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Members of the Eph family of receptor tyrosine kinases have been implicated in a wide array of human 
cancers. The EphB4 receptor is ubiquitously expressed in head and neck squamous cell carcinoma 
(HNSCC) and has been shown to impart tumorigenic and invasive characteristics to these cancers. In 
this study, we investigated whether EphB4 receptor targeting can enhance the radiosensitization of 
HNSCC. Our data show that EphB4 is expressed at high to moderate levels in HNSCC cell lines and 
patient-derived xenograft (PDX) tumors. We observed decreased survival fractions in HNSCC cells 
following EphB4 knockdown in clonogenic assays. An enhanced G2 cell cycle arrest with activation 
of DNA damage response pathway and increased apoptosis was evident in HNSCC cells following 
combined EphB4 downregulation and radiation compared to EphB4 knockdown and radiation alone. 
Data using HNSCC PDX models showed significant reduction in tumor volume and enhanced delay 
in tumor regrowth following sEphB4-HSA administration with radiation compared to single agent 
treatment. sEphB4-HSA is a protein known to block the interaction between the EphB4 receptor and 
its ephrin-B2 ligand. Overall, our findings emphasize the therapeutic relevance of EphB4 targeting as a 
radiosensitizer that can be exploited for the treatment of human head and neck carcinomas.

The management of locally advanced head and neck squamous cell carcinoma (HNSCC) patients presents a 
formidable challenge. Radiation therapy in combination with chemotherapy or targeted therapy remains the 
mainstay for the definitive treatment of locally advanced HNSCCs. Despite this aggressive management, there has 
been limited improvement in survival rates for these patients1,2. This can be attributed to activation of some of the 
tyrosine kinase receptor pathways that promote tumor cell proliferation and survival3. Initially discovered as crit-
ical players in development, emerging reports suggest that erythropoietin-producing hepatocellular carcinoma 
(Eph) receptors are aberrantly regulated in numerous pathological conditions including cancer4.

The EphB4 receptor belongs to the Eph family of receptor protein tyrosine kinases5 and has been shown to play 
a pro-tumorigenic role in carcinomas of head and neck, lung, prostate, breast, mesothelium, and esophagus3,6–11. 
Of note, EphB4 expression is limited in normal adult tissue12, which makes it an ideal target for therapeutic 
intervention. Previous studies have reported an association between EphB4 overexpression and advancement 
of disease13. Winter et al. have shown the presence of EphB4 on circulating tumor cells of HNSCC patients14. A 
correlation between high EphB4 expression and decreased overall survival rates in head and neck cancer patients 
has also been demonstrated15. In addition to playing a role in tumor growth, and metastasis, Eph/ephrins have 
also been reported to impart radioresistance to cancer cells16,17. EphB1 receptor inhibition, for example, enhances 
sensitivity of medulloblastoma cells to ionizing radiation both in vitro and in vivo16.
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Based on EphB4 involvement in HNSCCs, we set to understand the role of EphB4 targeting in radiosensiti-
zation of HNSCC. We investigated whether downregulation of EphB4 expression/signaling can alter the radio-
sensitivity profile of HNSCCs. The underlying hypothesis is that EphB4 targeting enhances radiosensitization 
of HNSCC by modulating EphB4-related targets. Our findings suggest that knockdown of EphB4 modulates 
radiosensitivity profile in vitro. Similar results were observed in vivo using sEphB4-HSA protein with radia-
tion. sEphB4-HSA comprises of an extracellular fragment of EphB4 receptor tagged to human serum albumin 
to prolong its serum half-life18. sEphB4-HSA acts by blocking interaction between the EphB4 receptor and the 
ephrin-B2 ligand18. The characterization, binding specificity, and pharmacokinetics of sEphB4-HSA has already 
been established in previous studies18. To our knowledge, this is the first study to elucidate the functional role of 
EphB4 targeting in radiosensitization of HNSCCs.

Results
Human HNSCC cells express high levels of EphB4 receptor. The EphB4 receptor is ubiquitously 
expressed in HNSCCs3,19. We observed that EphB4 protein is expressed at high to moderate levels in HNSCC 
cells compared to normal oral keratinocyte (NOK) cells (Fig. 1A). We tested our hypothesis in the HPV negative 
cell lines: MSK-921, Fadu, and Cal27. Both the Fadu and the Cal27 cell lines are well characterized cell lines 
derived from hypopharynx and tongue respectively20,21 and display differential expression of EphB4 receptor. 
MSK-921 is derived from pharynx and expresses high levels of EphB4 receptor. It has been heavily explored at 
our institution22. To determine the role of EphB4 in HNSCC cells, we knocked down the expression of EphB4 
using two EphB4-specific siRNAs. MSK-921, Cal-27, and Fadu cells were transfected with either EphB4-siRNAs 

