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The dopamine hypothesis of schizophrenia remains the primary theoretical framework for the pharmacological treatment of
the disorder. Despite various lines of evidence of dopaminergic abnormalities and reasonable efficacy of current antipsychotic
medication, a significant proportion of patients show suboptimal treatment responses, poor tolerability, and a subsequent
lack of treatment concordance. In recent decades, intriguing evidence for the critical involvement of other neurotransmitter
systems in the pathophysiology of schizophrenia has emerged, most notably of dysfunctions within the glutamate pathways.
Consequently, the glutamate synapse has arisen as a promising target for urgently needed novel antipsychotic compounds—
particularly in regards to debilitating negative and cognitive symptoms poorly controlled by currently available drugs. In this
paper, recent findings integrating glutamatergic and dopaminergic abnormalities in schizophrenia and their implications for novel
pharmacological targets are discussed. An overview of compounds in various stages of development is given: drugs enhancing
NMDA receptor function as well as metabotropic glutamate receptor (mGluR) agonist and positive allosteric modulators (PAMs)
are emphasised. Together with other agents more indirectly affecting glutamatergic neurotransmission, their potential future role
in the pharmacotherapy of schizophrenia is critically evaluated.

1. Introduction

Since the development of chlorpromazine in the 1950s
antipsychotic drugs have been the primary treatment
choice for schizophrenia [1]. The common pharmacolog-
ical antagonism of dopamine (DA) D2 receptors by all
antipsychotics and direct link with clinical improvement
led to the theory of excess dopaminergic neurotransmis-
sion precipitating psychotic states [2–4]. Later, advances
in animal, postmortem, and neuroimaging studies led to
refinements of the dopamine hypothesis and a regional
specificity of abnormal DA signalling was proposed. Negative
symptoms of schizophrenia (such as anhedonia, flat or
blunted affect, alogia, and avolition) as well as cognitive im-
pairments (including deficits in executive functions, atten-
tion, and working memory) were postulated to be caused

by deficiencies in DA transmission at D1 receptors in
mesocortical projections to the prefrontal cortex (PFC).
This dysregulation in cortical DA pathways, through a
reciprocal relationship with subcortical DA projections,
was hypothesised to cause a hyperdopaminergic state at
D2 receptors in mesolimbic DA projections, resulting in
positive symptoms of the disorder (such as hallucinations
and delusions) [5–8]. Psychotomimetic effects of indirect
DA agonists, such as amphetamines, in healthy individuals
[9, 10] as well as more recent neuroimaging findings-linking
increased DA synthesis at presynaptic striatal D2 receptors to
positive symptoms [11, 12] and DA deficiencies in PFC areas
to cognitive deficits [13–15] have lent further support to
the dopamine hypothesis. In addition, associations between
specific candidate genes and dopaminergic dysfunction in
schizophrenia have been identified [16–18].
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Whilst first-generation antipsychotics (FGAs) are char-
acterised by their principal blockade of D2 receptors,
second-generation “atypical” compounds comprise a more
heterogeneous pharmacological profile involving actions
on multiple neurotransmitter systems [19, 20]. Despite
widespread anticipation of better tolerability of these newer
agents (particularly in regards to extrapyramidal side effects
associated with FGAs), metabolic complications such as
weight gain, impaired glucose tolerance, and dyslipidaemia
are commonly occurring side effects [21]. Further, it is
estimated that one third of patients do not respond ade-
quately to antipsychotic medication [22–24], with only
clozapine showing better efficacy than FGAs in treatment-
resistant schizophrenia [25, 26]. While positive symptoms
are generally reasonably well controlled by antipsychotic
treatment, negative and cognitive symptom clusters com-
monly fail to respond in a large proportion of patients [27–
29], though their severity is associated with longer-term
clinical outcomes [30–32].

