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Simple Summary: Advanced systemic mastocytosis (AdvSM) is a rare malignant disease with a poor
prognosis due to the drug resistance of neoplastic mast cells. We found that drugs targeting the cell
cycle regulators CDK4 and CDK6 profoundly suppress the growth and survival of neoplastic mast
cells. Furthermore, these drugs can overcome resistance against KIT D816V-targeting drugs, including
midostaurin, in neoplastic mast cells. Finally, the CDK4/CDK6 inhibitors applied induced apoptosis
in CD34+/CD38− stem cells in AdvSM. Based on these results, we believe that CDK4/CDK6
inhibition may be a new and interesting therapeutic approach with curative potential for AdvSM.
Whether combinations of KIT D816-targeting drugs and CDK4/CDK6 inhibitors can induce long-term
remission in patients with AdvSM remains to be determined in clinical trials.

Abstract: In most patients with advanced systemic mastocytosis (AdvSM), neoplastic mast cells
(MC) express KIT D816V. However, despite their disease-modifying potential, KIT D816V-targeting
drugs, including midostaurin and avapritinib, may not produce long-term remissions in all patients.
Cyclin-dependent kinase (CDK) 4 and CDK6 are promising targets in oncology. We found that
shRNA-mediated knockdown of CDK4 and CDK6 results in growth arrest in the KIT D816V+ MC
line HMC-1.2. The CDK4/CDK6 inhibitors palbociclib, ribociclib, and abemaciclib suppressed the
proliferation in primary neoplastic MC as well as in all HMC-1 and ROSA cell subclones that were
examined. Abemaciclib was also found to block growth in the drug-resistant MC line MCPV-1,
whereas no effects were seen with palbociclib and ribociclib. Anti-proliferative drug effects on MC
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were accompanied by cell cycle arrest. Furthermore, CDK4/CDK6 inhibitors were found to synergize
with the KIT-targeting drugs midostaurin, avapritinib, and nintedanib in inducing growth inhibition
and apoptosis in neoplastic MCs. Finally, we found that CDK4/CDK6 inhibitors induce apoptosis
in CD34+/CD38− stem cells in AdvSM. Together, CDK4/CDK6 inhibition is a potent approach to
suppress the growth of neoplastic cells in AdvSM. Whether CDK4/CDK6 inhibitors can improve
clinical outcomes in patients with AdvSM remains to be determined in clinical trials.

Keywords: systemic mastocytosis; KIT D816V; midostaurin; avapritinib; CDK4/CDK6; palbociclib;
ribociclib; abemaciclib; targeted therapy; drug-combinations

1. Introduction

Systemic mastocytosis (SM) is a rare disease characterized by the accumulation of
neoplastic mast cells (MC) in one or more organs, such as the bone marrow (BM), the skin,
the spleen, and the gastrointestinal tract [1–4]. SM can essentially be divided into indolent
SM (ISM) and advanced SM (AdvSM) variants [1–6]. Although patients with ISM often
suffer from mediator-related symptoms, their prognosis is excellent, with a normal or near-
normal life expectancy [1–6]. In contrast, patients with AdvSM, including aggressive SM
(ASM), MC leukemia (MCL), and SM with an associated hematologic neoplasm (SM-AHN),
have a poor to very poor prognosis due to the drug resistance of neoplastic cells [3–8].
In these patients, organ damage induced by infiltrating neoplastic MC (C-Findings) and
disease progression are seen, resulting in reduced survival [3–8]. In most patients, the
D816V-mutated variant of KIT is detected in neoplastic MC and is considered to act as a
driver of disease evolution and MC expansion [9–11].

Several pharmacologic approaches have been established to counteract the expan-
sion of neoplastic MC in AdvSM, including cytostatic drugs, interferon-alpha, cladribine,
poly-chemotherapy, allogeneic hematopoietic stem cell transplantation (HSCT), and KIT-
targeting drugs [4–7,12–21]. Since KIT has been identified as a major target of therapy,
research efforts have primarily focused on the identification of potent tyrosine kinase in-
hibitors (TKIs) blocking KIT D816V [13,14,16–22]. These efforts resulted in the approval of
the KIT-targeting drug midostaurin for treatment of patients with AdvSM [23]. Indeed, mi-
dostaurin shows beneficial effects in a majority of patients with ASM and MCL [18,19,23,24].
However, responses are often transient and, in most patients, long-term responses and
complete remissions are not obtained [16,18]. These observations suggest that midostaurin,
when used as a single drug, may not be sufficient to achieve optimal disease control in
AdvSM. Therefore, more potent TKIs directed against KIT D816V have been developed
and tested in preclinical and clinical studies. One of these drugs is avapritinib, which has
recently been approved by the FDA for application in patients with AdvSM, based on the
superior effects of this drug [19–21,25–29]. However, not all patients with AdvSM respond
to avapritinib and relapses, often in form of a KIT D816V-negative AHN or MCL, have
been reported [25,28,29].

All in all, single agent KIT-targeting treatment may not be sufficient to suppress all
cells and sub-clones in a complex disease such as AdvSM. Therefore, research focuses on
identifying drug combinations that are able to induce more durable remissions in AdvSM.
Indeed, a number of potential combination partners for midostaurin or other KIT D816V-
targeting TKIs have been examined [14,30–32]. Recent data have shown that neoplastic
cells in AdvSM exhibit somatic mutations in diverse additional driver genes apart from
KIT [11,17,33–38]. These additional lesions and the related signaling pathways may support
cell cycle progression and the expansion of neoplastic MC in AdvSM.

Cyclin-dependent protein kinases (CDKs) have various functions in normal and ma-
lignant cells. CDK4 and CDK6 regulate the activity of the retinoblastoma protein (RB1)
and are required for G1 phase progression and G1/S transition of the cell cycle [39–43]. In
the recent past, CDK4 and CDK6 have been established as major drug targets in applied
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oncology [39–49]. To date, three CDK4/CDK6 inhibitors, palbociclib, ribociclib, and abe-
maciclib, have been applied in patients with breast cancer [44–49]. All three inhibitors are
relatively well-tolerated drugs [44–48]. Of note, abemaciclib, which is the most potent of the
three inhibitors, is less selective than palbociclib and ribociclib and thus blocks a number
of targets other than CDK4/CDK6 [39,49,50]. More recent pre-clinical studies have shown
promising effects of CDK4/CDK6 inhibitors in certain hematologic malignancies [51–54].
However, the anti-neoplastic effects of drugs targeting CDK4/CDK6 have not previously
been analyzed in the context of AdvSM.

In the current study, we explored the expression and role of CDK4/CDK6 in neoplastic
MC and evaluated the anti-neoplastic effects of CDK4/CDK6-targeting drugs alone or in
combination with KIT D816V-targeting TKI.

2. Methods
2.1. Reagents

Reagents used in this study are described in the Supplementary Materials.

