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ABSTRACT	 Drug resistance is considered the most important reason for the clinical failure of cancer chemotherapy. Circumventing drug resistance 

and improving the efficacy of anticancer agents remains a major challenge. Over the past several decades, photodynamic therapy 

(PDT) and sonodynamic therapy (SDT) have attracted substantial attention for their efficacy in cancer treatment, and have been 

combined with chemotherapy to overcome drug resistance. However, simultaneously delivering sensitizers and chemotherapy drugs 

to same tumor cell remains challenging, thus greatly limiting this combinational therapy. The rapid development of nanotechnology 

provides a new approach to solve this problem. Nano-based drug delivery systems can not only improve the targeted delivery of 

agents but also co-deliver multiple drug components in single nanoparticles to achieve optimal synergistic effects. In this review, we 

briefly summarize the mechanisms of drug resistance, discuss the advantages and disadvantages of PDT and SDT in reversing drug 

resistance, and describe state-of-the-art research using nano-mediated PDT and SDT to solve these refractory problems. This review 

also highlights the clinical translational potential for this combinational therapy.
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Introduction

Chemotherapy, a mainstream cancer treatment, plays an 

important role in tackling cancer1. More than 200 anticancer 

drugs have been used clinically2. These drugs usually work 

well at early stages of disease, but more than 90% of patients 

show drug resistance after relapse3. Even patients treated with 

immunotherapy almost inevitably develop drug resistance in 

relatively short periods of time4,5. Because of the low thera-

peutic indexes of most chemotherapeutic drugs, even slight 

changes in the sensitivity of tumor cells can result in drug 

resistance. All these factors make drug resistance a major 

obstacle in cancer treatment6.

Over the past half-century, progress has been made in 

understanding drug resistance, thereby facilitating the 

development of new therapeutic strategies for overcoming 

this obstacle7. Scientists have proposed 3 major hypotheses 

underlying drug resistance: (1) pharmacokinetics, in which 

up-regulating the expression of efflux membrane proteins 

and detoxification enzymes leads to insufficient accumu-

lation of drugs in tumor regions8; (2) tumor specificity9, in 

which genetic mutations in cancer cells are the biological 

basis of drug resistance: after application of chemical drugs, 

the tumor cells gradually acquire genetic mutations and epi-

genetic changes, and the elimination of sensitive subtypes 

leads to the development of drug-resistant tumors; and (3) 

the tumor micro-environment (TME)10, which regulates the 

drug sensitivity of tumor cells and promotes the development 

of drug resistant phenotypes11.

PDT, an invasive treatment for clinical cancer, has been used 

to reverse chemoresistance12,13. The 3 elements of PDT include 

a photosensitizer (PS), light, and oxygen. Light-activated PS 

transfers energy to oxygen and generates cytotoxic reactive 

oxygen species (ROS)14, which decrease the expression of 

membrane efflux proteins and anti-apoptotic proteins15. 
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Because of the high tissue penetration of near-infrared 

light (NIR), various NIR-excited PSs have been developed16.  

In addition, the unique mechanism of PDT can enhance 

tumor sensitivity, vascular permeability, and immune 

responses17,18.

SDT is an emerging therapy, which generates ROS through 

a combination of low intensity ultrasound (US) (∼1 MHz) 

and sensitizing drugs19. The main advantage of SDT is that US 

has deep penetration in mammalian tissue (above 10 cm)20, 

thus making SDT a promising therapy for deep tumors21-23. 

Microbubbles, which have been approved as contrast agents 

for US diagnosis, are used to load and release oxygen under US 

and regulate the TME24-27. Because drug-resistant cells have a 

higher clearance rate of ROS than sensitive cells, they are more 

susceptible to ROS28,29. Hence, combining PDT or SDT with 

conventional chemotherapy endows conventional chemother-

apy with more versatility, thereby providing an effective and 

facile means of overcoming drug resistance.
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Figure 1  Schematic illustration of nanotechnology assisted photo- and sonodynamic therapy for overcoming drug resistance. The drug 
resistance of cancer cells is closely associated with drug efflux, apoptosis inhibition, DNA repair, tumor heterogeneity, tumor epithelial-mes-
enchymal transition (EMT), and the tumor microenvironment (TME). The application of PDT and SDT improves the sensitivity of tumors by 
inhibiting drug resistance-related proteins, thus artificially activating and promoting drug internalization. Nanotechnology is applied not only 
to bypass efflux proteins but also to facilitate targeted delivery and the controlled release of sensitizers.
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Nanotechnology is the manufacturing of materials at 

