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Our understanding of how evolution acts on biological
networks remains patchy, as is our knowledge of how
that action is best identified, modelled and understood.
Starting with network structure and the evolution of
protein–protein interaction networks, we briefly survey
the ways in which network evolution is being addressed
in the fields of systems biology, development and ecol-
ogy. The approaches highlighted demonstrate a move-
ment away from a focus on network topology towards
a more integrated view, placing biological properties
centre-stage. We argue that there remains great potential
in a closer synergy between evolutionary biology and
biological network analysis, although that may require
the development of novel approaches and even different
analogies for biological networks themselves.
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Introduction
Many diverse and distinct biological systems may be

represented as networks (Fig. 1). It is perhaps reasonable

to expect evolutionary processes to act on each in a different

way. Yet common network representations encourage the use

of common analytical tools and suggest the potential for

cross-fertilisation of ideas and techniques. Studying evolution

at the level of the network representations of biological

systems may therefore provide a broad and unified view of

evolution itself. Conversely, an evolutionary view may be just

what is required to make sense of increasingly numerous,

complex and confusing networks. Systems biology (SB), one

of the main modern purveyors of network representations of

biological systems, sets out to navigate between biological

levels, molecular and functional, in a mathematically explicit

way.(1) It was to help navigate between such levels, molecular
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and organismic, that Dobzhansky coined the axiom ‘Nothing

makes sense in biology except in the light of evolution’.(2) With

networks now being invoked in fields from paleobiology(3) to

human behaviour,(4) the issue is shifting from the existence

and identity of such networks to their biology and the

insights they might provide into evolution at the systems level.

It is therefore appropriate to ask how much evolutionary sense

is being made of biological networks.

Others have considered the rise of network thinking in

relation to evolution(5) and the importance of network analyses

in bridging the gap between evolutionary biology and other

fields.(6) Specific issues of modularity,(7) robustness and

evolvability(8) and the related phenomena of pleiotropy and

epistasis(9) in relation to biological networks have been subjects

of much interest. We necessarily encounter these themes, but

focus mainly on existing paradigms of how networks evolve. We

ask what can be understood about the biological mechanisms

involved in network evolution and highlight emerging

approaches that may help us find answers to this question.
Network structure

The theory of complex networks and their properties has been

extensively reviewed elsewhere, both generally(10) and

regarding their biological applications.(11) Throughout the

short history of this science, research has tended to focus on

the description of a network’s structure in terms of global

summary statistics such as its observed degree (i.e.

connectivity) distribution, mean clustering coefficient or

characteristic path length. The most famous example is the

power law (or ‘scale-free’) degree distribution, where the

frequency of nodes having a degree k has the form

P kð Þ / k�g , where g> 1. Networks of this form have few

nodes with many connections, but many nodes with only one

or two connections. Power law behaviour in the structure of

networks was first noted by Price in the patterns of citations in

scientific publications(12) and subsequently popularised by

Barabasi and Albert, who observed power law distributions

for network data concerning the World-Wide-Web, actor

collaborations and a power grid.(13) Subsequent work from this

and other research groups reported power law distributions for
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Figure 1. Recent examples of networks used in evolution-related studies in diverse areas. A: Metabolic network of central carbon metabolism in E.

coli, as used for evaluating flux balance analysis (FBA) objective functions.(100)B: Food-web network of species in the Burgess Shale.(3) C: Correlation

network of proteins affected in a bacterial experimental evolution.(72) D: Gene regulatory network (GRN) for endomesodermal specification in sea

star.(90) E: Inferred ancestral chordate protein–protein interaction (PPI) network for bZIP transcription factors.(62) F: Regulatory network of genes

involved in the transition to flowering in Arabidopsis inferred from expression quantitative trait locus (eQTLs).(89)
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many biological networks, both subcellular [e.g. metabolic(14)