Figure 1. EphB4 is expressed in human HNSCC cells and its knockdown sensitizes HNSCC cells to 
ionizing radiation. (A) The EphB4 receptor is present at high to moderate levels in human HNSCC cells 
compared to the normal oral keratinocyte (NOK) cells as detected by Western blotting. (B) EphB4 expression 
is reduced upon transfection with the EphB4-targeting siRNAs 1 or 2 compared to the control non-specific 
siRNA (NS-siRNA). (C–E) Reduction in survival fractions in HNSCC cells is observed after transfection 
with the EphB4-targeting siRNA versus the control NS-siRNA (25-50 nM) in Cal27 (C), MSK-921 (D), and 
Fadu (E) cells as determined by clonogenic assay. Each clonogenic assay was repeated atleast three times. 
Representative survival plots are shown for each cell line. The survival plot for the MSK-921 cells was generated 
using 0-6 Gy dose of ionizing radiation because 8 Gy dose did not yield viable colonies. Data shown represent 
mean ±  standard deviation. *p <  0.05; **p <  0.01.
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or a control, nonspecific siRNA (NS-siRNA) and transfection efficiency was analyzed at 72 h post-transfection. 
We observed reduction in the EphB4 expression following knockdown by both the EphB4-targeting siRNAs 
compared to NS-siRNA as shown by Western blot analysis (Fig. 1B). Cells transfected with NS-siRNA did not 
demonstrate any obvious changes in the receptor of interest compared to non-transfected cells.

Knockdown of EphB4 receptor enhances radiosensitization in HNSCC cells. To determine 
whether EphB4 knockdown can enhance the sensitivity of HNSCC cells to ionizing radiation, clonogenic sur-
vival assays were performed. We transfected HNSCC cells with an optimal dose of either control NS-siRNA or 
EphB4-specific siRNAs, followed by exposure to increasing doses (2, 4, 6, and 8 Gy) of radiation. After incubating 
cells for 9–14 days post-radiation, we analyzed the clonogenic survival fractions. Our data show that following 
EphB4 knockdown, HNSCC cells became more sensitive to radiation (Fig. 1C–E). In Cal27 cells, the SF2 (sur-
vival fraction at 2 Gy dose of ionizing radiation) values decreased from 0.86 in the control NS-siRNA group to 
0.66 in the EphB4-siRNA group (Fig. 1C, Table 1). In MSK-921 cells, the SF2 values decreased from 0.34 in the 
NS-siRNA to 0.23 in the EphB4 transfected cells (Fig. 1D, Table 1). Fadu cells also demonstrated a similar trend, 
with SF2 values decreasing from 0.68 in the NS-siRNA transfected cells to 0.45 in the EphB4-knockdown cells 
(Fig. 1E, Table 1). Similar results were obtained with EphB4-siRNA#2 (data not shown).

Combined EphB4 receptor knockdown and ionizing radiation exposure enhances G2/M cell 
cycle arrest. Cells display enhanced sensitivity to radiation in the G2/M phase of cell cycle23. Therefore, to 
understand the mechanism by which EphB4 knockdown might enhance the radiosensitivity of HNSCC cells, 
we analyzed cell cycle distribution. Flow cytometry analysis demonstrated that following combined EphB4 
knockdown and radiation exposure, a higher percentage of MSK-921 cells (approx. 45%) were accumulated 
in the G2 phase compared to cells treated with NS-siRNA, EphB4 siRNA or NS-siRNA and radiation (8 Gy) 
(Supplementary Figure 1A,B). Similar trend was evident in Fadu cells, where EphB4 downregulation with radia-
tion (6 Gy) resulted in an increased percentage of cells in the G2 phase as compared to the other experimental or 
control groups (Supplementary Figure 1C,D).

Knockdown of EphB4 receptor followed by ionizing radiation induces increased DNA damage 
compared to single agent treatments. DNA damage is one of the main mechanisms of apoptotic cell 
death induced by radiation24. To investigate whether EphB4 knockdown radiosensitizes HNSCC cells by affecting 
DNA damage response pathways, we studied cellular induction and accumulation of γ -H2AX, a hallmark of the 
DNA damage response24, by both immunofluorescence and flow cytometry approaches in different HNSCC cell 
lines. The results from immunofluorescence were in concordance with flow cytometry.

By immunofluorescence staining with anti-p-H2AX antibody, we observed ~20–30% increase in γ -H2AX 
foci with the addition of EphB4 knockdown to radiation treatment in MSK-921 cells (Fig. 2A,B, p <  0.005). 
We also analyzed another DNA damage response protein, Rad51 and found that combined EphB4 knockdown 
and radiation resulted in ~20% enhancement in Rad51 foci in MSK-921 cell line (Fig. 2C,D, p <  0.005) com-
pared to radiation alone. Similar results were evident in Fadu cells in combination group compared to radiation 
alone treatment with respect to p-H2AX expression (Fig. 2E,F, p <  0.05) and Rad51 (Fig. 2G,H, p <  0.05). These 
data for p-H2AX expression were corroborated by flow cytometry where EphB4 knockdown in combination 
with radiation induced an ~10% increase in p-H2AX-expressing cells compared to radiation in both MSK-921 
(Supplementary Figure 2A, p <  0.05) and Cal27 cells (Supplementary Figure 2B).