atomic and molecular scales. Because of their unique prop-

erties, nanomaterials have been the basis for development of 

numerous drug delivery systems. Although drug-resistant cells 

are more susceptible to ROS, PDT and SDT still have several 

limitations that compromise their efficacy30,31. With the devel-

opment of ideal sensitizers for PDT and SDT, light and US not 

only sensitize tumor cells but also trigger the release of sensi-

tizers into the cytoplasm, thus bypassing the efflux membrane 

proteins and inhibiting the escape pathway and significantly 

enhancing drug accumulation in tumor regions32. The strat-

egies of nanotechnology assisted PDT and SDT to overcome 

drug resistance are summarized in Figure 1.

Drug resistance remains a major 
hindrance in cancer therapy

Because drug resistance is a major predictor of patient mor-

tality33,34, understanding the mechanisms of drug resistance 

is crucial35. Resistance to a wide range of anticancer drugs is 

attributed to the expression of energy-dependent transport-

ers, which eliminate anticancer drugs from cells. These trans-

porters are called ATP binding cassette (ABC) proteins, which 

include multidrug resistance protein 1 (MDR-1), multidrug 

resistance related protein 1 (MRP-1), and ATP-binding cassette 

subfamily G member 2 (ABCG-2)36. However, other resistance 

mechanisms, such as insensitivity to drug-induced apoptosis, 

DNA repair, target alteration, alternative pathway hyperactiva-

tion, and induction of drug-detoxification, are likely to lead to 

anticancer drug resistance (Figure 2A)37,38.

Beyond intracellular signals, the TME and systemic factors 

also affect the development of drug resistance (Figure 2B)39. 

For example, a hypoxic environment activates hypoxia induc-

ible factor-1 (HIF-1), which regulates the expression of 

MDR-1. Moreover, epithelial-mesenchymal transition (EMT) 

cells have similar cellular characteristics to those of cancer 

stem cells (CSC)40,41. The EMT cells decrease the efficacy of 

chemotherapy by releasing cytokines42. Importantly, tumors 

are extremely heterogeneous, and this aspect considerably 

contributes to primary or acquired resistance43. In a further 

challenge, some of these resistance pathways may result in 

multidrug resistance. Improved understanding of the diverse 

mechanisms of cancer drug resistance would aid in designing 

various anti-cancer therapeutic strategies to circumvent drug 

resistance.

Photo- and sonodynamic therapy to 
overcome drug resistance

The unique mechanisms of action of PDT in 
overcoming drug resistance

PDT has attracted great attention as a promising therapy for 

drug-resistant tumors, because of its unique mechanisms44. ROS 

produced by PDT disrupt the original cytokine balance, trans-

forming the tumor cells from a resistant to a sensitive pheno-

type (Figure 3A)45. The most effective PSs tend to be lipophilic 

aromatic ring systems, which are preferentially located on extra-

nuclear organelle membranes46,47. Among them, the PSs located 

in mitochondria disrupt the membrane structure, thereby lead-

ing to a sharp decline in the levels of intracellular 5′-adenosine 

triphosphate (ATP) and anti-apoptotic protein Bcl-2 family 

proteins48,49. The activity of ATP-dependent ABC proteins is 
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Figure 2  Schematic illustration of the mechanism of cancer 
drug resistance. (A) Common cell-intrinsic resistance mechanisms. 
(B) Tumor microenvironment and systemic mechanisms of drug 
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consequently decreased, and efflux of chemotherapy drugs is 

inhibited (Figure 3B–3E)50-53. Moreover, lysosomal-PDT selec-

tively destroys the lysosomal membrane, thus bypassing pro-

tective autophagy and promoting cytoplasmic drug release54. In 

terms of the TME, vascular injury is observed after PDT, includ-

ing enhanced vessel permeability and leakage, thereby improving 

the therapeutic index of chemotherapeutic drugs55,56. In addi-

tion, PDT stimulates tumors to form an inflammatory environ-

ment and induces T cells to infiltrate tumors57.