2.2. Isolation of Primary Neoplastic Cells

Primary neoplastic cells were isolated from 21 BM samples of 17 patients with SM. In
these 21 samples, the disease was classified as ISM (n = 6), ASM (n = 2), SM-AHN (n = 9),
and MCL (n = 4), according to WHO criteria (Table 1) [3,7]. In three patients, samples
were collected at different time points: one patient (#4) progressed from ISM to ASM and
later to MCL, one patient (#3) progressed from ISM to ISM-AML, and one patient (#14)
received treatment with avapritinib between the two timepoints of sampling (Table 1).
BM cells were obtained during routine diagnostic investigations after written informed
consent was obtained. BM samples were layered over Ficoll (density: 1.077 g/mL) to isolate
mononuclear cells (MNC) as described in [54,55]. The percentage of neoplastic cells (MC
or clonal cells in case of SM-AHN) in BM-smears ranged from 1–40% as determined by
microscopy. Furthermore, RNA was obtained from the BM of 50 additional patients with
SM classified as ISM (n = 27), SSM (n = 1), ASM (n = 5), SM-AHN (n = 11), and MCL (n = 6)
(see Supplemental Materials, Table S1). The study was approved by the ethics committee
of the Medical University of Vienna.

2.3. Culture of Human Cell Lines

The following human MCL-like cell lines were employed in this study: HMC-1.1 and
HMC-1.2 [56], two ROSA sub-clones (ROSAKIT WT, ROSAKIT D816V) [55,57], and four MCPV-
1 sub-clones (MCPV-1.1, MCPV-1.2, MCPV-1.3, MCPV-1.4) [58]. A detailed description of
these cell lines is provided in the Supplementary Materials.

2.4. Quantitative Polymerase Chain Reaction and Western Blot Analysis

To determine the expression of CDK4, CDK6, cyclin D1, cyclin D2 and RB1 in BM
samples obtained from patients with SM and in the MCL-related cell lines, RNA-isolation
and a quantitative polymerase chain reaction (qPCR) were performed as reported in [54]
using specific primers, as listed in the Supplemental Materials, Table S2. ABL1 was used
as reference gene. A detailed description of the technique is provided in the Supplemen-
tary Materials.

Expression of CDK4, CDK6, cyclin D1, cyclin D2, and RB1 protein was analyzed in
MC cell lines by western blotting as described [54,59]. To study the effects of CDK4/CDK6
inhibitors on the primary target (RB1), HMC-1 cells were kept in control medium or in
the presence of CDK4/CDK6 inhibitors (1 µM each) for 4 h. Thereafter, western blotting
was performed essentially as described, using antibodies directed against RB1 and its
phosphorylated variant (pRB1) as well as actin (loading control) [54,59]. In a different set
of experiments, CDK4/CDK6 inhibitors (1 µM each) were applied in HMC-1 cells alone or
in combination with 1 µM bortezomib for 4 h prior to western blot analysis. Induction of
cleaved caspase-3 was analyzed to evaluate apoptosis in drug-exposed cells. ß-tubulin was
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used as the loading control. A list of antibodies used in the western blot experiments is pro-
vided in the Supplementary Materials, Table S3. All original blots as well as densitometric
analysis are provided in the Supplementary Materials, Additional Information.

Table 1. Patients’ characteristics (SM patients) and responses of neoplastic cells to CDK4/CDK6 inhibitors.

Patient
No. Age m/f Diagnosis,

SM Variant
KIT

D816V

Serum
Tryptase
ng/mL

BM MC
Infiltration

%

Palbociclib
IC50 (nM)

Ribociclib
IC50 (nM)

Abemaciclib
IC50 (nM)

#1 61 f ISM + 25.4 10 12.8 n.t. n.t.
#2 42 f ISM + 22.7 2 201.2 148.3 109.2

#3.1 61 m ISM + 17.5 3 7.2 16.7 4.5
#3.2 62 m ISM-AML + 26.2 5 40.3 200.2 55.2
#4.1 70 m ISM + 83.3 20 5.7 n.t. n.t.

#4.2 * 70 m ASM + 119 5 94.4 362.1 n.t.
#4.3 70 m MCL + 94.2 20 12.0 252.6 13.8
#5 * 78 m ASM-MPN-eo + 45.9 10 67.5 n.t. n.t.
#6 78 m ASM-MDS/MPN-u + 101.0 50 4.2 75.4 159.4
#7 75 m ASM-MDS/MPN-u + 377.0 30 163.4 n.t. n.t.

#8 * 63 m ASM-AML + 16.5 10 181.8 n.t. n.t.
#9 91 m MCL + 49.6 10 10.4 n.t. n.t.
#10 86 m MCL-MDS + 180.0 30 16.8 193.9 23.7
#11 80 f ISM + 82.9 30 6.5 38.0 19.9
#12 70 m ASM + 650.0 50 81.6 119.9 135.4
#13 57 m ISM + 85.4 5 37.0 261.7 16.9

#14.1 70 m SM-CMML + 374.0 20 2.6 65.8 11.1
#14.2 70 m SM-CMML + 66.2 2 0.25 408.0 60.4
#15 59 m MCL + 250.0 60 43.9 65.5 98.4
#16 48 m SM-CMML + 670.0 60 28.2 134.4 33.3

#17 * 77 m SM-AML + 30.0 10 n.t. n.t. n.t.

Diagnoses were established according to WHO criteria. The percentage of BM MC infiltration was assessed
by immunohistochemistry using antibodies against tryptase and KIT. Primary BM mononuclear cells were
isolated and incubated with various concentrations of palbociclib, ribociclib, or abemaciclib at 37 ◦C for 48 h.
Then, proliferation was determined by measuring the uptake of 3H-thymidine and IC50 values were calculated.
Abbreviations: WHO, World Health Organization; m: male; f: female; BM, bone marrow; nM, nanomolar; n.t.,
not tested; IC50, half maximal inhibitory concentration; SM, systemic mastocytosis; ISM, indolent SM; ASM,
aggressive SM; MCL, mast cell leukemia, AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; MPN,
myeloproliferative neoplasm; CMML, chronic myelomonocytic leukemia; u, unspecified; eo, eosinophils. * Patient
samples used for stem cell viability assays.

2.5. Evaluation of Drug Effects on Cell Proliferation

Primary neoplastic cells and cell lines were incubated in a control medium or various
concentrations of CDK4/CDK6 inhibitors (palbociclib, ribociclib and abemaciclib applied
at 0.005–10 µM) at 37 ◦C for 48 h. Thereafter, 3H-thymidine uptake was measured as
previously described [54,55]. In a separate set of experiments, HMC-1 and ROSA cells were
exposed to various concentrations of the CDK4/CDK6 inhibitors and KIT D816V-targeting
drugs (midostaurin, avapritinib, nintedanib), either as single agents or in combination
at a fixed ratio of drug concentrations before 3H-thymidine uptake was measured. All
experiments were performed in triplicates. A detailed description of the technique is
provided in the Supplementary Materials.