To further explore key players of the DNA damage response pathway, we performed Western blot analysis.  
We observed increased expression of p-H2AX, Rad51, and Ku80 following EphB4 knockdown in MSK-921 cells  
(Fig. 2I) and Fadu cells (Fig. 2J) that were irradiated with 8 Gy dose compared to other groups at 24 h 
post- radiation.

Combined EphB4 knockdown and ionizing radiation induces enhanced apoptosis in HNSCC 
cells. Enhanced apoptosis is one of the key anti-tumor responses mediated by EphB4 targeting and radia-
tion3,25–28. In caspase-3/7 assay, we observed a significant increase in apoptosis (~28%) in Fadu cells transfected 
with EphB4-siRNA and 4 Gy dose of radiation compared to radiation alone at 96 h (Fig. 3A, p <  0.05). When 
we used this assay in MSK-921 cells, combining EphB4-siRNA treatment with radiation enhanced apoptosis 
compared to EphB4-siRNA alone only (data not shown). We next analyzed the expression of pro-survival mark-
ers such as p-AKT and Bcl-XL in both Fadu and MSK-921 cells following EphB4-siRNA or control NS-siRNA 
transfection + /−  radiation. Our western blot data show decreased levels of both p-AKT, and Bcl-XL proteins in 
the combined treatment group compared to other groups at 72 h post-radiation in Fadu (Fig. 3B) and MSK-921 
cells (Fig. 3C).

Eph receptors are reported to interact with other tyrosine kinase receptors such as EGFR to promote cell 
survival and metastasis29. We observed that phosphorylated EGFR (p-EGFR) and total EGFR levels were 

Cell lines NS-siRNA (SF2 values) EphB4-siRNA (SF2 values)

Cal27 0.86 0.66

MSK-921 0.34 0.23

Fadu 0.68 0.45

Table 1.  This table lists the survival fractions at 2 Gy dose of ionizing radiation (SF2) for each individual 
cell line comparing effects of the EphB4-siRNA transfection to those of the NS-siRNA transfection.
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Figure 2. EphB4 downregulation combined with ionizing radiation enhances the DNA damage response 
in HNSCC cells. p-H2AX analysis shows a significant enhancement in the percentage of p-H2AX positive 
MSK-921 cells following EphB4 knockdown and ionizing radiation as demonstrated by immunofluorescence 
staining (A and B). In addition, an increase in Rad51-foci is also evident in MSK-921 cells (C and D). A similar 
trend was observed in Fadu cells in terms of p-H2AX (E and F) and Rad51 (G and H) expression. Data shown 
represent mean ±  standard error from two to three independent experiments. *p <  0.05; **p <  0.005. Total 
magnification: 600–1000x. Western blot analyses demonstrate enhanced levels of p-H2AX, Ku80, and Rad51 
indicative of the DNA damage response in the combination group compared to the other experimental groups 
in MSK-921 cells (I) and Fadu cells (J).
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reduced in the combined EphB4 knockdown and radiation group compared to other groups in MSK-921 cells 
(Supplementary Figure 3).

sEphB4-HSA treatment enhances radiosensitization in PDX models of HNSCC. To examine the 
impact of EphB4 targeting on radiosensitivity in vivo, we used three PDX models of HNSCC. Some of the charac-
teristics of these tumors are listed in Supplementary Table 1. These patient-derived tumors were found to express 
high levels of EphB4 (Supplementary Figure 4). Small pieces of tumor tissue were implanted in the flanks of nude 
mice as described in the materials and methods. Once the tumors reached 50–150 mm3, mice were randomized 
into four groups (n =  6–8 per group), including (1) PBS, (2) sEphB4-HSA, (3) PBS +  radiation (XRT) and (4) 
sEphB4-HSA +  radiation (XRT). We utilized a 5 Gy x 4 fractions radiation dosing delivered bi-weekly over a 
period of two weeks. To rule out a false negative radiosensitization effect due to high radiation dose that might 
have eliminated an effect in CUHN022 tumors, we also employed dose de-intensification to 2 Gy x 5 fractions.

