row configurations 
are adaptation strategies that can be adapted in the dryland farming areas for better utilization of available soil-
water250. Nevertheless, optimum planting geometry could improve resource use efficiencies in crops through 
proper crop phenology, producing more leaf area and ultimately more favorable yield components and yield in 
cereal crops in all climatic conditions251,252. Planting geometry affects solar radiation interception, canopy cover-
age, crop growth rate and biomass accumulation215,253–258. Furthermore, with optimum planting geometry, total 
dry matter production and ultimately grain yield increase was mainly due to more photo-assimilates252. Planting 
practices have significant impact on maize productivity as concluded by Huang et al.259. They reported that soil 
temperature and growth period precipitation are determinant factors in dryland farming systems. Thus, they 
recommended that selection of suitable planting patterns according to the limiting factors can uplift dryland 
agriculture.

Supplementary irrigations.  Supplemental irrigation is an important adaptation strategy for the reduction 
of harmful effects due to climate warming on cereal crops worldwide260. Supplemental irrigation is application 
of a limited amount of water at very critical stages for the improvement and stabilization of grain yield of cereal 
crops when rainfall is insufficient to provide adequate water for proper growth and development. Supplemental 
irrigation can minimize the impact of heat stress261. During the previous decades, the main source of water was 
canal irrigation water, but nowadays, water shortage is severe, so supplemental irrigation can be helpful espe-
cially in arid environments. Supplementary irrigation, particularly during critical crop phenological stages and 
phases, can improve cereal crop yield as well as water efficiency in cereal based cropping systems262. Supplemen-
tary irrigation practice is a simple, nevertheless, extremely effective practice that allows the farming community 
to grow and manage cereal crops by irrigating at the optimum time, without being at mercy of the unpredictable 
precipitation. Supplementary irrigation permits farmers to grow cereal crops during their optimum growing 
period, which can enhance grain yield and avoid crop exposure to lethal heat and drought stresses in warm areas, 
and frost in cooler areas worldwide263.

Plant breeding and genetic modifications.  Plant breeding and genetics provide dynamic mech-
anisms for adaptation of cereal cropping systems to heat stress. The combination of molecular and conven-
tional plant breeding and genetic methods can be helpful to recognize and develop eco-stable varieties with 
required genotype-environment combinations that will be beneficial in farming under changing climatic 
circumstances166,167,264–267. The desirable characters like drought, and cold and heat stress resistance, resistance 
to pests, and ability to cope with water logging and salinity can be accomplished by integrating conventional, 
molecular and transgenic techniques169,170,268–270. Zachariah et al.271 recommended use of drought-resilient food 
crops to mitigate the immediate agrarian crisis. As according to their analysis, rainfall deficit is the primary 
cause of crop failure, as compared to rising temperatures. Comprehensive overview of the C5-MTase gene family 
members in wheat was presented by Gahlaut et al.272. They identified 52 C5-MTases (cytosine-5 DNA methyl-
transferases) gene family members (4 sub-families i.e. CMTs (Chromomethylase), METs (Methyltransferase), 
DRMs (Domains Rearranged Methyltransferase) and DNMT2s (DNA methyltransferase homologue 2)) that 
could be used to develop drought/heat stress in wheat.

Molecular approaches, comprising the use of marker-trait associations and genome-wide selection, are pro-
viding opportunities for developing germplasm with tolerance to several abiotic and biotic stresses. The adverse 
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effects of heat stress can be mitigated by developing crops with enhanced thermo-tolerance. Boote et al.273 in 
their work concluded that peanut, soybean, pearl millet are more heat tolerant than sorghum, bean and chick-
pea. Genetic diversity for climate change has previously been reported for cereals with the application of com-
parative biology, genetic diversity analysis, collaborative phenotyping and crop simulation modeling198,274,275. 
Photoperiod insensitivity could be incorporated by breeders; accordingly seed-filling could start before onset 
of higher temperatures. The use of modern cereal crop varieties is dynamic adaptation strategy for obtaining 
higher grain yields under climate change274. Adoption of improved cultivars is an important approach to adapt 
to climate variability and change. Heat tolerant varieties for cereal crops are essential under higher temperature 
stress198. Breeding and sowing of improved, resistant cultivars (against abiotic and biotic) are key strategies to 
adapt to climate change. Growing varieties with enhanced climate warming tolerance is important to maintain 
pollen viability, for example, grain number and grain protein163,275,276. Late-maturing maize cultivars enhance 
grain yield due to longer grain filling duration. Improved cultivars with resistances and tolerances to abiotic and 
biotic stresses for cereal crops can increase resource use efficiency. Growing of genotypes requiring more GDDs 
can better resist thermal stress (Table 6). Drought tolerant varieties can increase radiation use efficiency under 
climate warming conditions. Avoiding drought stress by genetic improvements will have a major role for ensur-
ing food security and reducing grower’s exposure to drought-risk. Adapting cultivars with deep root-systems, 
mainly in areas that experience prolonged dry spells, could be a useful strategy under climate warming stress. 
Slow maturing cultivars also minimize the adverse effects of heat stress particularly at anthesis144.