and protein–protein interaction (PPI)(15)] and organismal.(4) It is

important to note, however, that the degree distribution alone is

a poor encapsulation of a network’s topology, since a given

degree distribution may be satisfied by many different networks

with substantially different architectures.(16) Additionally, there

are various alternative forms proposed for the degree

distributions of biological networks. There is currently much

controversy over which of these might in fact fit the observed

network data the best,(17) whether such distributions have any

real biological significance,(18) and to what extent the values of

network summary statistics might be affected by noise,(19)

sampling(20) or data handling.(21)
Evolution of topology and beyond

When researchers started to address the question of how

these networks evolved, belief in the primacy of the degree
BioEssays 31:1080–1090, � 2009 Wiley Periodicals, Inc.
distribution led to a focus on evolutionary mechanisms that

would generate power law networks.(22) Just as there may be

many plausible topological models to fit a particular degree

distribution, there are many plausible stochastic models of

network evolution that could generate a given topology.(23) For

example, the preferential attachment model (Fig. 2A)(13) is one

simple way to generate a power-law network by the progressive

addition of nodes, where each new node is attached to an

existing node with a probability related to the degree of that

node. However, preferential attachment seems a particularly

unreasonable mechanism for the evolution of many biological

systems. Several biologically motivated schemes incorporating

node duplication (Fig. 2B) and subsequent loss and/or gain of

interactions (Fig. 2C) have been proposed.(24,25)

Much of this research into network evolution is typified by a

paradigm in which a topological model is described, justified

to some degree in its fit to observed network data, then

subsequently discussed in terms of its evolutionary implica-

tions (Fig. 3A). However, in spite of its popularity, this
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Figure 2. Illustration of some processes of network evolution. These processes range from A: the purely graph-theoretical concept

of preferential attachment,(13) via increasingly biologically motivated concepts of B: node duplication, C: re-wiring, D: node loss,

E: sub-functionalization and F: neo-functionalization, to G: network duplication, analogous to a whole-genome duplication event.
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approach appears to have produced few insights into the true

evolutionary mechanisms that resulted in present-day

biological networks. It also fails to incorporate existing

understanding of evolutionary processes. For example,

models of evolving PPI networks or gene regulatory networks

(GRNs) may need to incorporate gene deletion (Fig. 2D),(26)

subfunctionalisation and/or neofunctionalisation of duplicated

genes (Fig. 2E, F)(27) and whole-genome duplication

(Fig. 2G).(28) Models incorporating such processes can use

computational simulation or inference methods to compare

the model to the observed data, to fit parameter values and to

compare alternative models in terms of their relative

likelihoods.(29) Choosing a biology-centric rather than

topology-centric approach also allows incorporation of known
1082
information concerning evolution of the specific system, e.g.

phylogenetic trees for the genes involved and the gene

duplications and losses that may be inferred from them by

cross-species analysis.(30) As additional biological factors are

implicated in the evolution of networks, it is possible to extend

such models to include them. For example, the importance of

population genetics in systems evolution has largely been

ignored until now, but may prove to have a profound influence

on network structures.(31) A suggestion for how this

alternative research paradigm might be structured is outlined

in Fig. 3B. Instead of focussing on a particular theoretical

network topology, this approach uses existing biological

knowledge to build a realistic model for the evolution of the

specific network being studied.
BioEssays 31:1080–1090, � 2009 Wiley Periodicals, Inc.



Figure 3. Changing research paradigms in the study of biological network evolution. A: Throughout the development of network theory,

biological networks have been of great interest as data-sets to be analysed alongside examples of technological (e.g. internet, world-wide-web,

power grid) and social (e.g. friendship, collaboration) networks. Early work tended to focus on the development of simple models of archetypal

network topologies. Although many authors were keen to address the evolution of biological networks, the evolutionary models developed were

primarily designed to reproduce the simple topologies under consideration, and as such were rarely tested directly against the data. B: A more

sophisticated research paradigm for studying the evolution of biological networks starts from the viewpoint that any evolutionary model should

relate directly to the biological system under study, with reference to population genetics and genomics where appropriate. Using simulation and

probabilistic inference methods, models of network evolution can be tested directly against the biological data, taking factors such as

experimental uncertainties and biases into account.
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How then can such biology-centric approaches be applied