We observed that sEphB4-HSA treatment decreased tumor growth in mice implanted with CUHN013, 
CUHN022, and CUHN004 tumors (Fig. 4A,C and E). Fractionated ionizing radiation (PBS+ XRT) significantly 
reduced tumor volumes in mice engrafted with CUHN013, and CUHN004 tumors. Furthermore, CUHN013 
tumor growth analysis showed a significant reduction in tumor volume by approximately 4 fold following 
sEphB4-HSA treatment +  XRT compared to PBS+ XRT on day 38 post-treatment (Fig. 4B, p <  0.005). For 

Figure 3. Combined EphB4 knockdown and ionizing radiation exposure induces apoptosis in HNSCC 
cells. EphB4 knockdown combined with radiation enhances apoptosis in Fadu cells as shown by caspase 3/7 
assay (A). Western blot analysis show modulation in the levels of pro-survival markers in Fadu (B) and MSK-
921 (C) cells following EphB4 knockdown and radiation exposure (XRT). Each experiment was repeated atleast 
two times. Data shown represent mean ±  standard error from two independent experiments. *p <  0.05.
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Figure 4. EphB4 targeting enhances radiosensitivity in HNSCC PDX models. Tumor growth analyses of 
CUHN013 PDX tumors (A,B), CUHN022 PDX tumors (C,D), and CUHN004 PDX tumors (E,F) show that 
sEphB4-HSA treatment combined with radiation significantly decreases tumor volume over time compared to 
single agent treatments. sEphB4-HSA was administered on days 0, 3, 5, 7, 10, 12, 14, 17, 19, 21, 24, 26, 28, 31, 
33, 35, and 38. The symbol “↓ ” represent days when tumors were exposed to ionizing radiation (5 Gy/fraction 
for CUHN013 and CUHN004; 2 Gy/fraction for CUHN022). The mice in the PBS group were sacrificed on 
day 31 (CUHN013), or day 28 (CUHN004) because their tumors became too large. Data shown represent 
mean ±  standard deviation. *p <  0.05,**p <  0.005, **p <  0.0005.
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CUHN004 tumors, combining radiation with sEphB4-HSA showed significant tumor growth reduction by 
approximately 3 fold compared to PBS+ XRT on day 38 (Fig. 4E,F; p <  0.05). In mice implanted with the HPV+  
tumor, CUHN022, there was no significant impact of the combination treatment compared to radiation alone at 
5 Gy dose (Supplementary Figure 5 A,B). Given that HPV positive tumors are known to be exquisitely radiosen-
sitive, we reduced the radiation dose to examine if this would yield a radiosensitization effect. Figure 4C and D 
show that tumor growth was reduced by approximately 0.5 fold in the combination group compared to PBS+ 
XRT on day 34 post-XRT.

Since sEphB4-HSA acts by blocking the binding of EphB4 with its ligand ephrin-B2, we performed ELISA 
measuring EphB4 tyrosine phosphorylation (activation) in PDX tumors to demonstrate successful EphB4 target-
ing in vivo. Our data showed a significant decrease in p-EphB4 in CUHN004 tumors treated with sEphB4-HSA 
compared to control PBS group (Supplementary Figure 6).

EphB4 targeting radiosensitizes HNSCC PDX tumors by affecting proliferation, and apoptotic 
pathways. Immunofluorescence analysis in PDX tumors showed reduced expression of the proliferation 
marker PCNA in the combination group compared to other groups (Fig. 5A). To further explore the mech-
anism of radiosensitization in vivo, we performed TUNEL assay. A significant enhancement in percentage of 
the TUNEL-positive nuclei was observed following combined sEphB4-HSA and radiation treatment compared 
to single treatments in the CUHN013 tumors (Fig. 5B,C). Western blot analysis show decreased expression of 
p-EGFR, EGFR, p-STAT3, STAT-3, and p-AKT in tumors treated with sEphB4-HSA and radiation compared 
to single agent or control PBS (Fig. 6A). We also used a human apoptosis antibody array to delineate apoptotic 
proteins that are modulated as a result of EphB4 targeting + /− XRT (Fig. 6B). Our data show a decrease in the 
levels of Bcl-2, survivin, and Ho-2 proteins in the combination group (sEphB4-HSA +  XRT) compared to other 
groups in CUHN013 tumors (Fig. 6C).

Discussion
Eph/ephrin signaling is dysregulated in a number of human cancers including head and neck squamous cell 
carcinomas30. Accumulating evidence suggests that Eph/ephrin family members including EphB1, EphA2, 
EphB4, ephrin-A1, and ephrin-A3 impart radioresistant phenotype to the cancer cells16,17,31–33. In the present 
study, we investigated the functional significance of EphB4 targeting/knockdown in enhancing radiosensitivity 
of HNSCCs. Our data indicate that EphB4 knockdown enhances cellular radiosensitization by decreasing clono-
genic survival in HNSCC cells, inducing G2 cell cycle arrest, modulating the DNA damage response pathway, and 
ultimately resulting in apoptotic cell death. The HNSCC cells showed reduction in clonogenic survival following 
transfection with EphB4-siRNA vs. control NS-siRNA at increasing radiation doses. The differences in the clo-
nogenic profile can be partly attributed to the differential expression of the EphB4 receptor present on HNSCC 
cells. Furthermore, enhanced radiosensitization effect observed after EphB4 downregulation is mediated in part 
via increased G2 cell cycle arrest, which was found to be radiation dose-dependent.

