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Brillouin Klein bottle from artificial gauge fields
Z. Y. Chen1, Shengyuan A. Yang 2 & Y. X. Zhao 1,3✉

A Brillouin zone is the unit for the momentum space of a crystal. It is topologically a torus,

and distinguishing whether a set of wave functions over the Brillouin torus can be smoothly

deformed to another leads to the classification of various topological states of matter. Here,

we show that under Z2 gauge fields, i.e., hopping amplitudes with phases ±1, the fundamental

domain of momentum space can assume the topology of a Klein bottle. This drastic change of

the Brillouin zone theory is due to the projective symmetry algebra enforced by the gauge

field. Remarkably, the non-orientability of the Brillouin Klein bottle corresponds to the

topological classification by a Z2 invariant, in contrast to the Chern number valued in Z for

the usual Brillouin torus. The result is a novel Klein bottle insulator featuring topological

modes at two edges related by a nonlocal twist, radically distinct from all previous topological

insulators. Our prediction can be readily achieved in various artificial crystals, and the dis-

covery opens a new direction to explore topological physics by gauge-field-modified funda-

mental structures of physics.
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The Brillouin zone is a fundamental concept in physics. It is
essential for the physical description of crystalline solids,
metamaterials, and artificial periodic systems. Particularly,

it sets the stage for classifying topological states, which, in
mathematical terms, is the task to study the topology of Hermi-
tian vector bundles over the Brillouin zone as the base
manifold1–3. Clearly, the topology of the Brillouin zone itself is a
crucial ingredient for the classification. Since Brillouin zones have
the topology of a torus, topological states known to date basically
correspond to classifications done on the torus.

Meanwhile, although initially studied for electronic systems in
solids4–6, topological states have been successfully extended to
artificial crystals, such as acoustic/photonic crystals, electric cir-
cuit arrays, and mechanical networks. These systems have the
advantage of great tunability. More importantly, gauge fields can
be flexibly engineered in artificial crystals. In particular, the Z2
gauge field, i.e., hopping amplitudes allowed to take phases ±1,
can be readily realized in these systems and have already been
demonstrated in many experiments7–17. A crucial but so far less
appreciated point is that under gauge fields, symmetries of the
system would satisfy projective algebras18–21 beyond the textbook
group theory for crystal symmetry22, which has recently been
experimentally demonstrated by acoustic crystals23,24. Then, what
is the physical consequence of the projective symmetry algebra?
Does it generate any new topology that is impossible for systems
without gauge field? These questions have not been answered yet.

In this article, we reveal that the projective symmetry algebra
can lead to a fundamental change of the Bloch band theory. We
show that it can generate a peculiar “momentum-space non-
symmorphic symmetry", i.e., when represented in momentum
space, the projective algebra requires that certain symmetry must
include a fractional translation in the reciprocal lattice. For
example, a real-space reflection symmetry can become a glide
reflection in momentum space. This unique feature in turn dic-
tates the topology of the fundamental domain of the momentum
space being a Klein bottle and leads to new topological states.

Results
Emerged momentum-space glide reflection. Let us start by
considering the reflection symmetry Mx that inverses the x axis,
and the translation symmetry Ly along the y direction. In the
absence of gauge fields, they should commute with each other
[Mx, Ly]= 0. However, under certain gauge flux configurations,
the algebraic relation may be projectively modified to

fMx; Lyg ¼ 0; ð1Þ

where the font has been changed to indicate the representations
under gauge fields. The seemingly peculiar relation in (1) can be
intuitively understood by inspecting Fig. 1. Here, we have four
lattice sites forming a rectangle invariant under Mx. Assuming
there is a Z2 gauge flux of π through the rectangle, then both
MxLy and LyMx would send a particle from site 1 to 3, but the
two paths encloses a π flux, therefore resulting in the anti-
commutation.

