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Myeloproliferative neoplasm‑driving 
Calr frameshift promotes the development 
of pulmonary hypertension in mice
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Abstract 

Frameshifts in the Calreticulin (CALR) exon 9 provide a recurrent driver mutation of essential thrombocythemia (ET) 
and primary myelofibrosis among myeloproliferative neoplasms (MPNs). Here, we generated knock-in mice with 
murine Calr exon 9 mimicking the human CALR mutations, using the CRISPR-Cas9 method. Knock-in mice with del10 
[Calrdel10/WT (wild−type) mice] exhibited an ET phenotype with increases of peripheral blood (PB) platelets and leuko-
cytes, and accumulation of megakaryocytes in bone marrow (BM), while those with ins2 (Calrins2/WT mice) showed a 
slight splenic enlargement. Phosphorylated STAT3 (pSTAT3) was upregulated in BM cells of both knock-in mice. In BM 
transplantation (BMT) recipients from Calrdel10/WT mice, although PB cell counts were not different from those in BMT 
recipients from CalrWT/WT mice, Calrdel10/WT BM-derived macrophages exhibited elevations of pSTAT3 and Endothelin-1 
levels. Strikingly, BMT recipients from Calrdel10/WT mice developed more severe pulmonary hypertension (PH)—which 
often arises as a comorbidity in patients with MPNs—than BMT recipients from CalrWT/WT mice, with pulmonary arte-
rial remodeling accompanied by an accumulation of donor-derived macrophages in response to chronic hypoxia. In 
conclusion, our murine model with the frameshifted murine Calr presented an ET phenotype analogous to human 
MPNs in molecular mechanisms and cardiovascular complications such as PH.
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To the editor,
CALR frameshifts provide a recurrent myeloprolifera-
tive neoplasm (MPN) driver [1]. Pulmonary hyperten-
sion (PH) is a life-threatening cardiopulmonary disease 
characterized by increased pulmonary arterial (PA) pres-
sure. Bone marrow (BM)-derived cells and perivascular 

inflammatory infiltrates contribute to PA remodeling in 
PH [2, 3]. Among 5 etiological groups, the WHO group-
V PH encompasses multifactorial mechanisms, including 
MPNs, which are often complicated by PH, with 5%-60% 
of the prevalence [4–6]. MPN-related PH is associated 
with crucial features, such as thromboembolism and 
hypermetabolic state [5]. However, the association of PH 
with CALR mutation remains uncertain. Here, we gener-
ated Calrdel10/WT and Calrins2/WT knock-in mice (Fig. 1a, 
Additional file 1: Fig. S1), investigated their hematopoie-
sis, and clarified the role of hematopoietic Calr mutation 
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in PH using BM transplantation (BMT) and chronic 
hypoxia, which provokes PH [7].

In a public database [8], 138 CALR frameshifts, includ-
ing the major del52 and ins5 [1], and another frameshift 
in 2 MPN patients (ET, myelofibrosis) exactly match-
ing the Calr-del10, have been noted in patients with 
hematopoietic cancers, mostly MPNs (Additional file  7: 
Table S1, Additional file 1: Fig. S1f ). Mouse models car-
rying frameshifted CALR showed ET or, rarely, myelofi-
brosis [9]. Likewise, Calrdel10/WT mice developed ET 
with phosphorylated STAT3 (pSTAT3) and cell-surface 
thrombopoietin-receptor (TpoR) expressions suggested 
to accompany mutant CALR [10], whereas Calrins2/WT 
mice showed a slight splenic enlargement (Fig. 1b, Addi-
tional files 2, 3: Fig. S2-S3).

To elucidate the roles of hematopoietic Calr mutation 
in PH, we performed non-competitive BMT from Cal-
rdel10/WT mice (Fig.  1c), as we reconstituted Jak2V617F+ 
MPNs [11]. At 4 weeks after BMT, the engraftments were 
achieved in the BMT recipients from Calrdel10/WT mice 
(del-R, Fig. 1d), but their PB cell counts (Additional files 4: 
Fig. S4) and BM megakaryocytic distribution did not dif-
fer from BMT recipients from CalrWT/WT mice (WT-R). 
We assessed right heart hemodynamics and right ventric-
ular (RV) hypertrophy, showing that neither RV systolic 
pressure (RVSP) nor right ventricle/left ventricle-plus-
septum weight ratio (RV/LV + S) differed between WT-R 
and del-R. Subsequently, del-R were exposed to chronic 
hypoxia (10% O2) for 3 weeks. Strikingly, although chronic 
hypoxia elevated RVSP and RV/LV + S in both WT-R and 
del-R, these levels in del-R were significantly greater than 
in WT-R, suggesting that hematopoietic Calr mutation 
promotes PH (Fig. 1c-e).