2.6. Evaluation of Apoptosis in Drug-Exposed Cells

For flow cytometric determination of apoptosis, cell lines were cultured in a con-
trol medium or in a medium supplemented with a CDK4/CDK6 inhibitor (0.5–10 µM),
midostaurin (0.1–0.5 µM) or avapritinib (0.3–0.7 µM), or a combination of two drugs
(‘CDK4/CDK6 inhibitor + midostaurin’ or ‘CDK4/CDK6 inhibitor + avapritinib’) at 37 ◦C
for 48 or 72 h and subjected to combined Annexin V/4′,6-diamidino-2-phenylindole (DAPI)
staining to determine apoptosis by flow cytometry as described [54,55]. In a separate
set of experiments, primary BM MNC obtained from four patients with AdvSM were
exposed to palbociclib, ribociclib or abemaciclib (1, 5 and 10 µM each) before apoptosis in
CD34+/CD38− neoplastic stem cells was quantified by flow cytometry on a FACSCanto II
(BD Biosciences, Franklin Lakes, NJ, USA) as described [60].
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2.7. Evaluation of Drug-Induced Cell Cycle Arrest

For analysis of cell cycle progression, cell lines (HMC-1 and ROSA cells) were kept in
the presence or absence of various concentrations of palbociclib, ribociclib, or abemaciclib
for 24 h. Thereafter, propidium iodide was added and cell cycle distribution was analyzed
as described previously [54]. These flow cytometric measurements were performed on a
FACSCalibur (BD Biosciences).

2.8. Measurement of Histamine Release

Dextran-enriched blood basophils obtained from healthy individuals (n = 3) were
incubated in a control medium or in the presence of palbociclib, ribociclib, or abemaci-
clib (0.01–10 µM each) at 37 ◦C for 30 min. Then, histamine release was determined as
described [55]. A detailed description of the technique is provided in the Supplemen-
tary Materials.

2.9. shRNA-Mediated Knockdown of CDK4 and CDK6

HMC-1.1 and HMC-1.2 cells were transfected simultaneously with short hairpin
RNA (shRNA) constructs directed against CDK4 (inducible knockdown with doxycycline;
induced shRNA labeled with dsRed) and CDK6 (induced shRNA labeled with GFP) or
with control shRNAs, as previously described (see also the Supplementary Materials
and Supplemental Table S4) [54]. Knockdown of CDK4 and CDK6 was confirmed by
western blotting in puromycin-selected, doxycycline-induced cells. After transfection and
incubation with doxycycline, transduced cells were sorted for dsRed or GFP positivity
on a BD FACSAria Fusion (Becton Dickinson, Franklin Lakes, NJ, USA). HMC-1.2 cells
transfected with two non-targeting control shRNAs were also run through the sorter to
provide equal conditions. Thereafter, HMC-1.2 cells transfected with either targeting or
non-targeting shRNAs were mixed with un-transduced HMC-1.2 cells at a 1:1 ratio and
were cultured for 10 days. The percentage of GFP+/dsRed+ cells was monitored by flow
cytometry on days 1, 3, 5, and 10. A detailed description of shRNA-mediated knockdown
is provided in the Supplementary Materials.

2.10. Statistical Analysis

To determine the level of significance of differences seen in growth inhibition, cell
cycle progression, and apoptosis studies, analysis of variance testing (ANOVA) with post-
testing using the Dunnett test was applied. Results were considered to be significantly
different when p was <0.05. In drug combination experiments, drug interaction-types were
determined by calculating combination index (CI) values using Calcusyn software [61].
A CI of <1 indicates a synergistic effect. Furthermore, synergy scores (zero interaction
potency model = ZIP) were determined by SynergyFinderPlus software [62,63]. A synergy
score >10 stands for synergism, a synergy score between -10 and 10 indicates an additive
effect, and a synergy score <−10 stands for antagonism. For western blot experiments,
protein expression levels (determined by densitometric analysis) between two conditions
were compared using the Student’s t test. The results were considered to be significantly
different when p was <0.05.

3. Results
3.1. Identification of CDK4/CDK6 as Potential Therapeutic Targets in Neoplastic MC

We first examined the expression of critical molecules involved in the CDK4/CDK6
pathway (CDK4, CDK6, cyclin D1, cyclin D2, RB1) in neoplastic MC. As evidenced by
qPCR, transcripts of CDK4, CDK6, cyclin D1, cyclin D2, and RB1 were detectable in all
BM samples analyzed (ISM: n = 27; SSM: n = 1; ASM: n = 5; SM-AHN: n = 11; MCL:
n = 6). However, mRNA expression levels varied from patient to patient without a clear
correlation to a subtype of SM (Supplemental Materials, Figure S1A). Neoplastic cells
in AdvSM expressed slightly higher levels of CDK4, CDK6, cyclin D1, cyclin D2, and
RB1 than the cells tested in non-advanced SM (Supplementary Materials, Figure S1B).
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However, these differences did not reach statistical significance. All five mRNA transcripts
analyzed were also detected in the MCL-like cell lines tested (Supplementary Materials,
Figure S1C). Interestingly, expression patterns differed among the cell lines: MCPV-1 cells
expressed high levels of cyclin D1 but lower levels of cyclin D2 compared to HMC-1 and
ROSA cells (Supplementary Materials, Figure S1C). Similar results were seen at the protein
level: whereas CDK4, CDK6, cyclin D1 and RB1 were detected in all cell lines, cyclin D2
was not expressed in MCPV-1 cells as assessed by western blot analysis (Supplementary
Materials, Table S5). In a next step, we analyzed the functional role of CDK4 and CDK6 in
neoplastic MC. For this purpose, a simultaneous shRNA-mediated knockdown of CDK4
and CDK6 was performed in HMC-1.2 cells (Figure 1A). As evidenced by culturing a mix
of transfected and untransfected HMC-1.2 cells, the simultaneous knockdown of CDK4 and
CDK6 resulted in a significant growth disadvantage when compared to cells transduced
with control shRNA (Figure 1B), suggesting that CDK4 and CDK6 play an important role
in the proliferation of neoplastic MC and may, therefore, qualify as therapeutic targets.
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Figure 1. The CDK4/CDK6 pathway represents a therapeutic target in neoplastic MC. HMC-1.2
cells were simultaneously transfected with shRNA directed against CDK4 and CDK6 (shCDK4/6;
both inducible with doxycycline) or with two non-targeting control shRNAs (NTC) labeled with
GFP/RFP. (A): Transfected cells were selected by puromycin and induced with doxycycline for 72 h.
Thereafter, knockdown of CDK4 and CDK6 was confirmed by western blotting in triplicate (left
panel). Protein expression (as ratio of ß-tubulin) was determined by densitometric analysis. The mean
protein expression was calculated for each condition (right panel). Asterisk (*): p < 0.05. (B): After
72 h of doxycycline exposure, GFP+/RFP+ cells were FACS-sorted. FACS-sorted HMC-1.2 cells
transfected with two non-targeting control shRNAs (NTC) or with shRNA directed against CDK4
and CDK6 (shCDK4/6) were mixed with non-transfected HMC-1.2 cells at a 1:1 ratio and cultured
for 10 days. The percentage of GFP+/RFP+ cells (+/+) was monitored by flow cytometry on days
1, 3, 5, and 10. Asterisk (*): p < 0.05. Abbreviations: CDK, cyclin-dependent kinase; shRNA, short
hairpin RNA; GFP, green fluorescent protein; RFP, red fluorescent protein.
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3.2. Palbociclib, Ribociclib and Abemaciclib Disrupt CDK4/CDK6 Signaling in Neoplastic MC