In summary, the unique mechanism of PDT includes: (1) 

reversal of chemo-resistance and sensitization of tumors to 

molecular inhibitors; (2) modulation of vascular permeability 

for enhanced drug delivery; and (3) stimulation of anti-tumor 

immunity. Thus, nanotechnologies to integrate the special 

features of PDT are promising in clinical treatment of drug 

resistant cancer.

SDT reversal of drug resistance

Although SDT remains in its infancy, it has nonetheless received 

tremendous attention in cancer treatment. Similarly to PDT, 

SDT decreases mitochondrial membrane potential and oxi-

dative phosphorylation, thus down-regulating the expression 

of ABC proteins58-60. However, the biological effects of SDT 

differ from those of PDT, because of the mechanical effects 

of ultrasonic treatment (cavitation, alternating pressure, shear 

stress, and acoustic current), which themselves can decrease 

drug resistance even without cytostatics. In drug-resistant 

cells over-expressing P-gp, the fluidity of the drug-resistant 

cell membrane decreases, thus increasing sensitivity to US61. 

Moreover, the introduction of microbubbles allows macro-

molecules to enter cells via stable cavitation62,63. Hence, bet-

ter understanding of the ROS production mechanism in SDT 

would aid in the design of more effective sensitizing drugs to 

overcome drug resistance.

Limitations of PDT and SDT

PDT and SDT have a strong ability to sensitize tumor cells to 

chemotherapy, but they nonetheless have many drawbacks, 

such as sensitizer aggregation, selective enrichment, and 

endogenous oxygen deficiency. First, the π-π aggregation of 

the hydrophobic sensitizer results in poor solubility in aque-

ous solution, thus decreasing the degree of internalization and 

the quantum yield of singlet oxygen64. Second, the different 

physiological distributions of sensitizers and chemo-drugs 

may cause systemic toxicity. Designing an appropriate sys-

tem to selectively deliver sensitizing agents is urgently needed. 

Third, oxygen is essential for the development of drug resist-

ance and ROS. However, hypoxia, a characteristic of the TME, 
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Figure 3  (A) Schematic diagram of PDT overcoming drug resistance at the molecular level. PDT caused decreased expression of ABCG2 
protein (green) (B) and increased expression of Caspase-3 (green) (C) in HT-29 cells. The nucleus is stained blue by DAPI. Quantification of the 
ABCG2 (D) and caspase-3 (E) fluorescence intensity per DAPI area after PDT irradiation50. *Significant difference (P < 0.05). Copyright 2018, 
American Chemical Society.
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not only promotes the proliferation of drug-resistant tumors 

but also decreases the efficiency of PDT and SDT65. The intro-

duction of nanotechnology provides a new strategy to address 

these issues.

Nanotechnology approaches 
enhance the efficacy of PDT/SDT in 
overcoming drug resistance

Targeted delivery of sensitizers

To overcome the drawbacks of PDT and SDT, nanoparticles 

(NPs) have been used as drug delivery systems to increase the 

permeability, stability66, and solubility of sensitizers67 and 

avoid excessive drug removal68. Because of the lack of lym-

phatic drainage, tumor tissues, compared with normal tis-

sues, tend to retain more NPs that escape from underdevel-

oped tumor blood capillaries. This phenomenon is termed the 

enhanced permeability and retention (EPR) effect69-71. Many 

studies (Table 1) have found that the EPR effect significantly 

increases drug levels in the tumor region, thereby prevent-

ing drug resistance. In sonodynamic photodynamic therapy, 

a new type of combination therapy82-85, the application of 

NPs has also shown excellent performance in improving drug 

efficacy80,81. Additionally, nanomedicines enter cells through 

endocytosis, a process independent of the MDR protein-me-

diated pathway86. After PDT (660 nm, 10 mW/cm2, 5  min) 

treatment, NPs escape from lysosomes successfully, thereby 

suggesting that cells absorb NPs through endocytosis and 

evade ABC-mediated drug resistance87. In comparison to the 

EPR effect, active targeting offers better selectivity88-90. The 

targeted cyclic peptide RGD associates with the surfaces of the 

NPs. As shown in Figure 4B, drug enrichment at tumor sites 

is clearly observed after injection91. Excitingly, the cell mor-

tality rate has been found to significantly increase to 95.6% 

(61.3% for apoptosis and 34.3% for necrosis) after 671 nm 

light irradiation 0.1 W/cm2 for 3 min. These results indicate 

that nano-design can increase the intracellular content of sen-

sitizers and drugs, and may serve as a convenient method for 

overcoming drug resistance.

