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ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs
that are involved in the regulation of major pathways
in eukaryotic cells through their binding to and re-
pression of multiple mRNAs. With high-throughput
methodologies, various outcomes can be measured
that produce long lists of miRNAs that are often dif-
ficult to interpret. A common question is: after differ-
ential expression or phenotypic screening of miRNA
mimics, which miRNA should be chosen for further
investigation? Here, we present miRViz (http://mirviz.
prabi.fr/), a webserver application designed to visual-
ize and interpret large miRNA datasets, with no need
for programming skills. MiRViz has two main goals:
(i) to help biologists to raise data-driven hypothe-
ses and (ii) to share miRNA datasets in a straightfor-
ward way through publishable quality data represen-
tation, with emphasis on relevant groups of miRNAs.
MiRViz can currently handle datasets from 11 eukary-
otic species. We present real-case applications of
miRViz, and provide both datasets and procedures
to reproduce the corresponding figures. MiRViz of-
fers rapid identification of miRNA families, as demon-
strated here for the miRNA-320 family, which is signif-
icantly exported in exosomes of colon cancer cells.
We also visually highlight a group of miRNAs asso-
ciated with pluripotency that is particularly active in
control of a breast cancer stem-cell population in cul-
ture.

INTRODUCTION

MicroRNAs (miRNAs) are non-coding RNAs of around
22 nucleotides that regulate protein-coding gene products
at the post-transcriptional level, by directing the RNA-
induced silencing complex (RISC) to its mRNA targets.
Canonical binding of miRNAs corresponds to almost per-
fect Watson–Crick pairing of the so-called ‘seed’ sequence
with its mRNA targets, often in the 3′ UTR (1). The seed
sequence comprises the six nucleotides at positions 2–7 in
the 5′ region of the mature miRNA. Due to the small num-
ber of nucleotides involved in this target recognition, miR-
NAs lack specificity, and they often have dozens to hun-
dreds of target mRNAs. Groups of miRNAs that share the
same seed sequence bind to similar sets of mRNA targets,
and are thus classified as miRNA families (1).

The popularization of high-throughput technologies has
generated a vast quantity and diversity of large tables of
miRNAs. For example, microarrays and sequencing tech-
nologies measure miRNA expression levels under various
experimental conditions, to provide data that are often con-
verted into differential expression levels (2–4). Similarly,
phenotypic high-content screening has led to large func-
tional datasets (5). The common questions are then how
to interpret these tables, and which miRNAs to select for
further evaluation and validation. In the following, we de-
fine as ‘hits’ those miRNAs with high scores that indicate
their potential interest. These can be differentially expressed
miRNAs, highly expressed miRNAs, or miRNAs with high
scores or small P-values.

To help in the analysis of such long lists of miRNAs, we
have designed and built a free-to-use webserver to visual-
ize and interpret miRNA datasets, entitled miRViz (http://
mirviz.prabi.fr/). With miRViz, users can visualize their own
and/or pre-loaded miRNA datasets on predefined miRNA
networks, with various options to highlight or hide subsets
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of the data. These operations are accessible through the top
menu on the left bandeau. The data-processing methods,
such as data normalization, are not implemented in miRViz;
these analyses should be conducted before using miRViz.
For example, analysis for differential expression should be
performed with one of the numerous available tools, such as
DESeq2 (6), before visualization in miRViz.

MiRViz is designed to be as intuitive as possible. Ad-
ditionally, the miRViz help file (‘Download help’, top-
right) guides users, click by click, together with a down-
loadable video tutorial. While a few studies, including
our previous study, have proposed miRNA-network ap-
proaches (7,8), to the best of our knowledge, none of
them have proposed a dedicated tool for biologists to in-
terpret miRNA datasets. There are tools to build miRNA–
mRNA target networks, including miRNet (http://www.
mirnet.ca/), although the users have to previously identify
miRNAs of interest from their datasets (9). MiRViz and
miRNet can thus be used in sequence. Bracken et al. re-
viewed the websites for enrichment analysis (10). These
websites are also complementary to miRViz, and can be
used with the same datasets. For example, TAM (http:
//www.lirmed.com/tam2/Home/) and miEAA (https://ccb-
compute2.cs.uni-saarland.de/mieaa tool/) perform ontol-
ogy enrichment at the level of miRNAs, and miRPath
(http://snf-515788.vm.okeanos.grnet.gr/) and miRPathDB
(https://mpd.bioinf.uni-sb.de/) do so at the level of the
mRNA targets (11–14).

