
RESEARCH ARTICLE

Interleukin-34 Restores Blood–Brain Barrier
Integrity by Upregulating Tight Junction
Proteins in Endothelial Cells
Shijie Jin, Yoshifumi Sonobe, Jun Kawanokuchi, Hiroshi Horiuchi, Yi Cheng,
Yue Wang, Tetsuya Mizuno, Hideyuki Takeuchi*, Akio Suzumura

Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-
cho, Chikusa-ku, Nagoya, 464-8601, Japan

*htake@riem.nagoya-u.ac.jp

Abstract

Interleukin-34 (IL-34) is a newly discovered cytokine as an additional ligand for

colony stimulating factor-1 receptor (CSF1R), and its functions are expected to

overlap with colony stimulating factor-1/macrophage-colony stimulating factor. We

have previously shown that the IL-34 is primarily produced by neurons in the central

nervous system (CNS) and induces proliferation and neuroprotective properties of

microglia which express CSF1R. However, the functions of IL-34 in the CNS are still

elucidative. Here we show that CNS capillary endothelial cells also express

CSF1R. IL-34 protected blood–brain barrier integrity by restored expression levels

of tight junction proteins, which were downregulated by pro-inflammatory cytokines.

The novel function of IL-34 on the blood–brain barrier may give us a clue for new

therapeutic strategies in neuroinflammatory and neurodegenerative diseases such

as multiple sclerosis and Alzheimer’s disease.

Introduction

Interleukin-34 (IL-34) has been identified as an additional ligand for colony

stimulating factor-1 receptor (CSF1R), and it is broadly expressed in various

organs including heart, brain, lung, liver, kidney, spleen, and colon [1]. IL-34 and

colony stimulating factor-1/macrophage-colony stimulating factor (CSF-1/M-

CSF) bind to the different regions of CSF1R and share no overt sequence

homology [2]. Recent studies showed that IL-34 produced by epithelial lineage

cells (e.g. keratinocytes, splenic vascular endothelial cells, and neurons) is

necessary for the development of tissue macrophage-like cells (e.g. Langerhans

cells, osteoclasts, and microglia) [3–5]. We also have shown that IL-34 is
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exclusively produced by neurons in CNS and induces proliferation of microglia

[6]. We also showed that IL-34 attenuated the neurotoxic effect of oligomeric

amyloid beta (Ab) in vitro and intracerebroventricular administration of IL-34

ameliorates the impairment of associative learning in an AD mouse model [6].

Another study also demonstrated that IL-34 rescued neuronal damage in mouse

models of AD and kinate-induced neurotoxicity [7]. These findings suggest

distinct functions of IL-34 in the development of various CNS disorders.

However, the precise functions of IL-34 in the CNS still remain to be elucidated.

The blood-brain barrier (BBB) is a tight seal composed of capillary endothelial

cells, pericytes, and astrocytes [8]. The BBB contributes to maintenance of CNS

homeostasis by limiting the entry of plasma components, erythrocytes, and

immune cells from the circulating blood [9–11]. Tight junction (TJ) plays an

important role in the barrier function of the BBB, which is composed by TJ

proteins including claudins, occludin, and zonula occludens-1 (ZO-1) [12]. BBB

disruption is frequently associated with synaptic and neuronal dysfunction in

various neurological disorders such as multiple sclerosis (MS), AD, Parkinson’s

disease, and amyotrophic lateral sclerosis [13, 14]. Pro-inflammatory cytokines

such as IL-1b, tumor necrosis factor-a (TNF-a), interferon-c, and IL-17, are

thought to downregulate the expression of tight junction proteins and contribute

to the transmigration of inflammatory immune cells into the CNS, which

exacerbates neuroinflammation in these diseases [14–19].

In this study, we found that the CNS capillary endothelial cells as well as

microglia express CSF1R. We also showed that IL-34 restored pro-inflammatory

cytokine–induced BBB disruption by upregulating the expression levels of tight

junction proteins such as claudin-5 and occludin. These findings suggest the

presence of neuronal regulation of BBB functions via IL-34, and upregulation of

IL-34 in the CNS may be a novel therapeutic strategy against neuroinflammatory

and neurodegenerative disorders.