These factors underline the urgent need for novel com-
pounds with improved tolerability and efficacy, particularly
for negative and cognitive symptoms. Research has identified
other neurotransmitter systems in addition to dopamine in
the pathology of schizophrenia [33–35]. Most prominently,
work on the role of glutamate—the primary excitatory
neurotransmitter in the central nervous system—forms the
basis of efforts into developing the first nondopaminergic
compounds in sixty years of pharmacotherapeutic treatment
of schizophrenia [36–42].

2. Glutamate and Schizophrenia

2.1. The Glutamate Hypothesis of Schizophrenia. Two main
types of receptors underlie glutamatergic neurotransmission:
the ligand-gated ionotropic receptor family, divided into
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA), N-methyl-D-aspartate (NMDA) and kainate
receptors, and the G-protein coupled metabotropic receptor
(mGluR) family comprising groups I to III with a total of
eight identified subtypes [43]. While ionotropic receptors,
in particular AMPA and NMDA, mediate fast excitatory
transmission at the glutamate synapse, ligand binding at
metabotropic receptors leads to conformational changes
directly or indirectly affecting neurotransmission via second
messenger pathways [44]. A number of shortcomings of
the historically prevailing dopamine hypothesis—most
prominently the suboptimal or lacking clinical response of
negative and cognitive symptoms to D2 antagonism and
findings of structural brain changes associated with the
schizophrenia—inspired the integration of glutamate into
a theoretical framework of the disorder [45–47]. The ob-
servation that administration of noncompetitive NMDA
receptor (NMDAR) antagonists like phencyclidine (PCP)
and ketamine could mimic symptoms of schizophrenia in
healthy individuals gave rise to the hypothesis of im-
paired NMDAR functioning contributing to its patho-
physiology [48–50]. Importantly, it was found that PCP
and ketamine immediately and reliably induced symptom
patterns identical to the cognitive impairments and

negative symptoms of schizophrenia not observed under
amphetamine challenge [51]. In recent years, several lines of
evidence have suggested that reduced glutamatergic excita-
tion of subcortical gamma-amino-butyric acid (GABA)
interneurons, through an initial hypofunction of NMDAR,
results in disinhibition of glutamate (as well as dopamine
and acetylcholine) neurotransmission to the cortex [49, 52–
54]. In addition, increased glutamate signalling mainly at
AMPA receptors has been found to be a possible downstream
effect of NMDAR blockade [38, 55]. Hence, refinements
of the glutamate hypothesis postulate that behavioural and
cognitive symptoms of schizophrenia appear to be caused
by a dysregulation of glutamatergic neurotransmission,
characterised by NMDAR hypofunction and subsequent
excess glutamatergic activity.

2.2. Evidence for the Glutamate Hypothesis of Schizophrenia.
Evidence for glutamatergic abnormalities in schizophrenia
comprises findings from a range of animal models and
human methodologies. In rodents, higher cortical glutamate
levels after NMDAR antagonist injections into thalamic
structures have been linked to cortical neurotoxic changes
reminiscent of grey matter volume reductions in patients
with schizophrenia [49, 56, 57]. In addition, persistent, long-
term cognitive impairments similar to cognitive dysfunction
in schizophrenia have been observed in rodents as a result
of NMDAR antagonist-induced neurotoxicity in prefrontal
cortical areas [58]. Despite lacking evidence for abnor-
mal cerebrospinal fluid glutamate levels in patients with
schizophrenia [48, 59], recent advances in neuroimaging
have given rise to more consistent support for glutamatergic
abnormalities. Pilowsky et al. [60] employed single photon
emission tomography (SPET) in unmedicated patients with
schizophrenia and demonstrated a reduction in NMDA
receptor binding compared to healthy controls in hippocam-
pal areas. A number of proton magnetic resonance spec-
troscopy (1H-MRS) studies have found increased levels of
prefrontal glutamatergic neurotransmission in unmedicated
patients during early disease stages, which appeared to be
normalised in chronic patients [41, 61–63], reflecting a
possible influence of antipsychotic treatment and/or disease
progression on glutamate signalling. Structural abnormal-
ities of NMDA receptors in schizophrenia [40] as well
as reduced levels of the endogenous neurotransmitter D-
serine have further been documented [64, 65]. As either
glycine or D-serine is required as a coagonist with glutamate
for channel opening at the NMDAR glycine site, D-serine
levels appear to reflect glutamatergic neurotransmission
[66]. Finally, a number of possible candidate risk genes for
schizophrenia involved in glutamate signalling have been
proposed, including polymorphisms of several NMDAR
subunits and allelic variations of mGlu receptors [67–70].