This paper is organized as follows. In the following sec-
tion, we present the different miRNA networks and the
preloaded datasets. We then present the webserver func-
tionalities, and provide practical examples to highlight the
strengths of miRViz for experimental data analysis. Impor-
tantly, in the Supplementary Materials we provide all of
the necessary datasets and step-by-step procedures to repro-
duce the figures shown here with miRViz.

MATERIALS AND METHODS

Implementation

MiRViz is composed of a JavaScript front-end server and
a Java back-end server. While the best user experience is
provided when running miRViz on wide screens with high
resolution, it still remains of interest with lower resolution,
where zooming out may sometimes be necessary to avoid
overlapping components (for more details, see the Trou-
bleshooting section of the downloadable mirviz-help.pdf).
User datasets are not uploaded to the server but are safely
loaded into the local browser. MiRViz is freely available
without login requirements.

MicroRNA networks

MiRViz is built around predefined miRNA networks, in
which each node is represented by a circle that corresponds
to a unique mature miRNA. In its 2020 version, miRViz can
be used to visualize miRNA data from 11 different species,
including human (hsa), mouse (mmu), Caenorhabditis el-
egans (cel) and Drosophila (dme). The architecture of the
webserver was designed to easily add new networks and new
species in the future.

In miRViz, we propose eight different predefined net-
works. Each of the networks has its own rules for the con-
nection of the miRNA nodes. The first network used by
miRViz, ‘Seed2 7’, allows direct visualization of miRNA
families by connecting pairs of miRNA nodes that share
the same seed sequence. The two miRViz networks en-
titled ‘Genomic Distance’ connect neighboring miRNA
genes on the genome. The ‘2k’ version links neighbor-
ing miRNAs if they are closer than 2 kilobases (kb), to
visually identify polycistronic miRNA clusters (15). The
‘50k’ version has a less stringent threshold of 50 kb, to
account for large genomic reorganizations, as can be en-
countered in tumors and as demonstrated in an exam-
ple below. Three co-regulation networks connect miRNA
nodes that share common mRNA targets (7). More pre-
cisely, in ‘Diana50’, ‘TargetScan54’ and ‘DianaTarBase50’,
the miRNA nodes are connected if they share more than
50%, 54% and 50% common mRNA targets, respectively,
as predicted by Diana MicroT v3 (16) or Target-Scan v6.2
(17), or by experimental validation and gathering in Diana-
TarBase v8 (18). We added two simplified networks with
fewer nodes to ease visualization and interpretation: ‘Ge-
nomic Distance 50k clusters 3+’ which only keeps the 820
miRNAs that are in clusters of size 3 or more, and ‘Tar-
getScan54 degree 10+’ which keeps the same layout of ‘Tar-
getScan54’ but removing the nodes connected to 9 or fewer
nodes. In the Supplementary Materials, we provide the ex-
act formulae and justifications of the rules that underlie the
connections of the miRNA nodes in each of the networks.

Pre-loaded datasets

Three miRNA tables are pre-loaded in miRViz to ease
comparisons with user datasets: ‘hsa miRNAmine cells’,
‘hsa miRNAmine tissues’ and ‘hsa TissueAtlas’. For the
two first datasets, the data were gathered from miRNAmine
(3). For the third dataset, the data were gathered from Tis-
sueAtlas (4). MiRNA expression was transformed into log2
scales, and then averaged across all of the experiments per-
formed under the same conditions (the number of different
experiments used to average is indicated in brackets). Ex-
pression on a log2 scale spans from 0 to 20.