Next, we were interested in the effects of pharmacologic CDK4/CDK6 inhibitors on
neoplastic MC. In these experiments, we focused on three drugs that are currently applied
in patients: palbociclib, ribociclib, and abemaciclib. In western blot experiments, all three
compounds were found to downregulate the expression of pRB1 in HMC-1.1, HMC-1.2,
ROSAKIT WT, and ROSAKIT D816V cells (Figure 2A,B). Interestingly, in HMC-1 cells, not
only phosphorylation, but also the expression of RB1, decreased after 4 h of incubation
with the CDK4/CDK6 inhibitors, confirming previous observations in other malignant
cell types [64–66]. To learn more about the mechanism underlying RB1 regulation, the
expression of RB1 mRNA was analyzed by qPCR in HMC-1.1 and HMC-1.2 cells kept
in control conditions or in the presence of palbociclib, ribociclib or abemaciclib (1 µM
each) for 4 or 24 h. However, no significant differences were seen (not shown). We further
exposed HMC-1.2 cells to a combination of 1 µM palbociclib + 1 µM bortezomib. Inhibition
of the proteasome by bortezomib failed to counteract the effects of palbociclib on RB1
expression (not shown). Together, our findings suggest CDK4/CDK6 inhibitors can disrupt
RB1-dependent downstream signaling in neoplastic MC.
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phosphorylated RB1 (pRB1), total RB1, and actin. (C) HMC-1 and ROSA cells were kept in control 
medium (Co) or were incubated with different concentrations of palbociclib (Palbo), ribociclib 
(Ribo), or abemaciclib (Abema), as indicated, for 48 h. Thereafter, PI was added and cell cycle 
distribution was determined by flow cytometry. The percentage of cells in G1-phase, G2/M-phase, 
and S-phase in each condition are shown. To determine statistical significance, ANOVA and post-
testing by Dunnett test were performed. Asterisk (*): p < 0.05. (D,E) HMC-1 and ROSA (D), as well 
as MCPV-1 cells (E), were incubated in control medium (0 nM) or medium containing various 
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3H-thymidine uptake was measured. Results are expressed as percentage of control and represent 
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experiments, as analyzed by ANOVA and post-testing by Dunnett test (Supplementary Materials, 
Table S6). (F,G) HMC-1 and ROSA cells (F), as well as MCPV-1 cells (G), were incubated in control 

Figure 2. CDK4/CDK6 inhibitors counteract proliferation and survival of neoplastic mast cells
(MCs) and induce cell cycle arrest by inhibiting phosphorylation of RB1. A–B: HMC-1 (A) and
ROSA (B) cells were incubated in control medium (Co) or in medium containing 1 µM of palbociclib
(Palbo), ribociclib (Ribo) or abemaciclib (Abema), as indicated, at 37 ◦C for 4 h. Thereafter, cells were
harvested and western blotting was performed, as described in the text, using antibodies against
phosphorylated RB1 (pRB1), total RB1, and actin. (C) HMC-1 and ROSA cells were kept in control
medium (Co) or were incubated with different concentrations of palbociclib (Palbo), ribociclib (Ribo),
or abemaciclib (Abema), as indicated, for 48 h. Thereafter, PI was added and cell cycle distribution
was determined by flow cytometry. The percentage of cells in G1-phase, G2/M-phase, and S-phase
in each condition are shown. To determine statistical significance, ANOVA and post-testing by
Dunnett test were performed. Asterisk (*): p < 0.05. (D,E) HMC-1 and ROSA (D), as well as MCPV-1
cells (E), were incubated in control medium (0 nM) or medium containing various concentrations of
palbociclib, ribociclib, or abemaciclib, as indicated, at 37 ◦C for 48 h. Thereafter, 3H-thymidine uptake
was measured. Results are expressed as percentage of control and represent the mean ± S.D. from
three independent experiments. Statistical significance was reached in all experiments, as analyzed
by ANOVA and post-testing by Dunnett test (Supplementary Materials, Table S6). (F,G) HMC-1 and
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ROSA cells (F), as well as MCPV-1 cells (G), were incubated in control medium (0 µM) or medium
containing various concentrations of palbociclib, ribociclib, or abemaciclib, as indicated, at 37 ◦C
for 48 h. Thereafter, cells were harvested and AnnexinV/DAPI-positive cells were analyzed by
flow cytometry. Results show the percentage of apoptotic cells and represent the mean ± S.D. of 4
independent experiments. To determine statistical significance, ANOVA and post-testing by Dunnett
test were performed. Asterisk (*): p < 0.05. Abbreviations: RB1, retinoblastoma protein 1; pRB1,
phosphorylated variant of RB1; nM, nanomolar; µM, micromolar.

3.3. CDK4/CDK6 Inhibitors Counteract Proliferation and Survival in the Human MC Lines
HMC-1 and ROSA Whereas Only Abemaciclib Is Effective in Drug-Resistant MCPV-1 Cells

In a next step, we investigated the anti-neoplastic effects of CDK4/CDK6 inhibitors
in the MCL-related cell lines. As visible in Figure 2C, all three inhibitors induced cell
cycle arrest in G1-phase in HMC-1 cells and ROSA cells expressing or lacking KIT D816V.
In these cell lines, cell cycle arrest was accompanied by growth arrest, as assessed by
3H-thymidine uptake experiments, with IC50 values ranging between 23 nM and 703.8 nM
(Table 2, Figure 2D). Confirming observations in other neoplastic cell types, abemaciclib
was found to be a more potent inhibitor of the growth of neoplastic MC than palbociclib
or ribociclib. In highly resistant MCPV-1 cells lacking KIT D816V but expressing RAS
G12V, Large T and hTert, only abemaciclib induced growth inhibition and apoptosis at high
drug concentrations (1–10 µM) (Table 2, Figure 2E). Growth inhibition reached statistical
significance for all cell lines and all compounds tested (Supplementary Materials, Table S6).
We next analyzed whether growth arrest would be accompanied by induction of apoptosis
(Figure 2F,G; Supplementary Materials, Table S7). Indeed, an increase in the percentage
of apoptotic cells was observed for all compounds tested in HMC-1 and ROSA cells, and
for abemaciclib in MCPV-1 cells. However, the effects of CDK4/CDK6 inhibitors on the
induction of apoptosis were less pronounced than their effects on cell cycle progression
and cell proliferation. In fact, in most cell lines, statistical significance was only reached for
abemaciclib when comparing the percentage of apoptotic cells. Overall, MCPV-1 cells were
found to be largely resistant against the CDK4/CDK6 inhibitors applied, with the exception
of abemaciclib when applied at higher doses. This observation may best be explained by
the fact that abemaciclib, the least selective drug among the three approved CDK4/CDK6
inhibitors, may block additional targets in neoplastic cells [39,50].