For a crystalline system, if we choose a unit cell with lattice
constant b along the y direction, the operator Ly is diagonalized as
L̂y ¼ eikyb in the momentum space. Then, the projective algebra in
Eq. (1) requires

M̂xe
ikybM̂x ¼ �eikyb ¼ eiðkyþGy=2Þb; ð2Þ

where Gy is the length of the reciprocal lattice vector Gy. From
Eq. (2), we make the key observation that M̂x must contain a half
translation in the reciprocal lattice along ky, when represented in

the momentum space. Explicitly,

M̂x ¼ ULGy
2

m̂x; ð3Þ

where U is some unitary matrix, m̂x is the operator that inverses
kx, and LGy=2

denotes the operator that implements the half

translation Gy/2 of the reciprocal lattice. Hence, Mx may be
regarded as a momentum-space glide reflection.

As an example, consider the simple lattice model in Fig. 2a.
Here, the primitive unit cell in real space consist of four sites. The
Z2 gauge flux through each plaquette is specified in the figure,
respecting Mx and the translation period of b along y. Evidently,
relation Eq. (1) is fulfilled for this case, and the mirror symmetry
operator is represented by

M̂x ¼ τ0 � σ1LGy
2

m̂x ð4Þ

in momentum space, where τs and σs are two sets of Pauli
matrices that operate on rows and columns of a unit cell [see
Fig. 2a].

The appearance of the fractional reciprocal lattice translation
can also be understood from the following analysis. To describe
a lattice with gauge flux, we need to choose explicit gauge
connections on the lattice bonds. For instance, in Fig. 2a, we show
a specific gauge choice, with red and blue colors denoting
negative and positive hopping amplitudes, respectively. Then, for
this given gauge choice, a crystal symmetry operator is given by
R=GR, namely a combination of the manifest spatial operator R
and a gauge transformation G. This is because although the flux
configuration is invariant under R, the specific gauge connection
configuration may be changed by R. To restore the original gauge
connection, an additional gauge transformation G should be
performed. For instance, the gauge transformation required after
reflection Mx is depicted in Fig. 2b. Notably, G may not be
compatible with the spatial period of the lattice. [Here, it must
be incompatible with Ly due to Eq. (1).] Clearly, in Fig. 2b, the
period of G along y doubles the lattice constant. Then, after
Fourier transform, the incompatibility manifests in Mx as a
fractional translation in momentum space.

Note that for conventional space groups, nonsymmorphic
symmetries such as glide reflections exist only on real-space
lattices, i.e., the involved fractional translations act only in real
space but not in momentum space25,26. When transformed to
momentum space, they invariably become fixed-point operations,
namely, there are always momenta (such as the Γ point) that are
invariant under the operation. Therefore, ordinary (real-space)

Fig. 1 Flux and symmetry algebra. a A rectangle with π flux. Blue/red color
indicates hopping amplitudes with positive/negative signs. Successive
operations L�1

y M�1
x LyMx move a particle around the rectangle, which

encloses the π flux, so the result is equal to −1, leading to the anti-
commutation algebra. b When there is no flux, Mx and Ly follow the
ordinary commutation algebra.
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nonsymmorphic symmetries are fundamentally distinct from the
momentum-space nonsymmorphic symmetry Mx discovered here,
for which the fractional translation acts in momentum space. It is
also clear that Mx is a free operation, i.e., no momentum is
invariant under Mx. The emergence of momentum-space non-
symmorphic symmetry is a unique feature of projective symmetry
algebras. The free character of such symmetry operations will
produce remarkable consequences, as we discuss below.

Brillouin Klein bottle. We proceed to elucidate the physical
consequences of this momentum-space glide reflection symmetry.
Let HðkÞ be the Bloch Hamiltonian in momentum space. Then,
the constraint by Mx in Eq. (3) is

UHðkx; kyÞUy ¼ Hð�kx; ky þ πÞ: ð5Þ

Here, for simplicity we have set b= 1. This means if ψðkÞ
�� �

is an
eigenstate of HðkÞ with energy EðkÞ, then U ψðkÞ

�� �
will be an

eigenstate of Hð�kx; ky þ πÞ with the same energy, i.e.,

Hð�kx; ky þ πÞU ψðkÞ
�� � ¼ EðkÞU ψðkÞ

�� �
: ð6Þ

As a result the spectrum at (kx, ky) is equivalent to that at
(−kx, ky+ π). Thus, the Brillouin zone can be partitioned into
two parts, τ1/2 and �τ1=2, as illustrated in Fig. 3a. Only one of them
is independent, i.e., the fundamental domain of momentum space
is a half of the Brillouin zone.