to network evolution? We consider briefly three areas where

answers to this question are being worked out: SB, evolution

of development (‘evo-devo’) and ecology.
Systems biology

As popularised by Kitano,(1) SB concerns feedback of wet-lab

and dry-lab experiments, putting together a mathematically

explicit understanding of the structure and function of sub-

cellular networks from their component parts. Since the

challenge of constructing any such single network is great
BioEssays 31:1080–1090, � 2009 Wiley Periodicals, Inc.
(e.g. those encapsulated by the KEGG databases(32)),

evolutionary change has typically received only peripheral

attention. Furthermore, SB has traditionally advocated apply-

ing engineering approaches to biological systems,(33) which,

while potentially useful for functional network analysis and

synthetic biology,(34) does not easily accommodate thinking

about the evolutionary (as opposed to engineering design)

processes that sculpt biological systems. Nonetheless, once

constructed, SB network models are adaptable to different

tasks, including providing insight into the processes of

evolution which constructed them.(35) Such an approach

has proved useful in studying horizontal gene transfer,(36)

enzyme dispensability(37) and minimised genomes.(38)
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Evolutionary analysis of SB networks is a relatively new

phenomenon; a longer-standing relationship of evolution to

SB networks is as an experimental tool. An example is the use

of evolution experiments in Escherichia coli to test metabolic

network model predictions.(39) This was successful in as much

as bacteria evolved to the model-predicted phenotype.

However, the actual evolutionary process whereby the cells

evolve to the predicted optimum involves mutations to genes

outside the network model.(40) This implies that what natural

selection identifies as ‘the system’ is not necessarily limited to

specific networks (be they metabolic, transcriptional or at any

other level). This finding – that evolution may define biological

networks differently to biologists – is an important caveat to

which we return below in the context of transcriptional

networks.

Another insightful SB example in which evolution has been

used as a tool involved experimentally ‘re-wiring’ a transcrip-

tion network by re-pairing transcription factors and their

promoters.(41) This study shows the ability of transcriptional

networks to tolerate substantial modification, but more

importantly demonstrates an interaction (epistasis) between

such introduced links and subsequent evolutionary changes:

some added links seem consistently to enable more

successful adaptation to stressful conditions than the wild-

type network. The molecular basis of this evolution remains to

be determined and could yield important insights into the

relationship between transcriptional control networks and

their targets. Such innovative SB approaches offer new ways

to tackle old questions surrounding the nature of the evo-

lutionary genetic phenomena of epistasis and pleiotropy.(42)
Evo-devo

Transcription factor networks have also been a key area in

evolutionary developmental biology, evo-devo.(43) However,

unlike in most SB studies, evolution of network structure has

been a focus in understanding network models. Similarly, the

nature of development imparts different emphases from SB in

the network models developed, notably on spatial aspects.(44)

Evo-devo ideas have been developed in relation to biological

network evolution, e.g. concerning homology,(45) that may be

relevant in other spheres of network evolution. For instance, in

the paradigm of eye development there is homology across

vast evolutionary distances at the levels of high-level function

(photo-reception) and key genes (notably Pax6), yet very

different patterns at the intermediate levels of morphology

(insect vs. vertebrate eyes) and the GRN. To make sense of

such patterns, the focus has to be on the historical continuity

of networks through evolution(45) and ‘developmental system

drift’.(46) The latter phenomenon refers to network structure

changes with ultimate function remaining unaltered. It is

identifiable in evolutionary network simulations(18,47) and
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analyses(48) and is reminiscent of ‘neutral network’ evolution

seen, for instance, in in silico systems of nucleic acid

evolution.(49)

The mechanics of such network evolution are, however,

very difficult to test, given the large timescales of interspecific

evolution typical of evo-devo, where we only have develop-

mental details for a few tips in a large phylogenetic tree.