Table 2. Effects of CDK4/CDK6 inhibitors on the proliferation of various human mast cell lines.

Cell Line/Cell Type Palbociclib, IC50 Ribociclib, IC50 Abemaciclib, IC50

HMC-1.1 92.6 ± 10.3 nM 245.6 ± 33.4 nM 174.5 ± 20.9 nM
HMC-1.2 296.1 ± 22.3 nM 703.8 ± 155.0 nM 143.8 ± 14.0 nM

ROSAKIT WT 35.1 ± 2.2 nM 262.0 ± 9.5 nM 48.4 ± 3.5 nM
ROSAKIT D816V 123.0 ± 13.1 nM 303.3 ± 14.9 nM 134.1 ± 5.1 nM

MCPV-1.1 >10 µM >10 µM 1.48 ± 0.2 µM
MCPV-1.2 >10 µM >10 µM 0.9 ± 0.07 µM
MCPV-1.3 >10 µM >10 µM 2.83 ± 0.43 µM
MCPV-1.4 >10 µM >10 µM 1.32 ± 0.16 µM

Cell lines were incubated in various concentrations of palbociclib, ribociclib, or abemaciclib at 37 ◦C for 48 h. Then,
proliferation was determined by measuring uptake of 3H-thymidine and IC50 values were calculated. Values
represent the mean ± S.D. from three independent experiments. Abbreviations: IC50, half maximal inhibitory
concentration; nM: nanomolar; µM, micromolar.

3.4. CDK4/CDK6 Inhibitors Block the Proliferation of Primary Neoplastic Cells Isolated from
Patients with Various Subtypes of SM including Relapsed MCL

Together, our data reveal that pharmacologic inhibitors of CDK4/CDK6 exert strong
anti-neoplastic effects in most MCL-like cell lines tested. To confirm these effects in primary
neoplastic MC, 21 BM samples from a total of 17 patients with SM (Table 1) were tested.
As visible in Table 1 and Figure 3, all three CDK4/CDK6 inhibitors induced growth
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arrest in primary cell samples. IC50-values ranged between 5 and 200 nM for palbociclib,
38 and 362 nM for ribociclib, and 5 and 160 nM for abemaciclib (Table 1). In none of the
samples higher drug-doses (exceeding 1 µM) were needed to induce complete growth
arrest. Growth inhibition reached statistical significance for all samples and all compounds
tested (Supplementary Materials, Table S8). Thus, primary neoplastic MC were even more
sensitive to CDK4/CDK6 inhibition than cell lines. Growth inhibition was observed in all
subtypes of SM, including patients with KIT D816V+ ASM and MCL, and was independent
of the presence or absence of an AHN. In the two patients who suffered from disease
progression (from ISM to ASM/MCL or from ISM to ISM-AML), no loss of sensitivity
against CDK4/CDK6 inhibitors was observed. Of note, in two patients with relapsed MCL
following midostaurin treatment (patient #4.3 and #15; Table 1), all CDK4/CDK6 inhibitors
tested also produced growth inhibition in neoplastic cells (IC50-values: palbociclib 12 nM
and 43.9 nM; ribociclib 252.6 nM and 65.5 nM; abemaciclib 13.8 nM and 98.4 nM). In
one patient who had received avapritinib, resulting in a partial response (patient #14.2),
neoplastic cells also remained sensitive to palbociclib (IC50-value: 0.25 nM) and abemaciclib
(IC50-value: 60.4 nM). These observations suggest that CDK4/CDK6 inhibitors may be
suitable drugs for cytoreductive therapy in all patients with AdvSM, regardless of the
subtype of disease, the presence of KIT D816V, or previous treatment with KIT-targeting
drugs. In addition to malignant cell expansion, symptoms caused by mediator release
upon MC activation often represent a problem in patients with SM. We were therefore
interested to investigate whether CDK4/CKD6 inhibitors are also able to block anti-IgE
induced histamine release. In these experiments, high concentrations of palbociclib (10 µM)
suppressed anti-IgE-mediated histamine release in basophils (Supplementary Materials,
Figure S2). In contrast, ribociclib and abemaciclib failed to block histamine secretion
in basophils.

3.5. CDK4/CDK6 Inhibitors Induce Apoptosis in CD34+/CD38− Leukemic Stem Cells (LSCs)
in AdvSM

To achieve long-lasting remissions in AdvSM, it is assumed that eradication of LSCs
is necessary. We have recently shown that LSCs in SM exhibit a CD34+/CD38− phe-
notype [59]. To address whether CDK4/CDK6 inhibitors would counteract the viability
of LSCs in the context of AdvSM, we exposed BM samples isolated from patients with
ASM or MCL to palbociclib, ribociclib, or abemaciclib and quantified the percentage of
apoptotic cells within the CD34+/CD38− compartment. The gating strategy is shown in
the Supplementary Materials, Figure S3. In all samples analyzed (patient #4.2, #5, #8, #17 in
Table 1), abemaciclib and palbociclib induced apoptosis in LSCs, whereas ribociclib showed
only minimal effects on LSCs’ survival in these cells (Figure 4). These observations suggest
that abemaciclib, and to a lesser degree palbociclib, exert pro-apoptotic effects on LSCs in
AdvSM, which may have clinical implications for patients.