The in vitro findings were substantiated in vivo by HNSCC PDX models. The combination of radiation and 
EphB4 targeting used not only resulted in a significant reduction in tumor volume but also delayed tumor growth 
compared to single agent treatments. This was evident in tumors derived from HPV-negative patients with 
aggressive histology, heavy smoking history, who had failed chemoionizing radiation therapy (CUHN013, and 
CUHN004) and HPV-positive never-smoker patient (CUHN022). In fact, we observed an interesting synergistic 
response when we combined EphB4 targeting with radiation together. In CUHN022 tumor, radiosensitization 
due to EphB4 targeting was observed after radiation dose de-escalation. HPV-positive tumors are known to be 
less malignant2,34 and ongoing trials are focused on treatment de-intensification35–38. Our results with CUHN022 
show no effect of EphB4 targeting on radiosensitization with high dose of radiation, but a difference was noticed 
when the radiation dose was decreased. This could be important in achieving maximal therapeutic effect while 
minimizing radiation-induced toxicity, particularly at high doses. Furthermore, our mechanistic data supports 
the hypothesis that combined sEphB4-HSA and radiation treatment results in enhanced radiosensitization of 
HNSCC tumors. The radiosensitization effect is mediated via effects on cell proliferation and cell survival path-
ways. Thus, our results are in agreement with published reports suggesting a role of EphB4 in HNSCC3.

Enhanced apoptosis is one of the main mechanisms underlying the anti-tumorigenic effects of sEphB4-HSA 
treatment3,25,26,39,40. Reports suggest that DNA damage is a causative factor of apoptosis following radiation24. Our 
immunofluorescence and flow cytometry data are the first to show that EphB4 knockdown along with radiation 
results in significant enhancement in the levels of p-H2AX, a DNA damage sensor protein. We also noticed 
an increase in the number of Rad51-positive cells by immunofluorescence staining following combined EphB4 
downregulation and radiation compared to either treatment alone. We observed an increased expression of DNA 
damage response proteins (including p-H2AX, Ku80, and Rad51 protein expression) in HNSCC cells following 
EphB4 knockdown in the absence or presence of radiation. This is in agreement with a study that suggests the 
involvement of Eph receptors and ephrins in the DNA damage response41. A correlation was shown between  
Eph/ephrin expression in human cancers with increased DNA damage repair and blockade of apoptosis41. 
Another study documented the role of Dasatinib, a tyrosine kinase inhibitor that targets EphB4, EphA2, and 
EphB2 among other kinases42,43, in exerting a radiosensitizing effect by affecting the DNA double-strand break 
response pathway. Our findings indicate that the radiosensitization effect observed following EphB4 knockdown 
is partly mediated via modulation of DNA damage response pathway.

Previous studies have found a correlation between radiation and programmed cell death27,28,44,45. Importantly, 
EphB4 knockdown has been reported to promote cell death by apoptosis3,39. We used a caspase3/7 assay to meas-
ure apoptotic cell death in HNSCC cells. In addition, we used an apoptosis antibody array to analyze PDX tumors 
and identify apoptotic markers that could be modulated following sEphB4-HSA and radiation treatment. Our 
data suggest a significant increase in caspase3/7 expressing cells after combined EphB4 knockdown and radiation 
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treatment compared to other groups. This was accompanied by decrease in the levels of pro-survival markers 
such as Bcl-XL, and p-AKT in HNSCC cells. Our findings suggest that the DNA damage response pathway stim-
ulated in response to EphB4 knockdown and radiation ultimately results in tumor cell death. Consistent with our  
in vitro results, we noticed a significant increase in TUNEL staining, which was accompanied by decreased levels 

Figure 5. EphB4 targeting radiosensitizes HNSCC tumors and affects tumor growth by reducing 
proliferation, and enhancing apoptosis. Immunofluorescence analysis of CUHN013 PDX tumors show 
reduction in PCNA (A) and enhancement in TUNEL-positive nuclei (B) in mice treated with sEphB4-HSA 
and ionizing radiation (XRT) compared to mice treated with a single agent. Quantitative analysis of TUNEL 
staining (C) show significant increase in apoptosis as evident by TUNEL-positive nuclei in the combination 
group compared to single agents. Data shown represent mean ±  standard deviation. *p <  0.05, **p <  0.005. Total 
magnification: 600x.
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of anti-apoptotic proteins such as Bcl-2, Ho-2, and survivin in the tumors harvested from combination treatment 
group compared to single agent alone. We also observed a decreased expression of the proliferation marker, 
PCNA, in the combined treatment group compared to groups treated with single agents in vivo.