NIR/US activation release

Nanotechnology-enabled drug delivery systems can pro-

vide spatial and temporal control for drug release. Various 

controlled release systems based on the TME92, NIR93,94 

and US95,96 have been developed97. The NIR response has 

been confirmed to simultaneously activate PDT and NP 

disintegration at target sites. Sun et  al.98 have synthesized a 

photoactivated nano-metal prodrug, PolyRu (Figure 5A). 

PolyRu can be cleaved by NIR to achieve on-demand admin-

istration, thus increasing the intracellular concentrations of 

drugs. PolyRu with red light irradiation (656 nm, 50 mW/

cm2, 30 min), as compared with control treatment, has been 

found to decrease tumor volumes by approximately 55%. 

As mentioned above, the US response is more conducive to 

treatment of deep drug-resistant tumors, particularly with 

the assistance of microbubbles. The collapse of microbub-

bles due to sonodynamics increases vascular permeability99. 

Using this feature, Chen et al.50 have constructed porphyrin/

camptothecin-fluorouridine triad microbubble (PCF-MB) 

to treat drug-resistant for breast cancer (Figure 5B).  

Ultrasound triggers the conversion of PCF-MBs into PCF-

NPs, which induce greater internalization and uptake. Shi 

et al.100 have designed “US-detonated nano bombs” contain-

ing DOX, which lead to lysosomal escape and mitochondrial 

targeting. DOX is released from the nanobombs after US 

treatment (1 W/cm2, 120 s, at 4 h after incubation), and large 

amounts of DOX are observed in the nucleus.

Polyethylene glycol (PEG), which is widely used to modify 

nanomaterials, decreases the uptake of drugs by non-spe-

cific cells and prolongs the blood circulation time. The 

light-controlled shedding of PEG at desired sites has shown 

advantages in on-demand drug delivery based on nanocar-

riers101. The ROS-activatable thioketa (TK) bond has been 

used in the construction of PEG light-controlled shedding 

nanosystems102. Cao et  al.103 have explored the polymer 

nanocarrier TK-PPE@ NP Ce6/DOX. Under excitation at 

660 nm NIR, ROS generated by encapsulated Ce6 cleave 

the TK linker in situ, thus achieving drug remote con-

trol release through shrinking in size from 154 ± 4 nm to 

72 ± 3 nm (Figure 5C). Normally, NPs are predominantly 

restricted to endocytic vesicles, thus preventing the drugs 

from exerting their effects. However, the ROS conversion 

NPs solve this problem through triggering cytosolic release 

of the chemotherapeutics 104. Wei et  al.105 have developed 

photoconversion NPs that cause photochemical rupture 

of lysosomal membranes under 635 nm (10 mW/cm2,  

5 min) NIR and release drugs into the cytoplasm (Figure 5D). 

The establishment of intelligent nano-systems thus can 

improve the low tumor specificity of PDT and SDT.
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Co-delivery of multiple therapies

The application of multi-dimensional therapy can be achieved 

through nano-platforms106-108. Single PDT or SDT cannot 

completely solve drug-resistance issues and usually must be 

supplemented with exogenous oxygen, inhibitors, targeting 

agents, and immunotherapy. Nanotechnology has made this 

combination possible.

1)	 The ABC protein inhibitors have a good effect on reduc-

ing drug efflux109. After treatment combining inhibi-

tors with PDT and SDT, drug-resistant cancer cells are 

Table 1  Nanosystems to overcome drug resistance through the EPR effect

Nanoparticles   Treatment   Sensitizers   Operating 
parameters

  Therapeutic outcomes   References

Core–shell–shell 
nanoparticles (UCNPs)

  PDT   RB   808 nm, 6 W/
cm2, 5 min

  PDT and chemotherapy effectively kill A2780cis 
cells (IC50 value 9.3-fold lower than that with 
cisplatin).

  72

Graphene oxide   PDT   Ce6   470 nm, 25 mW, 
5 min

  NPs loaded with camptothecin and Ce6 are more 
easily absorbed by cells and significantly improve 
the anti-cancer efficacy.