3.6. Inhibition of CDK4/CDK6 Sensitizes Neoplastic MCs against Midostaurin

Recent data suggest that combinations of targeted drugs may improve the outcome
of patients with AdvSM. One reasonable approach consists in combining a KIT D816V-
targeting TKI with a drug blocking KIT-independent pathways. Midostaurin is the most
widely applied TKI in AdvSM to date. Therefore, we asked whether disruption of the
CDK4/CDK6 pathway would increase the anti-neoplastic effects of midostaurin in neo-
plastic MC. As assessed by 3H-thymidine uptake, palbociclib, ribociclib, and abemaciclib
were found to cooperate with midostaurin in inhibiting the growth of HMC-1.1, HMC-1.2,
ROSAKIT WT, and ROSAKIT D816V cells (Figure 5A–C). Additive or synergistic drug effects
were confirmed by Calcusyn software and SynergyFinderPlus software (Supplementary
Materials, Table S9 and Supplementary Materials, Figure S4A–C). Further, CDK4/CDK6
inhibitors were found to cooperate/synergize with midostaurin in inducing apoptosis in
HMC-1 and ROSA cells as assessed by flow cytometry (Figure 5D, Supplementary Materi-
als, Table S10). The induction of apoptosis by the combination ‘palbociclib + midostaurin’
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was confirmed by western blotting using an antibody directed against cleaved caspase-3
(Figure 5E). In MCPV-1 cells, which were overall much less sensitive to CDK4/CDK6
inhibitors, all combinations tested produced additive or synergistic anti-proliferative effects
(Figure 5F, Supplementary Materials, Table S9, and Supplementary Materials, Figure S4D).
Cooperative growth-inhibitory effects between CDK4/CDK6 inhibitors and midostau-
rin were also confirmed in primary neoplastic cells, as exemplified for one patient with
midostaurin-resistant MCL (Figure 5G). These data suggest that all currently available
CDK4/CDK6 inhibitors may represent promising combination partners for midostaurin in
the treatment of AdvSM.
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Figure 3. CDK4/CDK6 inhibitors induce growth arrest in primary neoplastic MC. Primary neoplastic
MC obtained from one patient with ISM and three patients with AdvSM (as indicated) were incubated
in control medium (0 nM) or medium containing various concentrations of palbociclib, ribociclib, or
abemaciclib as indicated, at 37 ◦C for 48 h. Thereafter, 3H-thymidine uptake was measured. Results
are expressed as percentage of control and represent the mean ± S.D from triplicates. Statistical
significance was reached in all experiments, as analyzed by ANOVA and post-testing by Dunnett
test (Supplementary Materials, Table S8). The patient’s number refers to Table 1. Abbreviations: SM,
systemic mastocytosis; ISM, indolent SM; ASM, aggressive SM; MCL, mast cell leukemia, AML, acute
myeloid leukemia; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; CMML,
chronic monomyelocytic leukemia; u, unspecified; µM, micromolar.
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Figure 4. Palbociclib and abemaciclib induce apoptosis in CD34+/CD38− LSC. (A): Primary neoplas-
tic BM cells (patient #4.2, #5, #8, and #17 as referred to in Table 1) obtained from patients with AdvSM
were exposed to control medium (Co) or palbociclib, ribociclib, or abemaciclib (1 µM, 5 µM, and 10 µM
each) for 48 h. Thereafter, CD34+/CD38− LSC were examined for signs of apoptosis by multicolor
flow cytometry and staining for Annexin V-FITC and 4′,6-diamidino-2-phenylindole (DAPI). Results
represent the mean ± S.D. of three patients (three independent experiments) and are expressed as
percentage of AnnexinV+/DAPI− cells (of all CD34+/CD38− cells). (B): Histograms of one typical
experiment (patient #4.2) are shown. Asterisk (*): p < 0.05 compared to control. Abbreviations: LSC,
leukemic stem cells; AdvSM, advanced systemic mastocytosis, µM, micromolar.
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Figure 5. CDK4/CDK6 inhibitors synergize with midostaurin in counteracting proliferation in MC 
cell lines and primary neoplastic MC. (A–C) HMC-1 and ROSA cells were incubated with control Figure 5. CDK4/CDK6 inhibitors synergize with midostaurin in counteracting proliferation in MC

cell lines and primary neoplastic MC. (A–C) HMC-1 and ROSA cells were incubated with control
medium (0 nM) or medium containing various concentrations of palbociclib (A), ribociclib (B) or
abemaciclib (C) alone or in combination with midostaurin (as indicated) at 37 ◦C for 48 h. Thereafter,
3H-thymidine uptake was measured in a β-counter. Results are expressed as percentage of control and
represent the mean ± S.D from triplicates (D) HMC-1 and ROSA cells were incubated with control
medium (0 nM) or medium containing various concentrations of palbociclib and/or midostaurin (as
indicated) at 37 ◦C for 72 h. Thereafter, cells were harvested and AnnexinV positive cells were
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analyzed by flow cytometry. Results show the percentage of apoptotic cells and represent the
mean ± S.D. of three independent experiments. (E) HMC-1 and ROSA cells were incubated with
control medium (Co) or in the presence of palbociclib + midostaurin, as indicated, for 24 h. Thereafter,
regulation of cleaved caspase-3 was analyzed by western blotting. (F) MCPV-1.2 cells were incubated
with control medium (0 µM) or medium containing various concentrations of palbociclib, ribociclib
or abemaciclib alone or in combination with midostaurin (as indicated) at 37 ◦C for 48 h. Thereafter,
3H-thymidine uptake was measured. Results are expressed as percentage of control and represent the
mean ± S.D from triplicates. (G) Primary neoplastic mast cells obtained from a patient with mast cell
leukemia (MCL; patient #15 in Table 1) were incubated in control medium or in 25 nM of palbociclib
(left panel), ribociclib (middle panel), or abemaciclib (right panel) alone or in combination with
midostaurin (25 nM), as indicated, at 37 ◦C for 48 h. Thereafter, 3H-thymidine-uptake was measured.
Results are expressed as percentage of control and represent the mean ± S.D from triplicates of one
typical experiment. Abbreviations: MCL, mast cell leukemia, nM, nanomolar; µM, micromolar.

3.7. CDK4/CDK6 Inhibitors Synergize with the New KIT-Targeting Drugs Avapritinib and
Nintedanib in Producing Growth Inhibition in Neoplastic MC