Materials and Methods

Reagents

Recombinant mouse IL-1b, TNF-a, and IL-34 were purchased from R&D Systems

(Minneapolis, MN, USA). The c-fms/CSF1R tyrosine kinase inhibitor GW2580

was used as a blocker of CSF1R signaling (Millipore, Bedford, MA, USA). Dylight

594–labeled tomato lectin was used as a capillary endothelial cell marker (Vector

Laboratories, Burlingame, CA, USA).

Animals

All protocols were approved by the Animal Experiment Committee of Nagoya

University (approved number: 14018). C57BL/6J mice were purchased from Japan

SLC (Hamamatsu, Japan).
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Cells

Primary neuronal cultures were prepared from the cortices of C57BL/6 mouse

embryos at embryonic Day 17 as described previously [20]. Briefly, cortical

fragments were dissociated into single cells in dissociation solution (Sumitomo

Bakelite, Akita, Japan), and resuspended in neuron culture medium (Sumitomo

Bakelite). Neurons were seeded onto 12-mm polyethylenimine-coated glass

coverslips (Asahi Techno Glass Corp., Chiba, Japan) at a density of 5.06104 cells/

well in 24-well culture plates and were incubated at 37 C̊ in a humidified

atmosphere containing 5% CO2. The purity of the cultures was .95% as

determined by NeuN-specific immunostaining. Mouse brain capillary endothelial

cell line MBEC4 [21] was maintained in Dulbecco’s modified Eagle’s medium

supplemented with 10% fetal bovine serum. Confluent monolayer of MBEC4 cells

was used as an established BBB model as described previously [22].

BBB Permeability assay

The permeability of MBEC4 cell monolayers was measuring transendothelial

electrical resistance (TER) as described previously [22]. Confluent monolayer of

MBEC4 cells on the 24-well transwell inserts (3-mm pore size) were incubated with

or without 20 ng/ml TNF-a, 20 ng/ml IL-1b, 0–100 ng/ml IL-34, or 1 mmol/L

GW2580 for 24 h. TER was measured using a Millicell-ERS (Millipore).

Resistances of blank filters were subtracted from those of filters with cells before

final resistances (V N cm2) were calculated. Assays were carried out in five

independent trials.

Immunocytochemistry

Primary neurons and MBEC4 cells were fixed with 4% paraformaldehyde for

10 min, permeabilized using 0.1% Triton X-100 for 5 min, and blocked using 5%

normal goat serum in phosphate-buffered saline (PBS) for 1 h at room

temperature. Neurons were incubated with rabbit anti-mouse IL-34 polyclonal

antibodies (ProSci, Poway, CA, USA), mouse anti-mouse microtubule-associated

protein–2 (MAP-2) monoclonal antibody (Chemicon, Temecula, CA, USA)

overnight at 4 C̊ followed by a 1-h incubation with Alexa-conjugated secondary

antibodies (Invitrogen, Carlsbad, CA, USA). MBEC4 cells were stained using

rabbit anti-mouse CSF1R polyclonal antibodies (Abcam, Cambridge, UK)

overnight at 4 C̊ followed by a 1-h incubation with Alexa-conjugated secondary

antibodies (Invitrogen). Nuclei were counterstained with Hoechst 33342

(Invitrogen). Images were analyzed using a deconvolution fluorescent microscope

system (BZ-8000, Keyence, Osaka, Japan).

Immunohistochemistry

Brains and lumbar spinal cords from C57BL/6J mice were fixed with 4%

paraformaldehyde overnight, equilibrated in 20% sucrose with PBS for 48 hours,
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embedded in Tissue Tek O.C.T. compound (Sakura Finetechnical Co., Ltd.,

Tokyo, Japan), and frozen at 280 C̊ overnight. Coronal brain sections and

transverse spinal cord sections (20 mm-thick) were prepared using a cryostat.