  73

Singlet-oxygen 
producible polymeric 
micelles

  PDT   Ce6   670 nm, 6 mW/
cm2, 100 s

  Singlet oxygen generated by PS mediates 
cell membrane damage and enhances the 
accumulation of DOX in drug-resistant cells. In 
drug-resistant cells, the IC50 of NPs is 160 times 
lower than that of free DOX.

  74

Multifunctional 
composite of MoS2@
Fe3O‐ICG/Pt(IV)

  PDT/PTT   ICG   808 nm, 1 W/
cm2, 5 min

  Nanoparticles show good MR/IR/PA bioimaging 
effects, thus indicating that NPs can be enriched 
at tumor sites. The percentage ratio of apoptotic 
or necrotic cells can reach 86.4%.

  75

Photosensitizer H2TPPS 
and DOX self-assembled 
nanoparticles

  PDT   H2TPPS   376 nm, 40 mW/
cm2, 10 min

  The resistance of MCF-7/ADR cells to DOX is 
effectively reversed. The IC50 value is 1.49 μg/mL.

  76

Organoplatinum (II) 
metallacage coated 
octaethylporphine (OEP)

  PDT   OEP   635 nm, 0.2 W/
cm2, 5 min

  The tumor suppression rate of A2780cis tumor-
bearing nude mice s 66.8%, a value higher than 
that for cisplatin (14.1%).

  77

TiO2 based hydrogenated 
hollow nano-sound 
sensitizer integrating 
precious metal Pt and 
doxorubicin (HPT–DOX)

  SDT   TiO2   1 MHz, 50% duty 
cycle, 1.5 W/cm2, 
5 min

  HPT-DOX generates ROS independently of 
endogenous oxygen and increases drug delivery 
to overcome chemotherapy resistance.

  78

Pluronic F68 
nanomicelles co-loaded 
with doxorubicin (HPDF-
DOX)

  SDT   HP   1 MHz, 1.5 W/
cm2, 30 s

  HPDF nanomicelles, as compared with free DOX, 
reverse the drug resistance of MCF-7/ADR cells, 
with a reversal index as high as 19.0.

  79

5-ALA/TiO2 nanoparticles  SDT/PDT   TiO2/5-ALA   SDT: 1 MHz, 70 
W, 10 min
PDT: 635 nm, 
150 mW/cm2, 
1000 s

  Tumor tissue is irradiated with lasers and 
sonication, thus resulting in a decrease in tumor 
volume by approximately 50%.

  80

Peptide amphiphile-ICG 
nanomicelles (PAIN)

  SDT-PDT   ICG   SDT: 1 MHz, 2.4 
W/cm2, 5 min
PDT: 808 nm, 1.5 
W/cm2, 3 min

  After treatment of MDA cells with PDT and SDT, 
the production of ROS is almost twice that with 
free PDT.

  81
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limited110,111. Wei et al.105 have used a nano-platform to 

combine PDT and the ABC protein inhibitor apatinib. In 

drug-resistant breast cancer, the IC50 for this combination 

therapy is 17.34 μg/mL, and the apoptotic ratio is 45.34%, 

a value approximately 3.3-fold higher than that of free 

DOX.

2)	 Hypoxia, one of the main features of TME, increases 

the resistance of chemotherapy, PDT, and SDT. 

Nanotechnology provides tools to regulate the TME and 

re-sensitize tumors112. Yang et al.113 have synthesized oxy-

gen self-sufficient NPs (F/DOX) loaded with oxygen-bear-

ing perfluorocarbon and DOX. Under 808 nm light 

excitation, this nanocarrier disintegrates (Figure  6A). 

The release of oxygen decreases the expression of HIF-1, 

and correspondingly low expression of P-gp has also been 

observed in CLSM (Figure 6B–C). McEwan et al.114 have 

developed an oxygen-containing microbubble system 

for the targeted treatment of pancreatic cancer. When 

micro-bubbles are exposed to US (1 MHz, 3.0 W/cm2, 

50% duty cycle, 1 min), oxygen is released, thus leading to 

downregulation of HIF-1.

3)	 EMT enables cancer cells to invade and metastasize like 

CSCs, thus contributing to drug resistance115. Some NPs 

have been designed to target EMT cells and CSCs to hin-

der tumor escape and drug resistance116,117. Spring et al.118 

have synthesized photoactivated nanoliposomes com-

bined with inhibitors, integrating photodynamic and anti-

VEGF therapy. This treatment causes blood vessel damage 

and blocks the EMT pathway. Liu et al.119 have constructed 

NPs co-loaded with HP and DOX. When combined with 

US radiation (1.0 MHz, 3 W/cm2, 5 min), this treatment 

effectively reverses the drug-resistance of CSCs.