This can be explicitly verified for the model in Fig. 2. In Fig. 3d,
we plot the spectrum of the lattice model. One can observe that
the reflection of the band structure over τ1/2 through the ky axis
coincides with that over �τ1=2 after a half translation LGy=2

. This

can be more clearly seen from the constant energy cut in Fig. 3e.
We have emphasized that as a momentum-space nonsym-

morphic symmetry, Mx is a free operation with no fixed point,
distinct from conventional space group symmetries. Mathemati-
cally, it is known that an equivariant bundle with the structure
group G freely acting on the based space X is equivalent to the
bundle on the orbital space X/G27. For our case, this simply
means all the information including topology is fully captured by
the fundamental domain τ1/2= [−π, π) × [−π, 0). Since kx is
periodic, we may write τ1/2= S1 × [−π, 0) as a cylinder. This
cylinder has two boundaries S1± at ky=−π and 0, respectively.
Importantly, S1± are oppositely oriented and “glued" together,
because they are connected by Mx [Fig. 3b]. Thus, the
fundamental domain here is topologically a Klein bottle, as
illustrated in Fig. 3c.

We remark that in solid state physics, conventional space
group symmetries are commonly used to reduce Brillouin zones
to so-called irreducible Brillouin zones. However, because those
symmetries are not free, the irreducible Brillouin zone is not
sufficient to capture the topological information (e.g., symmetry
information is still required at high-symmetry points or paths of
the irreducible Brillouin zone), distinct from the case here.
Besides, the Brillouin Klein bottle is a closed manifold, whereas
the irreducible Brillouin zones are not. These characters are
important for the topological classification to be discussed in the
following.

Topological invariant and edge states. Consider the system is in
an insulating phase. The task of topological classification is to
classify valence-band wave functions (forming a Hermitian vector
bundle) over the Brillouin Klein bottle. This is fundamentally
different from the usual cases where the base manifold is a torus
or a sphere. A crucial difference is the orientability. A torus (and a
sphere) is orientable, whereas a Klein bottle is non-orientable. For
orientable closed base manifolds such as the torus, the most
elementary topological invariant is the Chern number, which is
the integration of the Berry curvature F for valence bands over
the Brillouin torus. The Chern number is valued in Z, and the
sign of the integer is related to the orientation of the torus, since a
reflection inverses the Chern number. In contrast, for the Bril-
louin Klein bottle that is non-orientable, any topological invariant
can only be valued in Z2, since the sign of the invariant has no
significance and we must have 1=−1.

Now, we formulate an explicit expression for this Z2
topological invariant. This is based on two key observations.
First, the two boundaries S1± of τ1/2 are related by an inversion
of kx [Fig. 3a]. The inversion operation inverses the Berry phase

Fig. 3 Momentum space representation of the symmetry and Brillouin
Klein bottle. a The fundamental domain of the Brillouin zone is τ1/2. The
boundaries with the same color should be identified along the marked
direction. b The cylinder with two boundaries S1± identified along opposite
directions, which is essentially the Brillouin Klein bottle in c. d Energy bands
of the model in Fig. 2a. e A constant energy cut, which corresponds to the
gray colored plane in d. The reflection of the band structure over τ1/2
through the ky axis coincides with that over �τ1=2 after a half translation
LGy=2

. For comparison, in e the curves within τ1/2 are translated to �τ1=2, and
marked as light dashed green lines.