Experimental microRNA datasets

We have used various public miRNA expression datasets
in the practical examples provided (from both microarrays
and sequencing) to highlight miRViz strength (19,20). We
have also used an in-house functional miRNA screening
dataset (21). The datasets are provided as Supplementary
Tables and the data pre-processings are detailed in the Sup-
plementary Materials. Briefly, the first dataset relates to
miRNA sequencing, from the public identifier SRA106214.
It provides miRNA expression levels in colon cancer cell
line LIM1863, and in their secreted small vesicles, together
with differential expression between vesicles content and
the parental cells (Supplementary Table S1). The second
dataset provides the prognostic value for overall survival of
patients with adrenocortical carcinoma, for each individual
miRNA, expressed in the log10 of the P-value obtained after
log-rank test (Supplementary Table S2). The third dataset
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provides the differential expression between human embry-
onic stem cell and differentiated cells from the public dataset
GSE14473 (Supplementary Table S3). The fourth dataset
provides the change of the percentage of breast cancer stem
cells after transfection of individual miRNA mimics (Sup-
plementary Table S4). The last dataset presents the en-
richment of two selected gene ontologies among predicted
mRNA targets for each individual miRNA (‘regulation of
gene expression’ and ‘small-GTPase-mediated signal trans-
duction’, Supplementary Table S5).

Statistical tests

MiRViz provides visualization of the aggregation of miR-
NAs on various networks, in particular inside families
(Seed2 7 network) or genomic clusters (Genomic Distance
networks). To assess how significant miRNA hits are aggre-
gated in a given family or cluster, a ‘local’ statistical test can
be performed. Let p denote the proportion of hits on the
network (p = n hits / n nodes, with n hits the number of hits,
and n nodes the number of nodes with miRNA measure-
ment in the network), and n cluster the number of nodes
in the cluster/family of interest with miRNA measurement
(e.g. expressed miRNAs for differential expression measure-
ments). Under the null hypothesis H0, the number of hits
in this cluster/family is given by the binomial distribution,
and the P-value is the probability under H0 to get equal or
more hits in the cluster/family of interest. To assess how sig-
nificant miRNA hits are connected in a given network, we
also proposed a ‘global’ statistical test, in which the number
of hit pairs (i.e. an edge connecting two miRNA hit nodes)
are first counted. Then, to evaluate the null hypothesis H0,
the number of hit pairs is counted after a hit randomization
procedure in which an miRNA is randomly designated a
hit, while keeping constant the total hit number. The global
P-value is estimated as the proportion of randomized tri-
als for which the measured number of hit pairs is below the
randomized one.

RESULTS AND DISCUSSION

MiRViz highlights the selective export of the miR-320 family
into colon cancer cell exosomes

The first network used by miRViz, Seed2 7, allows direct
visualization of miRNA families by connecting pairs of
miRNA nodes that share the same seed sequence. The
Seed2 7 networks can be visualized through miRViz for
all of the 11 species proposed. As a demonstration of
how miRViz can be used to interpret miRNA expression
datasets, a few click tutorials are provided in the help file
(top-right button on the website), which shows how to vi-
sualize tissue-specific miRNAs. Here, we propose a com-
plementary example using the publicly available miR-seq
dataset that profiles the LIM1863 colon cancer cell line
and three different sorts of extracellular vesicles isolated
from the culture supernatants (19). Figure 1 shows the
differentially expressed miRNA families in two types of
immunoaffinity-isolated exosomes (i.e. A33 in Figure 1A;
EpCAM in Figure 1B) and shed microvesicles (Figure 1C).

MiRNAs with lower and higher expression in vesicles com-
pared to cells are colored in green and red, respectively. The
nodes that correspond to the miRNAs with very low expres-
sion under all of the conditions is set as semi-transparent.
Interestingly, miRNAs tend to have similar differential ex-
pression in each family, which is highlighted by miRViz
showing uniform colors in each family. Indeed, when defin-
ing an miRNA with high differential expression (log2 fold
change > 1) as a hit, miRViz shows that hits significantly
aggregate in miRNA families in all three sort of vesicles
(global P-value < 10−5, Supplementary Materials section
6). We can thus hypothesize that there is an active export
of selective family members through exosomes, in accor-
dance with active export shown in other experimental cases
(22,23). MiRViz can quickly identify these families, and pro-
vide a way to share the result. The hsa-miR-378/422a fam-
ily is exported specifically in immunoaffinity-isolated A33
exosomes (P-value = 0.008; paired Wilcoxon test; Figure
1A). The hsa-miR-320 family is significantly exported in
both sorts of exosomes (P-value = 0.002; paired Wilcoxon
test; Figure 1A, B). This export is clear only for exosomes
(i.e. not for small vesicles), and stronger for the A33 exo-
somes. We have confirmed these data by independent RT-
qPCR measurements (Supplementary Figure S1). Finally,
all of the five expressed members of the hsa-let-7-3p/miR-
98-3p family are significantly exported in all of the three
types of extracellular vesicles (P-value = 6 × 10−5; paired
Wilcoxon test; Figure 1). In addition to overall aggregation
behavior of miRNA hits, one can ask how significant hits
are aggregated in a given family. All the three families de-
scribed above for which the differential expression was sig-
nificant, showed also a significant segregation (local P-value
< 0.002, Supplementary Materials section 6).