The role of EGFR signaling in tumorigenesis is well documented46. Our results show decreased levels of both 
phosphorylated EGFR, and total EGFR following EphB4-siRNA transfection and radiation exposure in MSK-
921 cells, suggesting that functional interaction between the EphB4 receptor and EGFR might be responsible 
for promoting tumorigenesis and progression in HNSCC cells. Tumors harvested from the combination group 
(sEphB4-HSA +  XRT) had lower levels of both p-EGFR and total EGFR compared to other groups. Since several 
human cancers have elevated expression of EGFR along with Eph receptors, therapeutic agents targeted against 

Figure 6. EphB4 targeting in combination with ionizing radiation exposure alters the expression of 
apoptotic and tumor growth promoting molecules in CUHN013 tumors. Western blot analysis shows 
decreased phosphorylation or decreased levels of proteins implicated in tumor growth and cell survival in 
CUHN013 tumors treated with sEphB4-HSA and radiation compared to tumors treated with a single agent.  
(B) A heat map generated based on the results of a human apoptosis antibody array using GeneE software 
(Broad institute, USA) depicts decreased expression of survival markers in CUHN013 tumors treated as 
indicated. (C) Validation of hits by western blotting shows decreased levels of pro-survival proteins such as 
Ho-2, Bcl-2, and survivin in tumors treated with sEphB4-HSA combined with radiation (XRT) compared to 
tumors treated with a single agent.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:38792 | DOI: 10.1038/srep38792

Eph family members could potentially also affect tumors through EGFR inhibition. We are currently expanding 
on this finding in an ongoing project in our laboratory. In addition, we observed reduced expression of another 
pro-survival protein such as p-AKT in tumors exposed to combination treatment compared to either treatment 
alone. We also observed a significant decrease in the levels of phosphorylated EphB4 in PDX tumors in the 
sEphB4-HSA administered group compared to the control PBS group. Targeting of EphB4 axis may not be the 
only mechanism of sEphB4-HSA protein. Abrogation of other Eph receptors and of ephrin-B2 reverse signal-
ing may also play a role. Studies are currently underway to determine how disrupting the interaction between 
Eph receptor and its cognate ligand affects tumor growth in HNSCCs. The signal transducer and activator of 
transcription-3 (STAT3) pathway plays a critical role in stimulating proliferation, invasion, and evasion of apop-
tosis in human cancers including cancers of head and neck47,48. Ferguson et al. have shown that in lung carci-
noma cells, EphB4 knockdown affects apoptosis by altering the expression of the JAK-STAT family of proteins25. 
Another study by Pradeep et al. reported that EphB4 receptor promotes tumor growth and progression via stim-
ulation of STAT3 signaling26. We noticed reduced expression of phosphorylated and total STAT3 in PDX tumors 
following sEphB4-HSA treatment with radiation. This data suggest that EphB4 targeting combined with radiation 
acts by affecting EphB4 downstream targets, ultimately resulting in an anti-tumor response observed in the form 
of tumor growth delay and significant reduction in tumor volumes in HNSCC PDX tumors.

Overall, our findings underscore the importance of EphB4 targeting in enhancing radiosensitization in both 
HNSCC cells and PDX models. The effect is mediated by alterations in cell cycle, DNA damage, and cell death 
pathways. Studies are currently underway to screen a broad range of PDX tumors and categorize them into differ-
ent subtypes. From a translational viewpoint, the information obtained from these studies would be very useful 
for predicting the treatment responses of HNSCC patients and eventually might have an impact on personalized 
patient care. In conclusion, our data suggest that EphB4 serves as an ideal target and EphB4-directed therapeutic 
agents in combination with radiation may hold a great promise for clinical translation in head and neck cancer.

Materials and Methods
Cell lines and reagents. The human HNSCC cell lines Cal27, and Fadu were obtained from the American 
Type Culture Collection (ATCC, Rockville, MD, USA). MSK-921, SCC-25, Detroit 562, and normal oral keratino-
cyte (NOK) cell lines were obtained from Dr. XJ Wang’s lab (University of Colorado, Anschutz Medical Campus, 
Aurora, CO, USA). MSK-921 cells were maintained in RPMI-1640 medium with 10% fetal bovine serum, and 
primocin (Invivogen, San Diego, CA, USA). Cal27, Fadu, SCC-25, and Detroit 562 cells were maintained in 
Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% fetal bovine serum, primocin at 37 °C and 5% CO2. 
NOK cells were grown in defined keratinocyte medium (Gibco, NY, USA). sEphB4-HSA protein was provided by 
Vasgene Therapeutics Inc. (Los Angeles, CA, USA).

siRNA Transfection. For transfection, two EphB4 targeting siRNAs and a control non-specific siRNA were 
used. HNSCC cells were transfected in serum-free, antibiotic-free growth medium using Mirus TransIT-TKO 
Transfection Reagent (Madison, WI, USA), according to the manufacturer’s instructions. Short interfering RNAs 
(siRNA) specific for human EphB4 (ID: s243, and 533) and the non-specific control siRNA were obtained from 
Invitrogen (Carlsbad, CA, USA). Briefly, cells were transfected using 10 μ L TransIT-TKO for a final concentration 
of 25–50 nM siRNA. Cells were incubated with the transfection complex for 4–20 h, medium was replaced with 
fresh serum-containing and antibiotic-containing growth medium and used for further analysis.