Sections were permeabilized using 0.3% Triton X-100 after blocking with 5%

normal goat serum in PBS for 1 h. Sections were incubated with rabbit anti-

mouse IL-34 polyclonal antibodies (ProSci), mouse anti-mouse MAP-2 mono-

clonal antibody (Chemicon), rabbit anti-mouse CSF1R polyclonal antibodies

(Abcam), and Dylight 594–labeled tomato lectin (Vector Laboratories) overnight

at 4 C̊ followed by a 1-h incubation with Alexa-conjugated secondary antibodies

(Invitrogen). Images were analyzed using a deconvolution fluorescent microscope

system (BZ-8000, Keyence).

RNA isolation and reverse transcription-polymerase chain

reaction (RT-PCR)

MBEC4 cells were cultured at a concentration of 46105 cells/well in 24-well

culture plates and stimulated with 100 ng/ml IL-34 for 24 h. Total RNA was

extracted using the RNeasy Mini Kit (Qiagen, Valencia, CA). cDNAs encoding

mouse IL-34 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were

generated by RT-PCR using SuperScript II (Invitrogen), Blend Taq DNA

polymerase (Toyobo, Osaka, Japan), and the following specific primer sets:

CSF1R forward primer: 59-AAGCAGAAGCCGAAGTACCA-39

CSF1R reverse primer: 59-GTCCCTGCGCACATATTTCAT-39

GAPDH forward primer: 59-TGTGTCCGTCGTGGATCTGA-39

GAPDH reverse primer: 59-CCTGCTTCACCACCTTCTTGA-39

Western Blotting

MBEC4 Cells were lysed in TNES buffer (50 mM Tris-HCl at pH 7.5, 150 mM

NaCl, 1% Nonidet P-40, 2 mM EDTA, and 0.1% SDS) with protease inhibitor

mixture (Complete Mini EDTA-free; Roche Diagnostics, Basel, Switzerland). Cell

lysate proteins dissolved in Laemmli sample buffer (20 mg/well) were separated on

4–20% SDS-polyacrylamide gels (Mini-Protean TGX; Bio-Rad, Hercules, CA,

USA) and transferred to Hybond-P polyvinylidene difluoride membranes (GE

Healthcare, Piscataway, NJ, USA) as described previously [23]. The membranes

were blocked for 1 h at room temperature with 5% skim milk in Tris-buffered

saline containing 0.05% Tween-20, and then incubated overnight at 4 C̊ with

rabbit anti-mouse Zonula Occludens–1 (ZO-1) polyclonal antibodies, rabbit anti-

mouse occludin polyclonal antibodies, rabbit anti-mouse claudin-5 polyclonal

antibodies (Invitrogen), and mouse anti-b-actin monoclonal antibody (Sigma).

After an overnight incubation with primary antibodies at 4 C̊, each blot was

probed with horseradish peroxidase-conjugated anti-mouse IgG (GE Healthcare).

Blots were then visualized with SuperSignal West Dura Extended Duration

Substrate (Thermo Fisher Scientific, Waltham, MA, USA), and quantitated using
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a CS Analyzer 3.0 system (Atto, Tokyo, Japan). Assays were carried out in five

independent trials.

Statistical analysis

Statistical significance was analyzed with one-way analysis of variance followed by

post-hoc Tukey’s test, using GraphPad Prism version 5.0 (GraphPad Software, La

Jolla, CA, USA).

Results

IL-34 is exclusively expressed in CNS neurons

In the previous study, we have reported that IL-34 protein is primarily expressed

in neurons whereas IL-34 mRNA expression was detected in neurons and

astrocytes [6]. First, we confirmed the expression pattern of IL-34 in the CNS

using immunostaining in mouse primary cortical neurons, brains, and spinal

cords. As shown in Fig. 1, IL-34 protein was exclusively expressed in neurons in

the CNS.

CNS capillary endothelial cells expressed IL-34 receptor CSF1R

Next, we examined the expression pattern of IL-34 receptor CSF1R protein in the

CNS using immunostaining. In addition to microglia, CNS microvessels were also

immunopositive for CSF1R (Fig. 2A, green). Its staining pattern in the

microvessels was identical to that of tomato lectin (Fig. 2A, red and arrows in the

overlap images) which selectively binds to the surface of capillary endothelial cells

[24], suggesting that CNS capillary endothelial cells express CSF1R. Meninges and

large vessel adventitia were also stained with CSF1R and tomato lectin. Although

CSF1R has been detected on fibroblasts and smooth muscle cells which are the

main components of meninges and adventitia [1, 7], the meninges and adventitia

showed strong non-specific binding of antibodies and lectin. Therefore, the

positive staining in meninges and adventitia may be artifact.