Fig. 2 A lattice model with nonsymmorphic symmetry in the momentum
space. a The flux configuration and gauge connections of a lattice model.
The chosen unit cell is specified by the green dashed rectangle. The blue
shaded regions respect Mx and have a unit lattice length along the y
direction. Both of them have a net flux πmod 2π. b The gauge
transformation to restore the original gauge connections after reflectionMx.
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for a 1D system28. Hence, the Berry phases γ(−π) and γ(0)
over S1± are opposite up to an multiple of 2π, i.e.,
γð0Þ þ γð�πÞ ¼ 0mod 2π. Second, due to Stoke’s theorem,R
τ1=2

d2kF þ γð0Þ � γð�πÞ ¼ 0mod 2π. Therefore, we can for-

mulate the Z2 invariant as

ν ¼ 1
2π

Z
τ1=2

d2kF þ 1
π
γð0Þmod 2: ð7Þ

Here, the formula is valued in integers because of the two
observations above. Since a large gauge transformation for
valence wave functions can change γ(0) by a multiple of 2π,
only the parity of the formula is gauge invariant and hence can be
defined as a topological invariant. We also comment that the Z2
topological classification here is based on the equivariant K theory
or KG theory by ~KðKÞ ¼ Z2, where K is the Klein bottle. The
topological invariant is derived from the fact that line bundles
over a 2D manifold M are topologically classified by H2ðM;ZÞ,
with H2ðK;ZÞ ¼ Z2. Thus the resultant classification and
the topological invariant are stable under the addition of
trivial bands.

We can give Eq. (7) a pump interpretation with an intuitive
geometric picture. Over τ1/2= S1 × [−π, 0], we can always choose
a complete set of continuous valence states ψnðkÞ

�� �
, which are

periodic along kx. Then, the corresponding Berry connection AðkÞ
is also periodic in kx. For such a AðkÞ, we can compute γ(ky) that
is continuous from ky=−π to 0. Moreover, it is straightforward to
derive that

R
τ1=2

d2kF ¼ � R 0
�π dky ∂kyγðkyÞ ¼ γð�πÞ � γð0Þ.

Hence, from Eq. (7), we find that

ν ¼ 1
2π

½γð0Þ þ γð�πÞ�mod 2: ð8Þ

Considering the generic case that γ(−π) ≠ 0 or π, the path of γ(ky)
has to cross 0 or π in the course of varying ky from −π to 0 [see
Fig. 4a]. Introducing W0/π as the number of times that γ(ky)
crosses 0/π, ν can be given a geometric interpretation:

ν ¼ Wπ mod 2; ð9Þ
i.e., ν is nontrivial if and only if γ(ky) crosses π an odd number of
times.

The insulator with nontrivial ν= 1 may be termed as a Klein
bottle insulator. It features special topological edge states, whose
existence can be understood from Eq. (9). For nontrivial ν, γ(ky)
has to cross π at some (odd number of) ky, then the 1D kx-
subsystems at these crossing points have Berry phases of π. It is
well known that the valence-band Berry phase correspond to the
center of Wannier function and the 1D charge polarization.
Particularly, γ= π corresponds to Wannier center at the
midpoints between lattice sites, and therefore leads to an in-gap
state at each end. Thus, there must be in-gap boundary states
located at each edge parallel to the y direction. Because of the
continuity of energy bands, these in-gap states must be connected
to form a topological edge band.

Consider our model in Fig. 2 with two sets of parameters. The
topological invariant Eq. (9) is computed as shown in Fig. 4b, c,
respectively. The corresponding band structures for a ribbon
geometry with edges along the y direction. are shown in Fig. 4d, e.
The topological edge bands are clearly observed for the Klein
bottle insulator phase with ν= 1. Similar to the Möbius
insulators, these edge bands are detached from the bulk
bands19,29,30. Under strong boundary potentials, they could be
shifted out of the gap.

We note two features of the edge states that distinguish the
Klein bottle insulator from conventional crystalline topological
insulators. First, the gapless modes appear on mirror-symmetry-

breaking edges, rather than on symmetry-preserving edges as for
conventional crystalline topological insulators. It is easy to see
that the above argument indicates the existence of topological
edge modes on any edge not perpendicular to y, whereas the
mirror-symmetric edge perpendicular to y is expected to be
gapped without topological edge mode. Second, the momentum-
space glide reflection fascinatingly leads to a nonlocal relation for
edge states. Consider two edges along y connected by the Mx

symmetry in real space. Because of the nonsymmorphic character
of Mx in the momentum space, only the energy bands over
ky∈ [−π, 0) are independent, while those over ky∈ [0, π) can be
deduced from the action of Mx. Particularly, Mx nonlocally maps
the topological edge band on one edge over ky∈ [−π, 0) to that
on the other edge over ky∈ [0, π). In Fig. 4d, one can clearly see
that translating the edge band on the left edge by Gy/2 coincides
with that on the right edge.