Whole cell lysate preparation. Human HNSCC cells were homogenized in RIPA buffer (Millipore, MA, 
USA), containing protease inhibitor cocktail (Thermo Fisher Scientific Inc., IL, USA) and phosphatase inhibi-
tors (Sigma, MO, USA) on ice for 30 min. Lysates were collected and protein concentration was determined as 
described16.

Western blotting and antibodies. Protein lysates (20–30 μ g) were loaded onto 10–12% SDS-PAGE gels, 
electrophoresis, and blocking were conducted as described16. Blots were probed overnight at 4 °C with respec-
tive antibodies. Primary antibodies (anti-p-Akt, anti-p-EGFR, anti-Bcl-XL, anti-Ku80, anti-p-STAT3, STAT3, 
anti-p-H2AX, and anti-β -actin) were obtained from Cell Signaling Technology (Danvers, MA, USA). Anti-EGFR 
and anti-Rad51 antibody was purchased from Santa Cruz Biotechnology, Dallas, TX, USA, and anti-EphB4 anti-
body (clone m265) was provided by Vasgene Therapeutics Inc. (Los Angeles, CA, USA). Horseradish peroxidase 
(HRP)–conjugated secondary antibodies were obtained from Sigma (St. Louis, MO, USA).

Irradiation. Cells and animals were irradiated with indicated radiation doses using a 160 KVp source RS-2000 
(Rad Source Technologies, Inc) X-ray irradiator at 25 mAmp, and at a dose rate of 1.24 Gy/minute. The biological 
irradiator used for both in vitro and in vivo experiments has a 0.3 mm copper filter. A customized shield exposing 
only the flank tumors was used to irradiate mice.

Clonogenic survival assay. Cellular survival was determined following exposure of cells to ionizing radi-
ation in 25 cm3 flasks. Clonogenic cell survival was analyzed as described49,50. Briefly, colonies of > 50 cells were 
counted 9–14 days after radiation. Plating efficiency (PE) and survival fraction (SF) were calculated using the 
following formulas:

PE =  Number of colonies formed/Number of cells seeded
SF =  Number of colonies formed after radiation/Number of cells seeded × PE.
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Survival fraction following radiation in NS-siRNA or EphB4-siRNA transfected cells was normalized taking 
into account plating efficiency in that particular group at 0 Gy. Each experiment was replicated atleast 3 times.

Cell cycle analysis. MSK-921 and Fadu cells were seeded at a density of 150,000 cells/well in 6-well plates. 
Cells were transfected using the transfection protocol described above and irradiated with an optimal radiation 
dose. After 48–72 h radiation, cells were collected, washed twice in ice-cold PBS, fixed in 70% ethanol, stained 
with propidium iodide, and analyzed for cell cycle by flow cytometer. Each experiment was repeated 2–3 times.

DNA damage analysis. Immunofluorescence staining. HNSCC cells were plated in 8-well chamber 
slides (30,000 cells/well) in 10% growth medium containing primocin. Cells were transfected using the protocol 
described earlier. At 48 hours post-plating, cells were left un-radiated or irradiated with an optimal dose of radi-
ation and were analyzed 4 h later following incubation with anti-p-H2AX antibody (1:2000 dilution) or analyzed 
at 12–24 h after incubation with anti-Rad51 antibody (1:50 dilution, Santa Cruz Biotechnology, Dallas, TX, USA). 
This step was followed by incubation with AlexaFlour-560 or AlexaFlour-647 IgG secondary antibody (1:500 
dilution, Life Technologies, Carlsbald, CA, USA). Images were captured using a 60x or 100x oil objective on a 
Nikon fluorescence or Olympus confocal microscope. Cells with more than five foci were counted as positive. The 
relative percentage of positive cells was determined in 10 fields using the formula: (Number of positive cells per 
field/Total number of cells)*100. Each experiment was replicated atleast 2–3 times.

Flow cytometry analysis. MSK-921 cells (200,000 cells/well) and Cal27 cells (150,000 cells/well) were seeded in 
6-well plates. Cells were transfected using the protocol described above. After 24 h, cells were left unexposed or 
exposed to either 8 Gy dose (MSK-921 cells) or 4 Gy dose (Cal27 cells) of radiation. After 4 h, cells were collected 
by trypsinization. Samples were washed with PBS and labeled with Fixable Viability Dye eFluor 506 (eBioscience, 
San Diego, CA, USA) for 30 minutes on ice. Samples were then washed, fixed using the Foxp3 Staining Buffer 
Set (eBioscience, San Diego, CA, USA) followed by staining with Anti-Hu/Mo pH2AX eFluor 660 (eBioscience, 
San Diego, CA, USA) at room temperature for 30 minutes. Samples were washed with PBS and analyzed by flow 
cytometry. Each experiment was replicated 2–3 times.