Nonetheless, ‘micro evo-devo’ is progressing in this direc-

tion.(50) Within-genus work in Caenorhabditis nematodes

reveals quantitative changes within a signalling network, the

overall phenotype remaining constant (changes are described

as ‘cryptic’ since they are only apparent following experi-

mental manipulation).(51) At shorter evolutionary timescales

again, cryptic quantitative evolution has been identified in

Caenorhabditis elegans over the course of laboratory

culture,(52) and experimental evolution has been used.(53)

Thus, it may be possible to use the C. elegans model system

to look at steps of developmental network evolution

individually and experimentally, which so far has been done

only for microbial networks (e.g.(40)). Are these concepts and

approaches applicable outside development? Quite probably

– in the simulations showing developmental system drift

the phenotype used is one or more gene expression

levels,(18,47,48) which is as applicable to unicellular systems

as development, and may be more tractable in simpler,

experimental evolution systems. More generally, while appar-

ent disconnections between evolutionary behaviour at geno-

typic, phenotypic and network levels may be particularly acute

when the phenotype is as complex as an eye or vertebrate

limb, there is no reason to believe that such relationships are

any less subtle in simpler and potentially more experimentally

tractable systems such as microbial metabolism. Indeed,

similarly complex genetic relationships of orthology, paralogy

and functional divergence undoubtedly exist, as evidenced in

complete microbial genome sequences.(54)
Ecology

Ecology has a long history of using networks – food webs

(Fig. 1B) are some of the longest standing networks in any

field (e.g. Briand collated 40 published webs over 25 years

ago(55)). Like evo-devo, network studies in ecology have

focused on evolution and the underlying biological (as

opposed to purely graph-theoretical) processes. Similarly,

network ‘dynamics’ refers to the evolution of structure over

time (a sense in which it has also been used for PPI(28) and

transcriptional networks(56) in contrast to the SB sense of the

temporal kinetics of variables within a given network).

However, the sorts of processes occurring among networks

of biological taxa in ecological networks are scientifically

rather distant from the subcellular networks considered so far,

although arguably not as distant as the influential social,
BioEssays 31:1080–1090, � 2009 Wiley Periodicals, Inc.
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citation and world-wide-web network paradigms.(57) For

instance, an important distinguishing feature of ecological

networks from either social or world-wide-web networks is

variation in the abundance of the entities represented by

network nodes.(57) This feature has important implications for

designing appropriate null models for network structure(58)

and is shared with, for instance, PPI networks. Taken to its

limit, ecological network evolution is appropriately modelled

via individual-based models.(59) However, even when topology

alone has been used, ways have been found to frame

meaningful tests of underlying evolutionary processes.(60)

Ecology’s subject matter means that evolutionary pro-

cesses acting on the individual or population, notably natural

selection, will typically act at or below the level of individual

network nodes rather than at the level of the complete network

or above, as with subcellular networks. In ecology this has led

to clear distinctions being drawn between network structure

evolution (especially via extinctions) and evolution of

the components in the network (phylogeny), highlighting

the relationship between the two.(61) Such distinctions

between levels of evolution are undoubtedly important in

other systems, where, e.g. the distinction between the

evolutionary history of a protein and the evolutionary history

of its interactions may not be so obvious, but may be

necessary to an understanding of what is going on in evolution

(e.g.(62)). Ecological network evolution is also tackling the

move from discrete (binary) networks to quantitative networks

(weighted graphs showing the strength of interactions).(63) In

addition to representing biological aspects of the system,

quantitative networks can be used to analyse the effect of

sampling effort,(64) something that is coming to prominence in

PPI networks.(21)
Discrete versus quantitative networks

The relationship of discrete ‘wiring diagram’ networks to

quantitative (weighted) representations of the same biological

systems is a current challenge for evolutionary network

analysis across diverse fields. It is important firstly because

the representation used affects the capture of evolutionarily

important characteristics.(65) Secondly, as demonstrated in

evo-devo analyses of nematode vulva development high-

lighted above, what ends up as discrete network evolution

over long (inter-generic) evolutionary timescales (e.g.(66))

may start as quantitative changes over shorter (intra-generic)

timescales.(51) Therefore, understanding the mechanisms of

network change that occur in the individual steps of evolution

will entail obtaining quantitative descriptions of the system,

such as the proportion of different cell fate outcomes from

signalling networks.(51)