Current research focuses on the identification and development of KIT D816V-targeting
drugs that may be useful in the treatment of AdvSM. Recently, avapritinib, which has been
shown to induce major responses in a majority of patients with AdvSM, has gained ap-
proval in this indication [20,21,27,28]. Nintedanib has been shown to exert promising results
in vitro [67,68]. We examined cooperative antineoplastic effects between CDK4/CDK6
inhibitors and avapritinib/nintedanib. As visible in Figure 6A–F, Supplementary Mate-
rials, Table S9, and Supplementary Materials, Figure S5A–F, all three CDK4/CDK6 in-
hibitors were found to exert synergistic or additive effects with avapritinib and nintedanib
in inhibiting the growth of HMC-1.1, HMC-1.2, ROSAKIT WT, and ROSAKIT D816V cells.
Additive or even synergistic pro-apoptotic effects were confirmed for the combination
‘abemaciclib + avapritinib´ in HMC-1.2 and ROSAKIT D816V cells (Supplementary Materi-
als, Table S10). In MCPV-1 cells, additive or synergistic effects were also obtained with
all combinations tested. As expected, the most potent growth-inhibitory effects were ob-
tained by combining abemaciclib with avapritinib or nintedanib (Figure 6G, Supplementary
Materials, Table S9, and Supplementary Materials, Figure S5G).
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Figure 6. CDK4/CDK6 inhibitors synergize with avapritinib and nintedanib in counteracting 
proliferation in HMC-1 and ROSA cells. A-C: HMC-1 and ROSA cells were incubated with control 
medium (0 nM) or medium containing various concentrations of palbociclib (A), ribociclib (B), or 
abemaciclib (C), alone or in combination with avapritinib, as indicated, at 37 °C for 48 h. (D–F) 
HMC-1 and ROSA cells were incubated with control medium (0 nM) or medium containing various 
concentrations of palbociclib (D), ribociclib (E), or abemaciclib (F), alone or in combination with 
nintedanib, as indicated, at 37 °C for 48 h. Thereafter, 3H-thymidine uptake was measured in a β-
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Figure 6. CDK4/CDK6 inhibitors synergize with avapritinib and nintedanib in counteracting prolif-
eration in HMC-1 and ROSA cells. A-C: HMC-1 and ROSA cells were incubated with control medium
(0 nM) or medium containing various concentrations of palbociclib (A), ribociclib (B), or abemaciclib
(C), alone or in combination with avapritinib, as indicated, at 37 ◦C for 48 h. (D–F) HMC-1 and ROSA
cells were incubated with control medium (0 nM) or medium containing various concentrations of
palbociclib (D), ribociclib (E), or abemaciclib (F), alone or in combination with nintedanib, as indi-
cated, at 37 ◦C for 48 h. Thereafter, 3H-thymidine uptake was measured in a β-counter. (G) MCPV-1.1
and MCPV-1.2 cells were incubated with control medium (0 µM) or medium containing various
concentrations of abemaciclib alone or in combination with avapritinib (upper panels) or nintedanib
(lower panels), as indicated, at 37 ◦C for 48 h. Thereafter, 3H-thymidine uptake was measured in a
β-counter. Results (A–G) are expressed as percentage of control and represent the mean ± S.D from
triplicates. Abbreviations: CDK, cyclin-dependent kinase; nM, nanomolar; µM, micromolar.

4. Discussion

Midostaurin and avapritinib are KIT-targeting drugs that are used for the treatment of
AdvSM and result in a reduction of the MC burden in most patients with AdvSM [14,16,19–29].
However, long-lasting remissions are not observed in all patients, and relapses may occur.
This phenomenon may best be explained by the complexity of the disease and by the multiple
signaling pathways (other than KIT D816V-dependent pathways) involved in neoplastic MC
expansion [22,30,31,33–37]. Therefore, alternative targeted therapies that are effective both as
single agents and in combination with midostaurin/avapritinib are warranted. CDK4/CDK6
inhibitors, which are well established for the treatment of breast cancer [39–49], have not
previously been analyzed in the context of SM. Here, we show that CDK4 and CDK6 are
expressed in neoplastic cells in patients with ISM and AdvSM. Both molecules may play
a decisive role in the expansion of neoplastic MC. The three FDA-approved CDK4/CDK6
inhibitors, palbociclib [45,46], ribociclib [47,48], and abemaciclib [39,49,50], were found to
block the proliferation of most MCL-like cell lines and primary neoplastic cells in all samples
tested. Moreover, abemaciclib, and to a lesser degree palbociclib, induced apoptosis in
CD34+/CD38− LSC. Furthermore, CDK4/CDK6 inhibitors were found to sensitize neoplastic
MC against the effects of midostaurin, avapritinib, and nintedanib. Together, CDK4/CDK6
inhibitors used as single drugs or in combination with KIT-targeting TKI may be considered
for the treatment of AdvSM.
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CDK4/CDK6 is a well-established target in applied oncology [39–41] and has also
been discussed in the context of hematologic malignancies [52–54]. However, little attention
has been paid so far to the role of this pathway in neoplastic MC. Here, we show that the cell
cycle proteins CDK4, CDK6, cyclin D1, cyclin D2, and their downstream molecule RB1, are
expressed in BM samples obtained from patients with various forms of SM. Interestingly,
the expression of CDKs and cyclins varied among the subvariants of SM. In AdvSM,
including SM-AHN, ASM, and MCL, the expression levels of CDK4, CDK6, cyclin D1,
cyclin D2, and RB1 in neoplastic cells were slightly higher compared to expression levels in
isolated MNC obtained from patients with non-advanced SM (ISM, SSM). It is also worth
noting that CDK- and cyclin-expression levels in neoplastic cells varied significantly among
patients with AdvSM, without a clear correlation to the subtype of disease. This may be
explained by the heterogeneity of patients concerning the burden of MC in the BM, the
proliferation of neoplastic cells, or, in the case of SM-AHN, the type of associated disease.
Furthermore, independent of the type of SM, CDK4 and CDK6, as well as cyclin D1 and
D2, were found to be variably overexpressed in neoplastic cells. Likewise, in some patients
with SM-AHN, cyclin D1 was very weakly expressed, whereas CDK4, CDK6, and cyclin D2
were overexpressed compared to ISM. Varying results were also seen in MCL-like cell lines.
Interestingly, MCPV-1 cells lacking KIT D816V, but expressing RAS G12V, Large T and
hTert, were found to lack cyclin D2 at the mRNA- and protein level, thereby contrasting all
other MCL-like cell lines analyzed. These observations may point to the fact that different
pro-oncogenic signaling (involving KIT D816V, RAS G12V and other mutations) may lead
to different expression patterns of CDKs and cyclins. However, which oncogenes may
contribute to the overexpression of CDKs and cyclins in neoplastic MCs remains unknown.

CDK4/CDK6 have been described to play an essential role in cell cycle progression,
and thus in cell proliferation in normal and neoplastic cells [39–41]. However, little is
known about the functional role of CDK4/CDK6 in the context of neoplastic MCs. In the
current study, we investigated this aspect and found that simultaneous knockdown of both
CDK4 and CDK6 leads to growth inhibition in HMC-1.2 cells. These results are in line
with previous observations in other cell types and suggest that the CDK4/CDK6 axis is
indispensable for cell proliferation, and thus for the expansion of neoplastic MCs.

Within the last decade, the concept of targeting CDK4/CDK6 with suitable drugs has
been well established in oncology [39–43]. Indeed, three drugs are currently approved and
are used in patients with breast cancer: palbociclib, ribociclib, and abemaciclib [39,44–50].
In our study, we were able to demonstrate that all three drugs target the CDK4/CDK6 path-
way in neoplastic MC. Indeed, pRB1 was downregulated by all drugs in HMC-1 and ROSA
cells lacking or expressing KIT D816V. Interestingly, total RB1 expression was also decreased
in HMC-1 cells after exposure to CDK4/CDK6 inhibitors. In this regard, our data confirm
previous observations in other cell types [64–66]. So far, no mechanism has been delineated
to explain this phenomenon. In our experiments, we did not find evidence of a decreased
synthesis of the RB1 protein in HMC-1 cells after exposure to CDK4/CDK6-targeting drugs,
at least at the transcriptional level, and increased proteasomal degradation was also elimi-
nated as an underlying mechanism. All in all, the mechanism underlying the suppression
of RB1 expression by CDK4/CDK6 inhibitors in HMC-1 cells remains unknown.