High expression of miRNAs of the Xq27.3 cluster is predictive
of better prognosis in adrenocortical carcinomas

Both Genomic Distance networks can be visualized with
miRViz for all of the 11 species. To demonstrate the inter-
est of the Genomic Distance 50k network in the context
of cancer, we reanalyzed the public data from Assie et al.
(24), which contains both the miRNome of tumor samples
from patients diagnosed with adrenocortical carcinoma and
their overall survival (OS) information. For each miRNA,
the patients were separated into two groups of equal size,
which depended on the miRNA quantification, and a P-
value was calculated on the OS after log-rank tests. A hit
is defined here as an expressed miRNA (median expression
among patients > 10 reads) for which the P-value is <10−2.
Figure 2A shows the Kaplan-Meier curves of two microR-
NAs of interest, together with the P-value of the log-rank
test, and the node colored according to the P-value. Fig-
ure 2B shows the P-value in a log10 scale overlaid onto Ge-
nomic Distance 50k network, zoomed in on chromosomes
14 to X, with a green gradient for good prognosis miRNAs
(miRNAs for which high expression is of good prognosis
for the patient), and a red gradient for poor prognosis miR-
NAs. Two large clusters show up in miRViz (Figure 2B, C):

- cluster 14q32.2 (spanning 197 kb) that is predictive of poor
prognosis, i.e. patients who show high expression of the
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Figure 1. (A–C) Color scale representation of the differentially expressed miRNAs between the exosomes or microvesicles and the parental LIM1863
cells overlaid on the left hand side of the Seed2 7 network of miRViz. MiRNA families naturally appear from the largest to the smallest. Red and green
nodes correspond to miRNAs overexpressed and repressed in vesicles, respectively. Three interesting clusters are zoomed in on at the right side: The
miRNA cluster in the red square corresponds to the miR-320 family, the purple hexagon corresponds to the miR-378/422a family, and the blue circle
to the let-7-3p/miR-98-3p family. Nodes corresponding to miRNAs not expressed in this cell type were set to semi-transparent. (A) MicroRNAs in A33
exosomes derived from colon cancer cells versus parental cells. (B) MicroRNAs in EpCAM exosomes derived from colon cancer cells versus parental cells.
(C) MicroRNAs in shed microvesicles versus parental cells.

miRNAs of the cluster are associated with shorter OS (24
hits out of 48 expressed miRNAs, P-value = 6.1 × 10−7);

- cluster X27q3 (spanning 95 kb) that is predictive of good
prognosis, i.e. patients who show high expression of these
miRNAs are associated with longer OS (9 hits out of 13
expressed miRNAs, P-value = 6.7 × 10−7).

While both clusters were described in the original publi-
cation (24), miRViz proposes a rapid method to easily iden-
tify such clusters and a way to visualize the data. Addi-
tionally, in Figure 2C three clusters are highlighted in blue:
two clusters of the hsa-miR-29 family, located in 1q32.2
and 7q32.3, and associated with good prognosis (three
hits out of four in each cluster, P-value = 4.1 × 10−3);
and the hsa-miR-450b-5p/503-5p/424-5p cluster, located
in Xq26.3 and associated with adverse prognosis (two hits
out of seven expressed miRNAs, P-value = 0.37). The lat-
ter is not significantly enriched, as it is probable to find a
few miRNA hits out of seven just by chance when there
are so many hits (in this case 44 hits out of 241, most of
the hits are in the 14q32 cluster). It is interesting to note
that the mature miRNAs from the -3p strand of the miR-
29 families that are transcribed from both chromosomes

1 and 7 share the same seed, AGCACC, which suggests
redundancy.