SB has perhaps moved furthest down the road of exploring

alternative discrete and quantitative models of the same or
BioEssays 31:1080–1090, � 2009 Wiley Periodicals, Inc.
similar systems. Thus, constraint-based analyses of meta-

bolic networks, notably flux balance analysis (FBA), may

require little more than discrete wiring diagrams(67) (Fig. 1A),

but produce only limited steady-state predictions. In contrast,

fully quantitative kinetic modelling provides a clearer view of

quantities that are more easily measured in real systems (e.g.

metabolite levels), but requires much more prior informa-

tion,(68) the acquisition of which is a substantial bottleneck (for

instance the enzyme kinetic parameters stored in the Sabio-

RK database(69) are primarily culled from old literature and

collected in highly varied conditions; high-throughput

approaches using standardised conditions are only slowly

being developed). This amounts to a trade-off between the

requirement of discrete models for less detailed experimental

knowledge and applicability to larger systems, and the

greater, subtler and probably more realistic insight of

quantitative models. This trade-off will become increasingly

apparent across biological network analyses, where the

network required to answer specific evolutionary questions

will not necessarily be the most quantitative network available.

Thus, so far in SB, primarily discrete FBA network analyses

have been used effectively to tackle evolutionary questions

(e.g.(38)).
Phenomenology, null models and
mechanism

We currently know so little about the phenomenology of

network evolution that charting the ‘natural history’ of a

network evolution will frequently be valuable in itself, without

comparison to a null or expected change.(70) The natural

history task is non-trivial, firstly in terms of separating true

evolutionary change from apparent changes due to technical

error.(21) Secondly, in our ignorance of ancestral network

states, evolutionary reconstruction is a delicate exercise.(62)

Perhaps the neatest answer to the first problem is to

concentrate on approaches to network evolution that compare

networks with equivalent technical errors. Such a focus

argues against non-comparative analyses, such as attempt-

ing to draw evolutionary inferences from topological analysis

of any single PPI network (see above) and against

comparisons of networks constructed from different studies

carried out in different laboratories at different times.

Conversely, this is an argument for focusing on networks

identified and compared in a single study, as in nematode

vulva specification studies,(51) and the expression quantitative

trait locus (eQTL) and correlation network examples

discussed below. In a similar vein, the neatest solution to

difficulties of phylogenetic reconstruction may be to focus on

experimental systems where the ancestral states are

observed directly, as in microbial experimental evolution

systems(71) (see below). Even when all these approaches are
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taken, the phenomenology of network evolution may remain

challenging to unpick (e.g.(72)).

Focusing on single-study comparative and experimental

approaches will help make valid evolutionary comparisons.

However, the questions of the mechanisms and evolutionary

forces underlying network evolution are clearly extremely

important. Whether or not there is any empirical basis for

doing so, evolutionary, and in particular adaptive, hypotheses

of network change are the subject of widespread specula-

tion.(73) Full population genetic null models of network

evolution would bring clarity to these issues, but are in their

infancy and a bottleneck to progress in this direction.(31)

Nonetheless, simulations are yielding results, notably that

non-adaptive evolution can result in pathway architectures

more complex than strictly required for a selected func-

tion.(31,74) Simulation also indicates the importance of

considering the network level of evolution, rather than

concentrating only on genotype and high-level phenotype.(6)

For instance, low within-population polymorphism at a single

locus coupled with high between-population divergence might

be interpreted as a signature of adaptive evolution. However,

simulating the network context of a locus’s evolution, that

signature can be shown to arise in some cases simply from

stabilising selection around a given phenotype.(18) Such

simulations are currently rather abstracted relative to

experiment, but, with care, adaptive hypotheses may be

testable in real networks.(75)

Crucial to unpicking the reality of the roles of adaptive and

non-adaptive processes in network evolution will be analysis

and comparison of experimentally evolved strains undergoing

adaptive, or specifically non-adaptive, evolution. Mutation

accumulation experiments consider non-adaptive evolution.