2.3. Integration with the Dopamine Hypothesis. Several uni-
fying approaches have been made in recent years to integrate
the evidence for glutamatergic abnormalities and dopamine
in the pathogenesis and current treatment of schizophrenia
[34, 42, 71, 72]. A current, widely supported theory states
that dopaminergic imbalances in striatal and cortical areas
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are preceded and modulated by NMDAR hypofunction in
the PFC. In turn, the arising dopaminergic dysregulation
might further disrupt glutamatergic signalling at NMDA
receptors [39, 73, 74]. Dopaminergic dysregulation might
thus be the result of primary impairments of glutamate
neurotransmission and a subsequent reinforcing factor in
maintaining these impairments [75]. In fact, lower glutamate
levels in hippocampal areas of individuals in the prodromal
states of schizophrenia, but not in healthy controls, have been
found to be linked to increased dopaminergic neurotrans-
mission [76].

3. Glutamatergic Drugs for Schizophrenia

3.1. Currently Available Compounds. No drug targeting
glutamate neurotransmission has yet been licensed for
schizophrenia. Several compounds approved for other indi-
cations, however, have been identified as additionally affect-
ing glutamate neurotransmission. Lamotrigine, an anticon-
vulsant, inhibits glutamate release by acting on presynaptic
sodium channels [77] and has been experimentally used as
an adjunct treatment in schizophrenia. Although a Cochrane
review concluded with a lack of robust evidence for its
efficacy [78], a more recent meta-analysis suggests moderate
effects for use in patients with suboptimal response to
clozapine [79]. Another anticonvulsant, topiramate, exhibits
antagonistic actions at AMPA and kainate receptors [80]
and has been used to augment standard antipsychotic
treatment [81], though its efficacy is modest [82, 83]. There
is similarly some evidence for the tetracycline antibiotic
minocycline, which exhibits neuroprotective actions by
depressing glutamate-induced excitotoxicity [84–87]. Never-
theless, current data is underwhelming, and further large-
scale randomised controlled trials into all these agents are
required.

3.2. NMDAR Enhancing Agents. The development of novel
drugs with antipsychotic properties through direct binding
on the glutamate site of the NMDA receptor has proven
challenging. Its wide distribution in the central nervous
system—associated with decreased tolerability—and the
potentially neurotoxic effects of receptor overactivation have
stimulated the search for compounds more indirectly affect-
ing glutamatergic signalling [36, 88]. Attempts to develop
NMDA receptor enhancing treatments have most notably
focused on full agonists of the glycine modulatory site of
the NMDAR—glycine and D-serine—as well as sarcosine, a
glycine transporter type 1 (GlyT1) inhibitor.

Discouragingly, the Cognitive and Negative Symptoms
in Schizophrenia trial (CONSIST) found no beneficial
effect of using glycine as an add-on treatment in chronic
schizophrenia [89]. A recent meta-analysis by Tsai and Lin
[90] found a consistently good tolerability of both glycine
and D-serine as adjunct treatments but failed to demonstrate
more convincing evidence for their efficacy than moderate
effect sizes for negative symptoms and small effect sizes for
positive and cognitive symptoms. Interestingly, no additional
benefits could be observed for patients receiving clozapine
treatment, possibly due to clozapine’s action as a partial

NMDAR agonist and the generally later disease stage in
this group of patients [91, 92]. Whilst evidence to date
for adjunctive D-serine has been weak, there is some data
to indicate this might be due to inadequate dosing [93].
Trials of indirectly increasing D-serine by inhibiting the
metabolising enzyme D-amino acid oxidase (DAAO) have
not yet advanced to clinical phases [94, 95].