MiRViz visually identifies the miR-302/519 stem-cell family
in the regulation of breast cancer stem cell equilibrium

As proof of purpose for the Diana50 network, Figure
3A shows the differential expression of miRNAs in hu-
man embryonic stem cells that were cultured under two
different conditions that favor either pluripotency or dif-
ferentiation. Here, a ‘stem cell’ miRNA cluster clearly
shows up in red, which highlights the overexpressed miR-
NAs in the pluripotent stem cells. Most of these miR-
NAs have already been hypothesized to cooperatively
regulate pluripotency (25). The group comprises miR-
17/20/93/106/302/../519/520 with shifted seed sequences
(AAAGUG, AAGUGC, AGUGCU), and miR-411 with
seed sequence AGUAGA.

Figure 3B represents a functional screening dataset where
we measured the relative levels of breast cancer stem
cells (bCSCs) in a human breast adenocarcinoma cell line
(SUM159 cells) upon systematic and individual overexpres-
sion of miRNAs (21). The green (resp. red) nodes represent
miRNAs that upon overexpression lead to smaller (resp.
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Figure 2. Prognostic potential of miRNAs for overall survival of patients with adrenocortical carcinoma. (A) Kaplan–Meier curves for miR-514a-5p (top)
and miR-411-5p (bottom). The P-value calculated with the log-rank test is indicated at the bottom right of each plot, together with the node colored
accordingly using the color scale chosen in (B, C). (B) Prognostic value of individual miRNAs overlaid on the Genomic Distance 50k network. Bottom:
View of the whole Genomic Distance 50k network. The square correspond to the zoomed in area displayed above. Chromosomes are organized from top
to bottom (1–22, X, Y). MiRNAs for which high expression correlates with poor prognosis are highlighted in red. Good prognosis miRNAs are represented
in green. MiRNAs with low expression are set as transparent. (C) MiRViz screen shots of interesting areas that show miRNA names and the action of
the mouse pointer on a given node. The squares on the full network below correspond to the interesting areas. MiRNAs with low expression are set as
semi-transparent. A few small clusters of miRNAs with high differential expression are highlighted (blue squares): Clusters 1 and 2 correspond to miR-29
family located on chromosomes 1 and 7, and cluster 3 correspond to miR-503-5p/424-5p located on chromosome X. The two major clusters in green and
red squares (i.e. Xq27, 14q32) of 95 and 197 kilobases, respectively, show groups of miRNAs associated with good and poor prognosis, respectively.

higher) bCSC proportions. To determine the efficiency of
miRViz to compare different datasets and the possibility
that it can raise biological questions of interest, we can
compare Figure 3A and B. Here, the miRViz representa-
tion highlights the redundant action of the ‘miRNA stem
cell’ cluster on the balance of the bCSC phenotype. It is,
however, surprising that miRNAs for which expression was
correlated with pluripotency in normal cells (Figure 3A, in
red) indeed lead to decreased proportions of bCSCs when
overexpressed (Figure 3B, in green). This suggests that the
fine-tuning of this specific group of miRNAs might have
an important and yet unknown role in the maintenance of
the ‘stem’ state of normal and cancer cells. Interestingly,
miRViz identifies this group of miRNAs, and suggests target
gene redundancy, which might explain why their individual
knock-downs in separate experiments (data not shown) had
little or no effects on the bCSC equilibrium. To assess these
hypotheses, additional experiments are necessary. Results
obtained with miRViz suggest that these miRNAs needs to
be collectively studied, and that their simultaneous knock-
down may help to restore the expression of the target genes
responsible for the stem-cell features.