The focus is typically on the nature and rates of mutation.(76)

Probing network effects experimentally (e.g. by genetic(77) or

physical(51) manipulation) in mutation accumulation lines may

therefore prove illuminating. For adaptive evolution, there is

much more experimental evidence, not least from Lenski’s

paradigmatic long-term (now over 20 years) experimental

evolution of E. coli.(78) This has demonstrated that the

networks (or network ‘modules’) where adaptive mutations

lie can be very distinct from the selected phenotype. Thus,

while selection principally concerns metabolic traits (growth

on glucose as a sole carbon source), adaptive mutations are

seen involving DNA superhelicity and the stringent

response.(78) The reverse situation is also seen in shorter-

term evolution in another bacterium, with selection for a non-

metabolic trait being effected by mutations in a gene

principally controlling metabolism.(72) In a social experimental

evolution system,(79) the wide diversity of genes where

mutations can result in social cheating is of itself predicted to

provide a route to evolving network complexity via ‘conflict-

generated churning’.(80) This raises important issues, beyond

our scope here, around the role and meaning of pleiotropy and
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modularity in network evolution.(7,9,81) In practice, unpredict-

ability of the loci involved in adaptive evolution, even of

relatively well understood networks, makes it difficult to use

the ‘candidate gene’ approaches that have been successful in

evo-devo for identifying the genetic basis of evolution

(e.g.(82)). However, falling costs of complete genome

sequencing are removing the need for a candidate gene

when identifying small numbers of changes in experimentally

evolved lines. This makes experimental adaptive evolution an

increasingly promising area of research.
Genetics, eQTLs and correlation networks

Beyond experimental evolution, the genetic basis of network

evolution is harder to unpick. Evo-devo has a focus on

transcriptional GRNs and within that, cis-acting regulatory

changes.(83) This focus has undoubtedly enabled insight into

interspecific evolution of transcription-factor networks, parti-

cularly of key developmental systems.(83) However, it is by no

means clear that these are uniquely relevant genetic

changes, even within developmental networks.(84) Beyond

development, transcription factors are in fact rather poorly

represented among the genetic loci responsible for the

evolution of yeast transcription.(85)

Whatever the scope of the evolutionary role of cis-acting

regulatory changes, evo-devo expresses an important

objective: to identify patterns among mutations with particular

roles in evolution. At a broad level, some relationships have

been identified, such as weak negative correlations between

genes’ evolutionary rate and the connectivity of their proteins

in PPI networks.(86) However, a much more interesting

challenge will be to understand patterns of individual

evolutionary steps at the molecular level. To obtain such an

understanding, researchers will need to develop both global

and probabilistic views of individual mutations in the context of

biological networks. One approach to gaining such an

understanding for expression is given by eQTLs.(87)

All quantitative trait locus (QTL) analyses link genotype

and phenotype in evolution by assessing statistical associa-

tions between genetic loci that have evolved differences

(markers) and some quantitative phenotype(s) of interest,

typically as both segregate in a cross between evolutionarily

diverged individuals. For eQTLs, the phenotypes of interest

are transcription levels of genes. Since both genotype and

phenotype in an eQTL association are defined by identifiable

genetic loci, it is possible to construct a network where

the nodes are genes and the directed and signed edges

indicate that evolved changes at one locus are associated

with transcription levels at the other locus(88,89) (Fig. 1F), i.e. a

network exclusively of evolutionary effects. Thus, while eQTL

networks share with GRNs the superficial similarity of

showing loci affecting one another’s transcription, the
BioEssays 31:1080–1090, � 2009 Wiley Periodicals, Inc.
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approach is almost diametrically opposite – GRNs typically

focus on evolutionary conservation (for instance the concept

of evolutionarily conserved GRN kernels advanced by Hinman

and Davidson(90)), whereas eQTL networks show only loci

that change or whose expression is changed in evolution,

typically over intraspecific evolutionary distances. Different

approaches may be more appropriate for studying processes

of network evolution at different evolutionary scales. The

challenge will be to define how these views relate to one

another and hence to obtain a global evolutionary view of

relationships among molecules of the cell. Pursuing this end

will complement and may provide insight into non-network

studies that demonstrate the non-equivalence of evolutionary

conservation and functional importance, with many genomic

regions showing experimentally demonstrable functional

roles without evolutionary constraint.(91)

QTL-based networks not only focus on evolution, they aim

at a global unbiased view of relationships across a genome.