Biodiversity.  Agricultural biodiversity is essential for adapting to climate change (i.e., multiple cropping vs. 
sole cropping; diversified/integrated farming vs. specialized farming). Growing different varieties of crop can 
be beneficial in tackling climate-warming risk277–279. More diverse and longer-cycle crop rotations will need to 
combine sequences of annual row crops such as maize and soybean with close-drilled cereals, shallow-rooted 
with deep-rooted crops, summer crops with winter crops, and annuals with perennials in the same fields280–283. 
Similarly, increasing diversity within crops may be a powerful way to reduce agricultural declines from climate 
change as concluded by Morales-Castilla et al.284. Multi cropping systems and crop rotation (including legu-
minous or green manuring crops in existing cereal-based cropping systems) are useful to combat the adverse 
influence of climate change. Resilience to unpredictable weather will also benefit from intercropping, with the 
creative arrangement of multiple interacting crop species to diversify the field and the landscape101,172,285,286. Sloat 
et al.287 reported that warming impact on maize, wheat and rice could be moderated by migration of these crops 
over time and the expansion of irrigation. Multiple-cropping systems and strategies to integrate animals and 
crops will make more efficient use of natural resources and applied inputs; these include systems such as per-
maculture, agroforestry, alley cropping, intercropping and sowing C4 crops compared to C3 crops. Diverse crop-
ping systems with spatial diversity, and adapted to specific fields, soil conditions, and unique agro-ecozones can 
minimize negative effects of heat stress288. Cereal crop production resilience can be achieved by planting diverse 
combinations of cropping schemes together in the same field, and economic resilience through production of a 
range of products that can be marketed by various channels215,253,289,290. Multiple cropping systems can diversify 
the cropping systems. This comprised of sowing two or more cereal crops on the same field, either at the same 
time or one after another, are production intensification strategies215,253. Such cropping systems have the benefits 
of decreasing the risk of whole crop failures, therefore ensuring a higher level of production stability for the farm 
community235,291. Sufficient cropping systems, particularly in regions that are extremely influenced by the effects 
of climate warming, are professed as an important approach to adaptation. Grain yields in sequential cropping 
systems were higher than average grain yields in single cropping systems, suggesting that sequential cropping 
systems contributed towards reducing the negative impact of climate warming in comparison to single crop-
ping systems83,292–294. Resource use efficiency through crop diversification can further be improved by adapting 
advanced production technologies, physiological based resilience to climate change, crop rotations, improved 
water and nitrogen use efficiencies, crop modeling as well as planning before time through the use of forecasting 
skills to adapt to climate change under current and future climate scenarios163,196,286,290,295–314.

Conclusion
This work has highlighted the negative impacts of climate warming on cereals crop phenology which will become 
frequent and severe in future. Climate warming is threatening global food security due to consequences like heat, 
drought, and salinity stresses. It has shown considerable impact on cereal production by shortening crop phe-
nology. With climate warming, all phenological events occurred earlier and resulting phenological phases were 
shortened in various regions and countries across the globe, as a result of which plants got less time to assimilate 
CO2, and this ultimately resulted in yield reduction. The earlier wheat stages were observed in northwest China, 
and delaying was recorded in north south regions in China and Pakistan. The reduction in phenological phases 
was also observed in northeast China, Pakistan, Spain, Australia, Argentina, Romania, Germany and Pakistan. 
Rice phenological stages and phases were affected worldwide. The rice stages were earlier in Punjab, Pakistan 
and India, and transplanting-to-maturity phases were reduced in Pakistan and China. Maize phenological stages 
were delayed in most countries. Phenological phases of maize were also shortened in Pakistan, China and USA. 
In Germany and in Lithuania, oat stages were earlier while delayed in Spain due to global warming. However, 
these phases were significantly reduced in Spain. Rye phenological stages were earlier, and phases were shortened 
in Poland and Germany.



13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18013  | https://doi.org/10.1038/s41598-020-74740-3

www.nature.com/scientificreports/

Recommendations
This impact of climate warming can be mitigated by developing cereal crop cultivars well adapted to climate 
change, changes in management practices e.g. sowing dates zoning of crops and by increasing cereal crop biodi-
versity. Further research regarding crop plasticity is necessary to adapt cereal crops under a wide range of climatic 
conditions in order to avoid yield losses due to climate warming. Similarly, wider spectrum climate change 
adaptation options e.g. change in cropping patterns, use of early maturity and less water-consuming crop varie-
ties, availability of stress tolerant crop varieties, modification in sowing date, crop insurance, implementation of 
location specific technologies, application of modern technology, intercropping, mixed cropping, socioeconomic 
and institutional interventions, crop modeling, whole farm modeling, integrated crop-livestock management and 
plantation of tress around the field are recommended to mitigate the impact of climate warming.
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