In our study, all three CDK4/CDK6 inhibitors were found to induce growth inhibition,
cell-cycle arrest, and, to a lesser degree, apoptosis in HMC-1 and ROSA cells expressing or
lacking KIT D816V at low IC50-values. However, in MCPV-1 cells expressing RAS G12V,
Large T, and hTert, palbociclib and ribociclib failed to produce growth inhibition and a relative
resistance against abemaciclib was observed. This is somehow intriguing, as RAS G12V has
not been associated with resistance against CDK4/CDK6 inhibitors in the context of breast
cancer or other malignancies [69]. On the contrary, CDK4/CDK6 inhibitors have even been
shown to sensitize RAS G12V-mutated cells against chemotherapeutic agents in pancreatic
cancer [70]. One explanation for our findings may be that RAS G12V mediates resistance
against CDK4/CDK6 inhibitors exclusively in the cellular background of neoplastic MC. On
the other hand, resistance may also be related to the particular expression pattern of cell-cycle-
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related kinases in MCPV-1 cells. Indeed, we found that MCPV-1 cells overexpress cyclin D1
but fail to express cyclin D2, contrasting to the other MCL-like cell lines analyzed. Abnormal
expression of cyclins D1 and D2 in cancer cells has been discussed as being associated with
resistance against CDK4/CDK6 inhibitors [71–73]. However, this was largely not confirmed in
clinical settings, at least in regard to breast cancer [71].

We next asked whether CDK4/CDK6-targeting drugs would also be able to inhibit
the proliferation of primary neoplastic cells and if—by way of analogy to our cell line
models—resistance would occur in a subset of samples. In these experiments, all three
drugs were found to induce growth inhibition in the nanomolar range in neoplastic cells
in all subtypes of SM, including KIT D816V+ ASM and MCL. The effects of CDK4/CDK6
inhibitors were independent of the presence or absence of an AHN and of the nature of
the AHN. These observations suggest that CDK4/CDK6 inhibitors may be suitable drugs
for cytoreductive therapy in a majority of patients with AdvSM. Of note, anti-proliferative
effects were also confirmed in samples obtained from relapsed cases after midostaurin-
treatment and from one patient who underwent treatment with avapritinib. This was
predictable to a certain degree, as midostaurin/avapritinib and CDK4/CDK6 inhibitors
have different cellular targets and a different mode of action, and no cross-resistances were
expected. CDK4/CDK6 inhibitors may, therefore, be interesting drug candidates that may
be developed for use as salvage therapy in relapsed drug-resistant AdvSM.

In the recent past, it has been postulated that LSCs, which reside in a CD34+/CD38−
cell compartment in AdvSM, may survive conventional or targeted therapy and may, there-
fore, give rise to disease relapse [60]. To achieve long lasting remissions, it is assumed that
eradication of LSCs is necessary [60]. Therefore, current research focusses on identifying
drugs or drug combinations that counteract the survival of LSCs in AdvSM. We have found
that abemaciclib, and to a lesser degree palbociclib, lead to apoptosis in CD34+/CD38−
LSCs obtained from patients with ASM or MCL, suggesting, that these drugs may con-
tribute to eradication of neoplastic MCs and, hence, have a disease-modulating effect. By
contrast, the results for ribociclib were rather disappointing in the context of LSCs. Abe-
maciclib has been shown to be the most effective CDK4/CDK6 inhibitor currently available
in different malignant cell types [39,50]. Our study confirms this finding in the context
of neoplastic MCs and even LSCs in AdvSM. Whether the superior effect of abemaciclib
results from its additional targets [39,50], which may also play a role for the survival of
neoplastic MCs and even LSCs in AdvSM, remains unclear so far.

It has been previously observed that patients with AdvSM often fail to achieve long-lasting
remissions after treatment with a single drug, such as midostaurin or avapritinib [16,28]. There-
fore, drug combinations are considered to represent a more suitable therapeutic approach
than treatment with single agents. Here, we showed that CDK4/CDK6 inhibitors synergize
with the KIT-inhibitors midostaurin, avapritinib, and nintedanib in producing growth inhibi-
tion in MC cell lines and primary neoplastic MCs. The induction of apoptosis in neoplastic
MCs may be critical in achieving durable responses in AdvSM. As the pro-apoptotic effects of
CDK4/CDK6 inhibitors, when applied alone, were moderate, we asked whether drug combi-
nations (‘CDK4/CDK6-inhibitor + KIT D816V TKI’) would enhance pro-apoptotic effects in
neoplastic MC. In our experiments, the percentage of apoptotic cells was significantly increased
when CDK4/CDK6 inhibitors were combined with a KIT D816V-targeting TKI, resulting in
additive or even synergistic effects, suggesting that such drug combinations may have a more
profound antineoplastic efficacy than single drugs. Even in highly resistant MCPV-1 cells, the
combination of a CDK4/CDK6 inhibitor with either midostaurin or avapritinib at suboptimal
doses resulted in complete growth arrest, suggesting that the drug combination may also be
effective in drug-resistant cases of AdvSM.

The implication of CDK4/CDK6 inhibitors—as single drugs or in combination with
KIT-targeting TKI—in treatment concepts for AdvSM may have several benefits from
a clinical point of view. Palbociclib, ribociclib, and abemaciclib are all approved and
therefore available for application in patients. Furthermore, all three drugs are generally
well-tolerated when used as single agents. Therefore, these drugs might be used in pa-
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tients who are resistant or intolerant against midostaurin. The combination “midostaurin
+ CDK4/CDK6 inhibitor” may result in a more powerful inhibition of neoplastic MC-
proliferation than both agents when applied alone. In the case of midostaurin-pretreated
ASM/MCL, the combinations “avapritinib + CDK4/CDK6 inhibitor” or “nintedanib +
CDK4/CDK6 inhibitor” may be preferable, as these inhibitors show higher affinity to
D816V-mutated KIT than midostaurin. Last, two-drug combinations involving a KIT-
targeting TKI and a CDK4/CDK6 inhibitor would allow the application of each drug
at a lower dose and therefore avoid specific side effects. However, whether these drug
combinations would provoke unexpected side effects remains to be carefully determined
in upcoming trials.

5. Conclusions

Together, our study shows that CDK4 and CDK6 are promising targets in neoplastic
MC in AdvSM. The FDA-approved CDK4/CDK6 inhibitors palbociclib, ribociclib, and
abemaciclib exert anti-proliferative and pro-apoptotic effects in most MCL cell lines and
primary neoplastic MCs and CD34+/CD38− LSC isolated from patients with AdvSM and
synergize with KIT-targeting TKIs in producing growth arrest. The value of such drug
combinations needs to be evaluated within the frame of upcoming clinical trials.
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