Thus, they go some way towards identifying what biological

networks are, as defined by evolution rather than biologists.

This is an important issue in the light of the cases mentioned

above, where the mutations underlying adaptive evolution

occur outside the pre-defined network of the phenotype

studied.(40,78) In eQTL networks, the network is the evolution,

limiting evolutionary comparisons among networks. An

alternative approach without this issue, but similarly aiming

at a global unbiased view, is correlation network analysis.

Assessing the correlation of a wide class of cellular

components, most commonly metabolites, across a series

of perturbations, commonly the minor environmental changes

seen across biological replicates, identifies some compo-

nents as strongly correlated and others not. These correla-

tions may be interpreted as a fully connected, weighted graph,

typically represented as a simpler discrete network by a

process of edge removal based on the strength or significance

of the correlations(92) (e.g. Fig. 1C).

Correlation networks represent co-regulation, rather than

proximity in a biochemical network. For instance, metabolites

adjacent in a metabolic network may not be the most closely

correlated in a correlation network, an observation attested to

experimentally(93) as well as theoretically.(94) Use of the term

‘network’ here is potentially problematic, in that its meaning is

far looser than is usual for biological networks. While network

graphs are generated to which graph theoretical approaches

can be, and have been, applied, there is no direct physical

interpretation of an edge in the graph in terms of a molecular

interaction. However, correlation networks are very good for

capturing and making sense of control relationships,

potentially transient or otherwise elusive relationships, and

how they change. For instance they have been successfully

applied to understanding changes in currency markets.(95)

They have also been used to look at genetic changes(96)

including those changes responsible for adaptive evolu-
BioEssays 31:1080–1090, � 2009 Wiley Periodicals, Inc.
tion.(72) However, studying the evolution of such graphs is

tricky – it depends on how the fully connected, weighted graph

is simplified, which may involve arbitrary thresholds, or

approaches such as minimal spanning trees (MSTs, Fig. 1C).

MSTs may be used as a clustering tool, equivalent to single

linkage clustering.(95) Thus the analysis of correlation

networks merges into other, non-network analyses of

correlation matrices. It may be that other such methods

(e.g. approaches based on eigenvalues of correlation

matrices(97)), while less visually striking and lacking the

network buzzword, may be equally or more appropriate tools

with which to tackle network evolution in terms of correlations

among biological molecules.

Whether or not correlation networks are usefully classified

as networks, they highlight an important point: in the evolution

of biological networks, there are very general issues of

approach that remain open. As we have seen, much current

work stems from the popular concept of the cellular wiring

diagram, and hence by implication the role of evolution is

equivalent to that of re-wiring a radio.(33) Many of the analytical

techniques discussed above are firmly rooted in this

metaphor, which may be applied to network evolution in

more or less biologically reasonable ways (see Fig. 2). The

wiring diagram as a biological analogy clearly has value,

primarily in the clarity it brings, enabling the application of

engineering approaches, both analytical and synthetic.

However, its adequacy as a biological analogy is particularly

questionable when it comes to evolution. Actual wiring

diagrams are descriptions of how individual, static elements

designed to perform specific functions – transistors, resistors,

etc. – are arranged in a design to perform specific roles in a

higher level function, e.g. transduction of radio waves into

sound. It is a very static view with design and purpose inherent

in the image. It may be possible to navigate such issues, but

they are particularly problematic when it comes to under-

standing network evolution.(31)