Lung histology showed significant increases in PA 
medial wall thickness and muscularization, indicated by 
α smooth muscle actin, without thrombosis in del-R com-
pared to WT-R under chronic hypoxia, whereas F4/80+ 
macrophages rather than TpoR+ cells were increased spe-
cifically in PA regions in both WT-R and del-R (Fig.  1f-
h, Additional file  3: Fig. S3e). However, pSTAT3 levels 
were elevated in the lungs of del-R compared to WT-R 
after chronic hypoxia. The expression of Endothelin-1, 
an important vasoactive peptide involving PA remod-
eling in PH [4, 5], was also increased in the lungs of del-R 
compared to WT-R under chronic hypoxia (Fig.  2a, b, 
Additional file  5: Fig. S5). We visualized the Calrdel10/WT 
BM-derived cells using CAG-EGFP: in the lungs of BMT 
recipients from Calrdel10/WT/CAG-EGFP mice, donor-
derived macrophages accumulated in PA regions, but 
donor-derived cells were not observed in vascular walls 
(Fig.  2c), suggesting that Calrdel10/WT BM-derived mac-
rophages migrated into the PA regions.

RNA sequencing of hematopoietic progenitors showed 
Calr-del10 activated JAK-STAT pathway, as well as car-
diac-hypertrophy pathway that includes upregulation 
of Endothelin-1. Also, human CALR-del52 introduction 
upregulated Endothelin-1 in a macrophage cell line (Addi-
tional file 6: Fig. S6). We next obtained Calrdel10/WT mac-
rophages by culturing BM-mononuclear cells (BM-MNCs) 
in the presence of M-CSF (Fig. 2d, e). The increases in the 
Endothelin-1 and pSTAT3 levels did not show the statis-
tical difference between in CalrWT/WT and Calrdel10/WT 
macrophages at baseline, but these levels in Calrdel10/WT 
macrophages were significantly more upregulated com-
pared to CalrWT/WT macrophages after lipopolysaccharide 
stimulation (Fig. 2f, g). These data suggest that BM-derived 

Fig. 1  Hematopoietic cells with Calr mutation exacerbate the development of pulmonary hypertension in response to chronic hypoxia. a The 
knock-in mice with C57BL/6 J background carrying frameshifted murine Calr, del10 (Calrdel10/WT mice) and ins2 (Calrins2/WT mice) were generated 
using the CRISPR-Cas9 method. Structure of wild-type (WT) and frameshifted murine CALR proteins are shown. Both generated mutant proteins 
with shortened calcium-buffering sites and absent KDEL sequence, which is the signal to retain the CALR protein in the endoplasmic reticulum. 
b Leukocyte (white blood cell) counts (WBC), red blood cell counts (RBC), and platelet counts (PLT) in WT mice (CalrWT/WT mice, n = 21), Calrins2/WT 
mice (n = 17), and Calrdel10/WT mice (n = 16) in the peripheral blood. *P < 0.05 versus the WT group. c Schematic diagram of the experimental design 
of bone marrow (BM) transplantation (BMT). BM cells from control CalrWT/WT mice or Calrdel10/WT mice were injected into the lethally irradiated 
WT mice (C57BL/6 J mice). Four weeks after BMT, the recipient mice transplanted with the BM cells from the CalrWT/WT mice (WT-R) or Calrdel10/WT 
mice (del-R) were subjected to normoxia (21% O2) or chronic hypoxia (10% O2) for 3 weeks. d Allele frequency of the mutant Calr in the peripheral 
leukocytes of recipient mice at 4 weeks after BMT (n = 15, each). e Right ventricular (RV) systolic pressure (RVSP) and RV hypertrophy determined 
by dividing the RV weight by the left ventricular weight including the septum (RV/LV + S) (n = 6–8). f Representative hematoxylin–eosin (HE) 
staining and immunohistochemistry with antibodies to anti-α smooth muscle actin (αSMA) and anti-F4/80 images in the lung of BMT recipient 
mice from CalrWT/WT or Calrdel10/WT mice. Scale bars, 50 µm. g Quantitative analysis of the percentage of muscularized distal pulmonary arteries in 
αSMA-immunostained sections (n = 3, each). h Quantitative analysis of the pulmonary perivascular macrophages determined as F4/80-positive 
cells, per 30 vessels (n = 5, each). Data are presented as means ± SEM. d, e, g, h *P < 0.05 versus the corresponding normoxia group and †P < 0.05 
versus the corresponding BMT recipient mice from CalrWT/WT mice. WT-R, recipient mice transplanted with BM cells from CalrWT/WT mice; del-R, 
recipient mice transplanted with BM cells from Calrdel10/WT mice. Oligonucleotides and antibodies used are listed in Additional files 8, 9

(See figure on next page.)



Page 3 of 6Minakawa et al. J Hematol Oncol           (2021) 14:52 	

macrophages with the Calr mutation played important 
roles in the PA remodeling.