Caspase 3/7 activity assay. Fadu cells were seeded at a density of 200,000 cells/well in a 6-well plate 
and transfected using the protocol described above. At approximately 24 h after transfection, medium was 
replaced and cells were replated at a density of 1000 cells/well in a 96-well plate. After 24 h, cells were either left 
non-radiated or irradiated using a 8 Gy dose of radiation and caspase 3/7 reagent (Essen Bioscience, Ann Arbor, 
MI, USA) was added to the wells at 1:1000 dilution. Caspase 3/7 activity was monitored in real-time using an 
incucyte machine and plotted as mean values from multiple replicates per experimental condition. The experi-
ment was replicated 2 times.

In vivo PDX studies and radiosensitization experiments. Female athymic nude mice (5–6 weeks 
old) were purchased from Envigo (Indianapolis, In, USA). All mice were handled and euthanized in accordance 
with the ethics guidelines and conditions set and overseen by the University of Colorado, Anschutz Medical 
Campus Animal Care and Use Committee. All protocols for animal studies were reviewed and approved by the 
Institutional Animal Care and Use committee at the University of Colorado, Anschutz Medical Campus. HNSCC 
PDX tumors (F8-F16 generation) were obtained from Dr. Antonio Jimeno’s lab (University of Colorado, Anschutz 
Medical Campus). For implantation, tumors were cut into approximately 3 ×  3 ×  3 mm pieces. Upto 30 mice (60 
tumors) were implanted in each experiment. The right and left hind flanks were sterilized and small incisions 
were made to create subcutaneous pocket. Tumor pieces were dipped in Matrigel (BD Biosciences, San Jose, 
CA, USA) and inserted into the subcutaneous pocket. Tumor growth was measured using a digital caliper and 
tumor volume was calculated using the formula: [(smaller diameter)2 × (longer diameter)]/2. When tumor vol-
umes reached approximately 50–150 mm3, mice were randomized into four groups (1) PBS, (2) sEphB4-HSA, 
(3) PBS +  XRT, and (4) sEphB4-HSA +  XRT. Mice were then either injected intraperitoneally with PBS or with 
a 20 mg/kg dose of sEphB4-HSA three times/week throughout the experiment. Following first injection of 
sEphB4-HSA, mice were treated with radiation (5 Gy/fraction x 4 fractions or 2 Gy/fraction x 5 fractions) using 
an X-ray irradiator. The mice were irradiated two times/week for a period of two weeks. Fold differences in tumor 
volume were calculated by normalizing individual tumor volumes to the volume measured at day 0. The statis-
tical significance on tumor growth curves between PBS+ XRT and sEphB4-HSA +  XRT groups was assessed by 
Student’s t-test using the GraphPad Prism 4.0 software. A p-value of <  0.05 was considered statistically significant. 
At the end of the experiment, tumors were collected, flash-frozen or formalin-fixed for immunofluorescence and 
Western blot analysis.

Immunofluorescence staining. Immunofluorescence staining was performed on tumors harvested from 
different groups implanted with CUHN013 tumors using anti-PCNA antibody (1:200 dilution, BD biosciences, 
San Jose, CA, USA). This was followed by incubation with AlexaFlour-560 IgG secondary antibody (1:500 dilu-
tion, Life Technologies, Carlsbald, CA, USA). Images were captured using a 60x objective on Olympus confocal 
microscope.

ELISA assay. Protein lysates were collected from CUHN004 tumors subjected to different treatment condi-
tions as described earlier16. p-EphB4 levels in the tumor samples were measured using Human p-EphB4 ELISA 
kit (R&D systems, Minneapolis, MN, USA) following manufacturer’s instructions.
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Human apoptosis antibody array. Human apoptosis antibody array kit was purchased from R&D 
Systems (Minneapolis, MN, USA). Tumors were homogenized as described above. Lysates were prepared and 
incubated with the array as per manufacturer’s instructions. Following addition of chemiluminescent detection 
reagents, a signal proportional to the amount of protein bound was detected.

TUNEL assay. We performed TUNEL assay on PDX tumors using in situ cell death detection kit (Roche, 
Indianapolis, IN, USA). Images were captured using Olympus confocal microscope. Atleast 4–5 fields were cho-
sen for quantitative analysis by Image J software.

Statistical analysis. All the experiments were performed in duplicate or triplicate and repeated 2–3 times. 
Quantitative analyses were performed using Student’s t-test or ANOVA. A p-value of <  0.05 was considered 
significant.
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