An alternative approach to enhancing glycine levels is the
inhibition of glycine reuptake via type 1 glycine transporters
(GlyT1). Sarcosine, the endogenous GlyT1 inhibitor, has
demonstrated efficacy in alleviating positive, negative, and
general symptoms of schizophrenia as an adjunct treatment
to nonclozapine antipsychotics [96], both in the acute phase
[97] and in chronically ill patients [98, 99]. Lane et al. [100]
investigated sarcosine as monotherapy for schizophrenia
and found some efficacy, with 2 g/day producing stronger
symptom reduction than 1 g/day, but lacked placebo as
well as active control groups. While no published results
are available for the selective GlyT1 inhibitor ORG25935
developed by Merck (phase II completed), Roche’s com-
pound RG1678/RO4917838 has entered phase III testing
after moderately beneficial results in reducing positive and
negative symptoms as an adjunct treatment were reported
[101, 102].

3.3. Metabotropic Glutamate Receptor Compounds. A mul-
titude of potential new antipsychotic drugs target the
less widely distributed metabotropic glutamate receptors
(mGluRs) as agonists or positive allosteric modulators
(PAMs). Selective agonists at mGlu2/3 receptors are thought
to exert their antipsychotic actions by limiting glutamate
release presynaptically and have been shown to attenu-
ate the effects of NMDAR antagonists in humans [38,
103]. Animal models have suggested reduced PCP-induced
dopamine signalling in striatal areas and increased dopamin-
ergic neurotransmission in the PFC after administration of
mGlu2/3 agonists [56, 104, 105]. As a result, compounds
of this type have been predicted to alleviate negative,
cognitive, and positive symptoms [106]. Monotherapy with
pomaglumetad methionil (LY2140023, an oral prodrug of
LY404039) developed by Eli Lilly demonstrated superior
efficacy to placebo and equal results to olanzapine in
reducing positive and negative symptoms of schizophre-
nia in a phase II trial while being well-tolerated [107].
These findings could not be replicated in a follow-up trial
as neither pomaglumetad nor olanzapine showed greater
efficacy than placebo while the incidence of a number of
adverse events limited the drug’s tolerability. Nevertheless,
the compound has recently entered phase III for long-
term testing and head-to-head comparisons with atypical
antipsychotics (http://www.clinicaltrials.gov/). In contrast to
mGlu2/3 agonists, selective agonists at mGlu5 receptors—
which are located mainly postsynaptically and are thought
to modulate NMDAR function by increasing NMDAR-
mediated current—have not yet reached clinical stages
[106].

While the potential of alleviating cognitive symptoms in
schizophrenia via mGlu5R agonism has stimulated interest
in this target [108], full agonistic action at orthosteric
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sites of mGluRs (that is, primary sites of endogenous
ligand binding) has generally been associated with receptor
downregulation and an increased risk of neurotoxic effects
[109–111]. Consequently, a number of compounds targeting
the allosteric site of mGluRs have been developed, some of
which have reached clinical testing phases. As binding to an
allosteric site only modulates the receptor in the presence
of an endogenous ligand—therefore causing transient and
activity-dependent changes—unfavourable effects of orthos-
teric agonists could potentially be avoided [112, 113]. Several
generations of selective positive allosteric modulators at
mGlu5 receptors (MGlu5R PAMs) have shown potential in
animal models for their antipsychotic properties [114, 115].
Most notably, potential reductions in all symptom areas
of schizophrenia have been suggested for the compound
ADX-47273 currently in preclinical development by Addex
[116, 117] and transition into clinical testing is awaited.
Although an mGlu2/3 receptor PAM compound (AZD8529),
developed by AstraZeneca, has recently completed a phase
II trial, no reports have been published to date and it is
unclear if further development of this drug can be expected
[88]. Encouraging results from preclinical studies, however,
have suggested antipsychotic potential for selective positive
allosteric modulators at the mGlu2 receptor. As growing
evidence from animal studies has emphasised the critical role
of the mGlu2 receptor in mediating the clinical effects of
this group of compounds [118, 119], potent selectivity for
this subtype might yield increased efficacy. Notably, strong
potential for antipsychotic action has been demonstrated for
the two major prototypes, LY487379 and Biphenylindanone
A (BINA), resembling results of the aforementioned orthos-
teric mGlu2/3 agonists [120–122].