To date, most of studies for PH in MPN patients 
lack information about driver mutations, although a 

retrospective study indicated higher prevalence of CALR 
mutations in ET patients with PH than those without [6]. 
Besides megakaryocyte lineage with TpoR expression, a 
recent study indicated that transcriptional misregulation 
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occurs with JAK-STAT activation in CALR-mutated PB-
MNCs similar to JAK2-mutated PB-MNCs [12]. Our 
murine model revealed a hematopoietic phenotype with 
relevance to human MPNs with CALR mutations in terms 

of molecular mechanisms and PH. Further study of asso-
ciations between CALR mutations and PH or macrophage 
activation is needed (Additional file 10).
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Fig. 2  STAT3 phosphorylation and Endothelin-1 expression in the lung and macrophages from Calrdel10/WT mice. a Western blot of lung 
homogenates of the BMT recipients from CalrWT/WT mice (WT-R) or Calrdel10/WT mice (del-R), immunoblotted with the indicated antibodies. b 
Phosphorylated STAT3 (p-STAT3) to total STAT3 (t-STAT3) or Endothelin-1 to β-actin ratios are shown in the graphs. The average value for WT-R 
under normoxia was set to 1 (n = 5, each). *P < 0.05 versus the corresponding normoxia group and †P < 0.05 versus the corresponding WT-R. c The 
lethally irradiated WT C57BL/6 J mice were transplanted with the BM cells from Calrdel10/WT/CAG-EGFP mice. These recipient mice were subjected 
to chronic hypoxia for 3 weeks, and then the lungs were fixed and stained with the indicated antibodies. Upper images show representative 
immunofluorescence of the lung sections stained with anti-GFP (green) and anti-αSMA (red) antibodies and DAPI (blue). Scale bars, 50 µm. Lower 
images show representative immunofluorescence of the lung sections stained with anti-GFP (green) and anti-F4/80 (red) antibodies and DAPI 
(blue). Scale bars, 10 µm. d-g BM mononuclear cells isolated from the CalrWT/WT or Calrdel10/WT mice were cultured in the presence of 10 ng/mL of 
M-CSF for 6 days. d Representative immunofluorescence images of the cells stained with anti-F4/80 (green) and DAPI (blue) are shown. More than 
90% of cells were macrophages expressing F4/80. Scale bars, 25 µm. e Dot plot of flow cytometry for cultured macrophages. Red, blue, and orange 
dots represent cells from CalrWT/WT mice, Calrdel10/WT mice, and negative control (mixture of WT and Calr del10 cells), respectively. Over 90% WT and 
del10 cells were positive for both F4/80 and CD68. SSC indicates side scatter. f The cultured macrophages were then stimulated with 0.05 µg/mL of 
lipopolysaccharide (LPS), a potent activator of macrophages. The mRNA expression levels of Endothelin-1 (Edn1) were analyzed at the indicated time 
(n = 8, each). Actb was used for normalization. The average value for the macrophages from CalrWT/WT mice at baseline was set to 1. g Left panels 
show western blots on STAT3, Endothelin-1, and β-actin in the macrophages stimulated with 0.05 µg/mL of LPS. Right graphs show phosphorylated 
STAT3 (p-STAT3) to total STAT3 (t-STAT3) or Endothelin-1 to β-actin ratios at the indicated time. The average value for the macrophages from 
CalrWT/WT mice at the baseline was set to 1 (n = 4, each). All data are presented as means ± SEM. *P < 0.05 versus the corresponding WT group. WT, 
macrophages derived from the CalrWT/WT mice; del10, macrophages from the Calrdel10/WT mice. Oligonucleotides and antibodies used are listed in 
Additional files 8, 9
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CALR: Calreticulin; ET: Essential thrombocythemia; MPN: Myeloprolifera-
tive neoplasm; PB: Peripheral blood; BM: Bone marrow; BMT: Bone marrow 
transplantation; PA: Pulmonary arterial; PH: Pulmonary hypertension; Del-R: 
BMT recipients from Calrdel10/WT mice; MNCs: Mononuclear cells; RV: Right ven-
tricular; RVSP: Right ventricular systolic pressure; RV/LV + S: Right ventricle/left 
ventricle-plus-septum weight ratio; M-CSF: Macrophage colony-stimulating 
factor; WT: Wild type; WT-R: BMT recipients from CalrWT/WT mice.
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Additional file 1. Fig. S1: CALR proteins coded by ins2 and del10 
frameshifts in murine Calr mimicked a feature of those coded by human 
type 2-like CALR mutations that generated novel C termini. a Western blot 
of BM cells using antibody specific for the CALR N terminus (CALR-N) or 
C terminus (CALR-C). b Isoelectric point (pI) in human and murine CALR 
proteins. c Alignment of C domains in mutant murine CALR from codon 
A352. Acidic and basic residues are in blue and red, respectively. #: the 
negatively charged amino acid stretches. †: the subjects of previously 
reported murine CALR mutants. d-f Identity and similarity between 
murine and human CALR frameshifts. The 2 MPN patients, with a mutated 
protein as CALR p.K375Rfs*52 (c.1124_1133del), matched the murine Calr 
del10 (p.K375Rfs*52 coded by Calr c.1124_1133del), although identity and 
similarity of the peptides were slightly different (f).