We have demonstrated that interplay between gauge fields and
symmetry can fundamentally modify the Bloch band theory.
Under gauge fields, a spatial symmetry can acquire a non-
symmorphic character in momentum space. Particularly, the
momentum-space glide reflection can reduce the Brillouin torus
to the Brillouin Klein bottle, and therefore change the topological
classifications from the bottom level. We formulate a novel kind
of topological insulator over the Brillouin Klein bottle, which is as
elementary as the Chern insulator over the Brillouin torus.
Although we take 2D reflection in our analysis, the discussion can
be readily generalized to the 3D with analogous momentum-
space glide reflections and screw rotations (see Supplementary
Note 4 for demonstrations). Since glide reflection and screw
rotations are the most elementary nonsymmorphic symmetries,
all nonsymmorphic space groups may be realized on the
reciprocal lattices by certain gauge flux configurations, which

Fig. 4 Topological invariant and edge states. a Schematic illustration of
the formula in Eq. (9). The red and blue paths correspond to the
topologically nontrivial and trivial cases, respectively. b and c depict the
flows of γ(ky) for two set of parameters for the model in Fig. 2a, and the
corresponding band structures on a ribbon geometry with edges along y are
given in d and e, respectively. States on right/left edge are marked in red/
blue color.
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are mathematically dictated by the second cohomology groups of
the space groups. Since gauge fluxes can be engineered in artificial
crystals for realizing projective symmetries23,24, our work opens
the door toward a fertile ground for exploring novel momentum-
space symmetries and topologies of artificial crystals beyond the
scope of topological quantum materials.

Methods
The simple 2D model. We consider a model defined on the rectangular lattice in
Fig. 2. Constrained by Mx and two translation symmetries, the most general
Hamiltonian with only nearest neighbor hopping terms is given by

H0ðkÞ ¼

ε ½qx1ðkxÞ�� ½qyþðkyÞ�� 0

qx1ðkxÞ ε 0 ½qy�ðkyÞ��

qyþðkyÞ 0 �ε ½qx2ðkxÞ��
0 qy�ðkyÞ qx2ðkxÞ �ε

2
66664

3
77775; ð10Þ

where qxaðkxÞ ¼ txa1 þ txa2e
ikx with a= 1, 2, qy± ðkyÞ ¼ ty1 ± t

y
2e

iky , ±ε are on-site ener-
gies. To break the time-reversal (T) symmetry, we may include the following second
neighbor hopping terms, Hð1ÞðkÞ ¼ λ cos kyτ1 � σ2 þ λ sin kyτ2 � σ2. For Figs. 3d, e

and 4b, d, the parameter are given by tx11 ¼ tx22 ¼ 1; tx12 ¼ tx21 ¼ 3:5; ty1 ¼ 2; ty2 ¼
1:5; ε ¼ 1; λ ¼ 1. For Fig. 4c, e, tx11 ¼ tx12 ¼ 1; tx21 ¼ 3:5; tx22 ¼ 1:7; ty1 ¼ 2; ty2 ¼
1:5; ε ¼ 0:6; λ ¼ 0.

It is worth pointing out that if the T symmetry is preserved, the two 1D kx-
subsystems Hðkx ; ± π=2Þ are invariant under MxT. This is because T inverses
(kx, ±π/2) to (−kx, ∓π/2), but Mx moves (−kx, ∓π/2) back to (kx, ±π/2). Then, MxT
is effectively a spacetime inversion symmetry for Hðkx; ± π=2Þ, and therefore can
quantize its Berry phases into integral multiples of π. As a result, the curve in
Fig. 4b would always cross π at ky=−π/2.

Data availability
The data generated and analyzed during this study are available from the corresponding
author upon reasonable request.
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