Furthermore, mouse brain capillary endothelial cell line MBEC4 cells strongly

express CSF1R protein (Fig. 2B, green). MBEC4 cells constitutively express CSF1R

mRNA, and stimulation with IL-34 did not alter CSF1R expression level (Fig. 2C).

These data indicate that CNS capillary endothelial cells constitutively express

CSF1R and are potential target of IL-34 in the CNS, as well as microglia.

IL-34 restored BBB disruption via CSF1R signaling in endothelial

cells

BBB disruption is a common pathological feature of various neurological diseases,

and inflammatory cytokines such as IL-1b and TNF-a have been considered as

causative factors that damage BBB integrity by downregulating TJ proteins in BBB

endothelial cells [14–16, 25, 26]. To investigate whether IL-34 affects the BBB
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integrity, we evaluated BBB permeability by measuring TER in MBEC4 cell

monolayer as an in vitro BBB model [22]. IL-34 significantly ameliorated a

decrease in TER induced by IL-1b and TNF-a in a dose dependent manner

(Fig. 3), whereas treatment with IL-34 alone did not alter untreated BBB integrity

(data not shown). Moreover, addition of CSF1R signal inhibitor GW2580 ablated

the effect of IL-34 on BBB (Fig. 3). These results indicate that IL-34 restored pro-

inflammatory cytokine–mediated BBB disintegrity via CSF1R signaling in

endothelial cells.

IL-34 upregulated TJ proteins in BBB endothelial cells

Next, we assessed whether IL-34 alters the expression levels of TJ proteins that are

sensitive to pro-inflammatory cytokines [14–16]. Western blotting analysis

detected that major TJ proteins such as claudin-5 and occludin were significantly

downregulated by treatment with IL-1b and TNF-a (Fig. 4). Addition of IL-34

reversed the expression levels of these TJ proteins (Fig. 4), whereas treatment with

IL-34 alone did not alter the expression levels of TJ proteins in untreated MBEC4

cells (data not shown). Addition of GW2580 canceled the effect of IL-34 on the

expression of claudin-5 and occludin (Fig. 4). These data suggest that IL-34

rescues pro-inflammatory cytokine–induced BBB disruption via upregulating TJ

proteins such as claudin-5 and occludin in BBB endothelial cells.

Fig. 1. IL-34 is produced by neurons in the CNS. Immunofluorescence images of primary cortical neurons,
brain sections, and lumbar spinal cord sections. Green, IL-34; red, MAP-2; blue, Hoechst nuclear
counterstain. Scale bar, 50 mm.

doi:10.1371/journal.pone.0115981.g001
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Discussion

IL-34 is widely expressed in a variety of tissues including brain. Because IL-34

shares the same receptor with CSF-1/M-CSF, it has similar functions on monocyte

lineage cells such as induction of proliferation and differentiation of macrophages,

Langerhans cells, osteoclasts, and microglia [3–5, 27, 28]. In the CNS, IL-34 is

mainly released by neurons, especially when they are damaged [6]. Like CSF-1/M-

CSF, IL-34 induces microglial proliferation. In addition, IL-34 enhances

microglial neuroprotective functions by inducing anti-oxidant enzyme heme

oxigenase-1 (HO-1), and amyloid degrading enzyme insulin degrading enzyme

(IDE). Moreover, we also found that IL-34 induces microglial production of TGF-

b which negatively regulates microglial activation [29]. TGF-b dose-dependently

suppressed microglial proliferation by IL-34 but attenuated oligomeric amyloid

Fig. 2. CNS endothelial cells express CSF1R. (A) Immunofluorescence images of brain sections, and
lumbar spinal cord sections. Green, CSF1R; red, tomato lectin; blue, Hoechst nuclear counterstain. Arrows
indicate CSF1R-immunopositivity in the capillary endothelial cells. Scale bar, 50 mm. (B) Immunofluorescence
image of mouse brain capillary endothelial cell line MBEC4. Green, CSF1R; blue, Hoechst nuclear
counterstain. Scale bar, 50 mm. (C) RT-PCR data for CSF1R. Stimulation with IL-34 did not alter the
expression of CSF1R in MBEC4 cells.