Additional file 2. Fig. S2: MPN-like phenotypes in knock-in mice with 
Calr frameshifts. a-b Body (a) and spleen (b) weights (n = 15—19). c BM 
nuclear cell counts (n = 4–6). d The proportions of BM CD71+Ter119+ 
erythroblasts, Gr1+ myeloid cells, B220+ B cells, and TCR​+ T cells in flow 
cytometry (n = 3 in each). e–f Histology of BM (e) and spleens (f). g-h The 
numbers of megakaryocytes per high-power field (HPF) in BM (n = 3 in 
each) and spleens (n = 4—10). (*P < 0.05, **P < 0.01).

Additional file 3. Fig. S3: Phosphorylation of STAT3 and expression of 
MPL, thrombopoietin receptor (TpoR). a Western blot of whole BM nuclear 
cells suspended in the absence of exogenous cytokines. b-c Flow cytom-
etry gated with a lineage− fraction in BM cells. b Overall expression of 
cell-surface TpoR. Left: Histogram; right: mean fluorescence intensity (MFI). 
c Cell-surface expressions of TpoR and CALR. Left: heatmap plots; right: 
proportions of cell-surface TpoR+ cells in association with CALR expres-
sion (n = 3 in each experiment; *P < 0.05; ns: no significant difference). d 
Immunofluorescence for MPL in bone marrow. e Immunofluorescence for 
MPL in lung. d-e Scale bars, 50 µm.

Additional file 4. Fig. S4: Peripheral blood cell counts in the BMT 
recipients exposed to normoxia or chronic hypoxia for 3 weeks (n = 4–6). 
(*P < 0.05 versus the corresponding normoxia group).

Additional file 5. Fig. S5: Relative Edn1 mRNA expression levels in the 
lung (n = 5, each). The average value for WT-R mice under normoxia was 
set to 1. (*P < 0.05 versus the corresponding normoxia group, and †P 
versus the corresponding WT-R mice under chronic hypoxia)

Additional file 6. Fig. S6: Gene expressions. a-e RNA sequencing 
(RNAseq) in LSK (lineage–Sca1+c-Kit+) cells of an aliquot from 4 male mice 
of 3 months age in each sample from Calrins2/WT mice, Calrdel10/WT mice, 
and CalrWT/WT mice. a Principle component analysis. b Venn diagrams of 
upregulated and downregulated genes (> twofold) in LSK cells of Calrdel10/

WT mice or Calrins2/WT mice relative to those of CalrWT/WT mice. c Pathway 
analysis by the Ingenuity Pathway Analysis software (Qiagen). All the 
pathways in the comparison analysis of canonical pathways with both Z 
score ≥|2| and p < 0.05 in at least one of the Calrins2/WT mice and Calrdel10/

WT mice relative to CalrWT/WT mice are shown. • indicates the box which 
did not reach the level of Z score ≥|2| in the genotype shown. The allow 
indicates Cardiac Hypertrophy Signaling pathway upregulated in both 
Calrins2/WT mice and Calrdel10/WT mice. d Individual genes in the Cardiac 
Hypertrophy Signaling pathway. Differentially expressed genes ( >|10|-fold) 
in Calrdel10/WT mice relative to CalrWT/WT mice, including EDN1 that codes 
Endothelin-1 (allow), are shown. e Gene set enrichment analysis (GSEA) for 

the JAK-STAT pathway. NES indicates normalized enrichment score; FDRq, 
false discovery rate q value. f-g Introduction of FLAG-Tag-inserted human 
WT and del52 CALR constructs into a macrophage cell line, RAW 264.7. f 
Western blots. g The levels of Endothelin-1 mRNA (Edn1) were analyzed in 
RAW 264.7 cells introduced with CALR WT or del52 after incubation under 
normoxia (21% O2) or hypoxia (10% O2) for 24 h. Samples were taken from  
3 wells for each experiment. Actb was used for normalization. The average 
value for cells introduced with WT CALR and incubated under normoxia 
was set to 1.

Additional file 7. Table S1: Frameshifts in CALR exon 9 on the COSMIC 
database in hematopoietic cancers.

Additional file 8. Table S2: Oligonucleotides used in this study.

Additional file 9. Table S3: Antibodies used in this study.

Additional file 10: Supplementary methods, results, and references.
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