3.4. Other Potential Targets. In addition to targeting
NMDAR and metabotropic glutamate receptors, several
research efforts have focused on PAMs for the ionotropic
AMPA receptor, so-called “ampakines”. Based on animal
models of improved memory, attention and learning through
enhanced glutamatergic signalling [123, 124], the AMPA
PAM prototype CX516, developed by Shire and Servier
and Cortex, showed preliminary evidence in clinical trials
for enhancing cognitive function as an adjuvant treat-
ment in schizophrenia [125]. In line with the failure to
reproduce these results in a larger trial [126], phase II
trials of the related compound Farampator (ORG24448)
developed by Cortex were terminated and results have not
been published [127]. While it remains unclear whether
research into these agents for the treatment of schizophrenia
will be continued, a number of nonglutamatergic targets
indirectly modulating the glutamate system have shown
promise. In particular, potential antipsychotic properties
have been preliminary demonstrated for the nonhallucino-
genic cannabinoid cannabidiol (CBD) [128–130] as well as
the selective muscarinic M1/M4 receptor agonist xanomeline
in development by Lilly [131, 132]. Further preclinical work
is required, however, to evaluate their suitability for use as
antipsychotic treatment.

4. Conclusion

Although supported by a large body of evidence and
dominating decades of research into aetiology and treatment,
the dopamine hypothesis of schizophrenia insufficiently
accounts for the complexities of the disorder. Both gen-
erations of dopaminergic antipsychotics leave a substantial
proportion of patients suboptimally treated, particularly
regarding negative and cognitive symptoms, as well as having
significant side effects that limit patient concordance with
treatment. The clinical and financial costs of psychosis are
enormous and the need for novel antipsychotic compounds
is acute. Better understanding of the neuropathology of
schizophrenia has highlighted the involvement of alternative
neurotransmitter systems and, in particular, the potential of
the glutamate synapse for providing new pharmacological
targets has arisen. Abnormal glutamate neurotransmission
has been linked to the prodromal phase of schizophrenia and
early psychotic episodes and with the frequently treatment
refractory processes of negative and cognitive symptoms.
Consequently, compounds aiming at restoring glutamater-
gic dysregulation could provide relief for symptoms not
optimally treated by current antipsychotic drugs, intervene
in a potentially critical disease stage and have downstream
effects on dopaminergic neurotransmission. A variety of glu-
tamatergic agents in development are currently undergoing
preclinical and clinical testing. A number of compounds
licensed for medical conditions, several NMDAR enhancing
drugs as well as different mGlu agonists and PAMs have
accumulated preclinical and, in part, early clinical evidence
for use in antipsychotic treatment. Most notably, a GlyT1
inhibitor and an agent modulating glutamate signalling
through selective agonistic action at mGlu2/3 receptors have
shown promising antipsychotic efficacy as well as favourable
side effect profiles and have recently been entered into phase
III trials. While these encouraging advances, together with
the emergence of new potential agents, instil confidence in a
timely identification of novel antipsychotic drugs, moderate
or inconclusive results of several compounds emphasise the
need for further large-scale, high-quality research efforts. In
particular, efficacy of promising candidate drugs, their role in
antipsychotic monotherapy or adjunct treatment as well as
their long-term safety and tolerability require confirmation
and clarification.
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