The wiring-diagram analogy for biological systems was

borrowed from one of many forms of network analysed in the

physical sciences. A surprising subject for network analysis to

emerge from the physical sciences more recently is the

Eurovision song contest.(98) We suggest that this may be a

more appropriate analogy to borrow when it comes to the

evolution of biological networks. The nature of the analogy is

sketched in Table 1. Briefly, like an organism, the Eurovision

song contest is a system that ‘works’, as evidenced by its

survival. There is a role for the effectiveness of the individual

network elements (countries, cf. biological molecules) at

doing their apparent jobs in the system (producing music, cf.

biological functions). But while necessary, these functions do

not determine how the system as a whole functions or evolves

over time. System function and evolution is underlain by a

variety of relationships among the elements, of varying

strengths and degrees of permanence. This implies that
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Table 1. Comparison of analogies for subcellular biological networks

Biological network Wiring diagram Eurovision song contest

System Living organism Electronic device (e.g. radio) Music competition

Elements Biological molecules Electronic components Countries’ representatives

Nature of elements Complex chemical entities with

evolutionary histories

Minimal elements designed to

perform simple tasks

Complex decision-making units

with historical continuity

Clearly defined

element functions

Performing biological functions

(e.g. as described in GO terms)

Component specifications Performing songs

Other element features

involved in network function

Genetic location None Geographical proximity

Transcriptional, translational,

post-translational and degradation

control

Politics

More or less specific PPIs Cultural history

Other known and unknown

relationships

Other unknown relationships

Performance measure Inclusive fitness of an individual

within a population

Performance of one or more

pre-defined functions

International TV audience figures

Evolutionary step DNA mutation Addition or removal of connection

or component

Change in individual voting

behaviour
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individual network changes (particular genetic changes in a

cell, cf. switches among cliques of countries voting for each

other in the Eurovision analogy) may be very difficult to

attribute to specific causes and of limited significance in

themselves. Nonetheless, analysis of network evolution

remains a route to understanding system function (e.g.

analysis of changes in Eurovision voting patterns successfully

identified unofficial cliques of countries(98)).

The analogy used for biological systems affects the sorts

of questions, experiments and analyses expected to be most

fruitful. Thus, the Eurovision analogy (Table 1), while less

appropriate to engineering than a wiring diagram, presup-

poses a more dynamic and complex system. As with the

Eurovision analysis itself,(98) this suggests eschewing static

approaches, such as degree distribution analysis, in favour of

network analyses designed to deal with dynamically changing

network topology. Thus, the Eurovision analogy fits better

than the traditional one with dynamic evolutionary network

phenomena discussed above such as developmental system

drift(46) and conflict-generated churning.(80)
Conclusions

The application of network approaches to biological systems

hasgonethroughsomethingofahypecycle,(99)where the ‘peak

of inflated expectations’ corresponded to the widespread

excitement, now passed, about scale-free networks and purely

topology-based network approaches more generally, but a

‘plateau of productivity’ has not yet been reached. Part of the
1088
excess hype comprised the over-zealous application of ideas

across very different fields, when the hypothesis (power-law

degree distributions) was both weak and in many cases

incorrect.(16) However, that does not preclude useful cross-

fertilisation of network ideas and techniques from different

branches of biology. Research on the evolution of biological

networks seems ideally placed to help steer a course between

graph theory devoid of biological realism and experimental

‘ridiculogram’ networks devoid of theory.

In this essay we have highlighted some ways in which the

evolution of biological networks is currently being studied,

drawing on examples from diverse fields. It is clear that

various issues of network evolution are common across these

research areas, including challenges such as the need to

move from discrete wiring diagram networks to quantitative

weighted graphs, a change that may be assisted by moving

away from the wiring diagram metaphor or analogy itself

(Table 1). A major focus has to be on the genetic basis of

network evolution and how to take as broad and unbiased a

view as possible of the networks in question. The approaches

highlighted show how an explicitly evolutionary view of

biological networks helps us to draw links between fields

and to frame wider questions about the meaning of biological

networks. The paradigm of understanding biological networks

caricatured in Fig. 3A, with evolution as a downstream

appendix, is clearly inadequate. Alternatives are being

developed. However, there is much work to be done before

we reach the more tightly integrated paradigm envisioned in

Fig. 3B, where we can make sense of biological networks in

the light of their evolution.
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