Diana50 and TargetScan54 structures are correlated with bi-
ological functions

To show the link between network organization and
miRNA functions, we performed gene ontology enrich-
ment on the predicted mRNA targets for each individual
miRNA. For a given ontology and miRNA, the small P-
values (typically <10−5) suggest that the miRNA regulates
the corresponding function under certain cellular condi-
tions. Figure 4 and Supplementary Figure S2 show that
miRNAs that are assumed to regulate a given ontology
(i.e. pathway or function) are not randomly spread out in
the networks. Supporting our previous study (7), the Di-
ana50 and TargetScan54 networks are structured in two
parts. The upper part of both networks contains miRNAs
that are almost all predicted to regulate gene expression,
together with the two more central subnetworks of let-7
and miR-17/93 (Figure 4A, Supplementary Figure S2A).
The lower parts of both of these networks contain many
miRNAs that are predicted to regulate signal transduction
through small GTPases (Figures 4A, Supplementary Figure
S2B). Altogether, these observations show that the Diana50
and TargetScan54 structures correlate with biological pre-
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Figure 3. (A) Differential expression of miRNAs from cells grown in totipotent medium versus differentiation medium, as obtained from the GSE14473
public dataset (20), overlaid on the Diana50 network. MiRNA nodes in red correspond to miRNAs overexpressed in totipotent cells. (B) Changes in the
bCSC relative proportions after miRNA overexpression. MiRNA nodes in green correspond to miRNAs for which overexpression leads to decreased
proportions of bCSCs. (A, B). Blue squares show the clusters described in the main text, which are zoomed in on at the side of the whole network.

dictions, and that the positions of the hits in the networks in-
form the users of putative regulated pathways, e.g. miRNA
hits in the upper part might be important regulators of gene
expression.

Which network for which dataset, and further validations

An important question is: which network should be used
for a given dataset? The simple answer is ‘all’. We suggest to
use all the networks, starting with small ones (Seed2 7, Di-
ana50 and Genomic Distance 50k clusters 3+ for human).
We suggest then to visually identify enrichment of highly
connected groups of miRNAs. In our experience, we often
find enrichment in the Seed2 7 and/or Genomic Distance
networks. Yet, the most appropriate network to explore a
specific dataset depends on the biological question to an-
swer. When focusing on mRNA targets repressed by miR-
NAs, the Seed2 7 (and in a second time the co-regulation
networks: Diana50, DianaTarBase50 and TargetScan54)
should be used. When trying to identify polycistrons, Ge-
nomic Distance 2k shows co-expressed miRNAs in a given
neighborhood on the genome. The 50k version is more ded-
icated for large genomic reorganizations, as found in cancer.
To note, even if miRViz is particularly useful for raw expres-
sion and differential expression datasets, any large miRNA
dataset with numerical scores can benefit from miRViz. Fig-
ures 2, 4 described above present practical examples with
P-values and phenotypic scores.

Another important question is: what to do with miRViz
results? First, the mapping itself is interesting, and miRViz
provides an export function to show a given enrichment in
a figure. Second, it guides the validation steps. When inves-
tigating the phenotypic role of a given miRNA, a practi-
cal experiment consists in knocking-down (or over express-
ing) this miRNA and measure the phenotypic outcome. If
many miRNAs of a given family are co-expressed, modu-
lating one miRNA out of the whole family may lead to no
or minimal phenotypic effect, as the other miRNAs from
the family may still repress the mRNA targets. A suggestion
would be to modulate the whole family, which is also true
for groups of highly connected miRNAs in co-regulation
networks, such as for the miR-302/519 stem-cell family de-
tailed above.

CONCLUSION

We propose that the webserver application miRViz can
be used to visualize numerical miRNA datasets. We have
illustrated the results that can be obtained for miRViz
through various examples, including miRNA expression
and functional screening datasets. For miRNA profiling,
the network-based visualization proposed here provides
clear ways to present datasets that are complementary to
volcano plots for expression data. In particular, the Seed2 7
network allows rapid identification of hit miRNA families,
and quickly identifies miRNA redundancies.
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Figure 4. Gene ontology enrichment for predicted targets of individual miRNAs overlaid on top of the Diana50 network. Red nodes correspond to miRNAs
predicted to regulate many protein coding genes known to participate in the following ontologies: (A) GO:0010468 (regulation of gene expression); (B)
GO:0007264 (small-GTPase-mediated signal transduction).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank C. Cochet and J.J. Feige for helpful discus-
sion, and all external testers of miRViz. We thank Christo-
pher Berrie for scientific English editing. This research
was funded by the Institut National de la Santé et de
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24. Assié,G., Letouzé,E., Fassnacht,M., Jouinot,A., Luscap,W.,
Barreau,O., Omeiri,H., Rodriguez,S., Perlemoine,K., René-Corail,F.
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