doi:10.1371/journal.pone.0115981.g002
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b–mediated neurotoxicity [29]. The neuroprotective functions of IL-34 was

partially suppressed by blockade of TGF-b receptor signaling, suggesting that

neuroprotective effect of IL-34 was in part mediated by microglial TGF-b

production in response to IL-34. Thus, IL-34 released from damaged neurons acts

as a ‘‘Help-me’’ signal which induces microglial neuroprotective effects with

Fig. 3. IL-34 restores damaged BBB integrity. MBEC4 cells were treated with TNF-a (20 ng/ml) and IL-1b
(20 ng/ml) in the presence of IL-34 (0–100 ng/ml) and GW2580 (1 mmol/l). TER of MBEC4 cell monolayer was
measured after a 24-h incubation. Values are means ¡ SEM (n55). *, p,0.05; {, p,0.01.

doi:10.1371/journal.pone.0115981.g003

Fig. 4. IL-34 upregulates tight junction proteins in MBEC4 cells. MBEC4 cells were incubated with TNF-a
(20 ng/ml) and IL-1b (20 ng/ml) in the presence of IL-34 (0–100 ng/ml) and GW2580 (1 mmol/L) for 24 h.
Upper, representative images of Western blots for tight junction proteins. Bottom, quantified expression levels
of tight junction proteins relative to those in untreated cells. Values are means ¡ SEM (n55). *, p,0.05.

doi:10.1371/journal.pone.0115981.g004
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subsiding microglial activation (Fig. 5). The expression of CSF1R is reportedly

high during early postnatal development, and is very low in adult brain [30]. IL-

34 exhibited a broader regional expression than CSF-1/M-CSF, mostly without

overlap, suggesting important role of IL-34–CSF1R signaling in regional

neurogenesis. A previous study reported that CSF1R expression is increased in

microglia of AD brains and microglia overexpressing CSF1R are neuroprotective

[31]. Therefore, IL-34 produced by neurons [6] as well as CSF-1/M-CSF produced

by astrocytes [32] may be involved in the development of neurodegenerative

disesases such as AD via microglial CSF1R signaling.

In this study, we have shown that BBB endothelial cell expresses CSF1R and is a

novel target of IL-34. BBB disruption has been implicated as a pathogenesis of

various neurological disorders including MS and AD. A recent study showed that

amyloid b suppressed expression of TJ protein ZO-1 in BBB endothelial cells via

receptor for advanced glycation end products (RAGE) and claimed that amyloid

b-RAGE interaction may be a potential molecular pathway in breakage of BBB

integrity [33]. In addition, pro-inflammatory cytokines such as IL-1b, TNF-a,

IFN-c, and IL-17 have been considered as the candidates to increase BBB leakage

[14–19]. Our findings revealed a novel function of IL-34–CSF1R signaling on the

maintenance of BBB integrity via upregulating major TJ proteins claudin-5 and

occludin in capillary endothelial cells (Fig. 5). A major downstream target of

CSF1R signaling is cAMP responsive element-binding protein (CREB), which

modulates the transcription of TJ proteins [34, 35]. Taken together, IL-34 released

from damaged neurons may functions as a ‘‘Help-me’’ signal toward restoration

of CNS homeostasis via microglia and BBB endothelial cells (Fig. 5). Our study

clarified the presence of neuronal regulation of BBB functions via IL-34–CSF1R

Fig. 5. Model of the roles of IL-34 in the CNS. Damaged neurons secrete IL-34 as a ‘‘Help-me’’ signal. IL-34
binds its receptor CSF1R which is mainly expressed in microglia and BBB endothelial cells. CSF1R signaling
enhances neuroprotection in microglia and restores BBB disruption by upregulating TJ proteins in capillary
endothelial cells.

doi:10.1371/journal.pone.0115981.g005
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signaling. IL-34–CSF1R pathway may be novel therapeutic target for neuroin-

flammatory and neurodegenerative disorders such as MS and AD.
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