4)	 Checkpoint-blocked immunotherapy provides a prom-

ising strategy for cancer therapy, although its effects on 
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low T cell infiltration tumors remain limited120. PDT and 

SDT with immunogenicity induce tumor cell sensitivity 

to PD-L1 immunotherapy by initiating an inflammatory 

response121,122. He et al.123 have designed core-shell NPs 

carrying pyropheophorbide and oxaliplatin for enhanced 

immune checkpoint suppression therapy. Under light 

(670 nm, 60 mW/cm2, 15 min) irradiation, the apoptosis 

rate of HT29 cells is 43%, and the necrosis rate is 18.7%. 

These NPs cause immunogenic cell death and inflamma-

tory responses at the primary tumor location, thus stim-

ulating the proliferation of effector T cells and enhancing 

the efficacy of PD-L1.

Summary and outlook

The emergence of drug resistance has made inhibiting the 

proliferation of cancer cells more difficult. PDT and SDT are 

widely used to combat drug-resistant tumors. First, the ROS 

produced by PDT and SDT destroy subcellular structural 
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membranes, DNA, and proteins, in contrast to the traditional 

anti-cancer pathway. Second, ROS inhibit the expression of 

ABC proteins, thus directly decreasing the efflux of drugs. 

Finally, PDT and SDT also contribute to overcoming drug 

resistance by damaging the vasculature and sensitizing tumor 

cells. However, the low specificity and water solubility of sen-

sitizing agents limit the clinical applications of PDT and SDT.

NPs provide powerful tools to treat drug-resistant tum-

ors on the basis of the EPR effect, owing to their structural 

designability. Unlike small molecule drugs, NPs enter cells 

through endocytosis. The combination of smart nanomate-

rials with PDT and SDT improves the targeted delivery and 

solubility of sensitizing agents, thus maximizing the thera-

peutic efficacy of the combinational therapy. For instance, 

NIR irradiation of the sensitizer generates ROS in situ, thus 

resulting in PEG de-shielding at the tumor region and sig-

nificantly enhancing the cellular uptake of the nanocarrier. 

Light-induced PEG shedding enables precise remote control 

of drug delivery by de-shielding nanocarriers. In general, the 

synergy maximizes the effect in overcoming drug resistance. 

Such nanodrug delivery systems have promising therapeutic 

efficacy.

Although nanotechnology greatly aids in PDT and SDT, 

many problems remain to be addressed. (1) The low tissue 

penetration of NIR and quantum yield because of aggregation 

remain the main reasons for the poor therapeutic effects; con-

sequently, PS with longer excitation wavelengths and delivery 

strategies that can avoid aggregation must be developed. (2) 

Further research on cavitation and the mechanical mechanism 

of SDT is needed. A more comprehensive understanding of 

the interaction between the sensitizer and cavitation, and the 

design of a more appropriate delivery system to enhance cav-

itation, would be conducive to SDT. (3) The low loading rate, 

instability, and potential toxicity of nanomaterials remains to 

be addressed. (4) Currently, we are in the new era of immu-

notherapy. Antibody-based PD-1/PD-L1 blockaded ther-

apy has achieved dramatic therapeutic responses. However, 

this therapy is only effective for a subset of patients. Patients 

who do not respond to immunotherapy are referred to “pri-

mary resistance”. PDT and SDT provided a powerful tool-

box to resolve this issue. Hence, more comprehensive studies 

related to immunotherapy and PDT/SDT are highly desired.  

(5) Although a plethora of studies have used nanotechnology  

to facilitate PDT and SDT and avoid drug resistance, these 

studies have mainly focused on the inhibitory effects of 

drug-resistant cancer cells and the synergistic effect of PDT/

SDT and chemotherapy. The intracellular mechanism of 

this therapy in overcoming drug resistance remains unclear. 

Notably, nanotechnology-assisted PDT and SDT should be 

advantageous in overcoming long-lasting challenges in drug 

resistance, although this combination therapy remains in 

early stages. The comprehensive development of better nano- 

delivery systems and high-efficiency sensitizers are future 

directions toward achieving applications in clinical treatment.
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