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MSCs are multipotent adult SCs that exhibit the following
main features [1–3]: (i) presence in almost any tissues (e.g.,
UBC, BM, WJ, skin, and dental); (ii) plastic adherence; (iii)
capacity of self-renewing; (iv) ability of differentiating into
multilineages (e.g., mesodermal (i.e., adipocytes, chondro-
cytes, and osteocytes) as well as ectodermal (e.g., neuronal
cells) and endodermal (e.g., hepatocytes and pancreocytes));
(v) expression of specific set of cell surface markers according
to the tissue origin (e.g., presence of CD73, CD90, and
CD105 but absence of CD14, CD34, CD45, and HLA-DR);
(vi) immunoregulatory properties (e.g., low alloreactivity
and autoprotection from NKs due to low MHC I and
lack of MHC II expressions along with costimulatory
molecules such as CD80, CD40, and CD86; alleviation
of disease response by favoring the conversion from
Th2 (T helper cells) response to Th1 cellular immune
response through modulation of IL-4 and IFN-γ levels in
effector T-cells); (vii) homing capacity; and (viii) secretion of
anti-inflammatory molecules (e.g., cytokines and receptors).

De facto, clinical applications of MSCs are tremen-
dously promising in medicine (e.g., cell transplantation),
pharmaceutical sciences (e.g., controlled drug delivery),
and biological sciences (e.g., tissue engineering). They also
provide greater advantages over other SCs (e.g., ESCs),
which include [2, 4] (i) their relatively easy tissue isolation;
(ii) the absence of obvious risk for the donor or ethical
constraints; (iii) their capacity of migrating and homing
to the injured site (e.g., tumor tropism) which can be tracked

by noninvasive methods such as SPECT, BLI, or PET; (iv)
their ability to expand for a relatively long period of time;
(v) their ability to modify the host immune environment;
(vi) their valuable immunomodulatory effects; and (vii) their
higher transdifferentiation potential as above specified.

Since the last 15 years, an increasing number of preclini-
cal and clinical studies (>500) have been registered [5] using
hMSCs as a valuable source in treatment of chronic diseases
(e.g., autoimmune such as RA, inflammatory such as T1D,
and CVD or degenerative diseases such as ALS, PD, and
AD). Thereby, a number of studies [6, 7] pointed out the
crucial role of MSCs in the improvement of RA, particularly
at the onset of the disease, through a mechanism activating
Treg cells and suppressing the production of inflammatory
cytokines when injected into DBA/1 mice model. Also,
transplantation of MSCs, when successfully differentiated
into insulin-producing (beta) cells, was able to correct the
hyperglycemia of STZ-induced diabetic rodents, enhance
the survival rate of engrafted islets, and was found beneficial
for treating non-insulin-dependent patients [8–10]. Besides,
the transplantation of MSCs genetically modified to express
GDNF improved the ALS phenotype and increased the
number of neuromuscular connections [11]. In a pioneered
study, MSCs delivered through nose to treat patients
suffering from PD were found in different brain regions
(e.g., hippocampus, olfactory lobe, and cortex) after 4.5
months of administration and could favorably modulate the
expression of key enzymes (e.g., increased tyrosine
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hydroxylase and decreased toxin 6-hydroxydopamine levels)
in the lesions of ipsilateral striatum and substantia nigra [12].
Moreover, MSCs were able to enhance the cell autophagy
pathway, important in the amyloid plaque clearance, acti-
vated Tregs which in turn regulated microglia activation,
and increased the neuronal survival both in vitro and in AD
micemodel [13, 14]. Eventually, transplantation ofMSCs into
myocardial infarction animal model along with fibronectin-
immobilized PCL nanofibers was very successful [15].

Nevertheless, many of these clinical applications are
hindered by research barriers [1, 16–21]. Remaining chal-
lenges, related to safety and efficacy of MSCs, include (i)
the establishment of a comprehensive procedure for MSC
isolation (e.g., methods may include Ficoll density gradient,
collagenase, and marrow filter device) and for characteriza-
tion/quality control (e.g., specific expression of cell surface
markers, cell viability, endotoxin assays, and oncogenic
tests); (ii) a proper setup of in vitro MSC expansion. Indeed,
depending upon the severity of disease, an optimal dose of
multipotent MSCs is required. The difficulty to obtain a large
amount of adequate cells is often explained by the senescence
manifested by shortening telomere length, decline in differ-
entiation potential, and morphological alterations during a
long-term in vitro culture under certain conditions which
besides present the advantage to not favor spontaneous
malignant transformation at higher passages (e.g., expansion
of MSCs in controlled oxygen concentration and in serum-
free culture media rather than supplemented with serum
and/or growth factors); (iii) the cryopreservation and large-
scale banking of clinical grade MSCs lack optimization in
terms of medium to be used, uniformity in temperature
during freezing and thawing, and storage time in liquid
nitrogen. Interestingly, recent studies suggest that MSCs
cryopreserved in serum-free culture media supplemented
with CPAs (e.g., mixture of glucose, sucrose, and ethylene
glycol in PBS and polyvinylpyrrolidone) can be successful
to prevent any freezing damage to cells and toxicities related
to the routine use of DMSO; (iv) a specific administration
time and route (e.g., intravenous, in situ/local, and nasal)
remains to be decided in order to fully maintain the func-
tional capacity of a larger number of MSCs. In this regard,
it is thought that the most convenient and feasible way of
MSC transplantation is local injection to the site of injury
or near the site of injury; (v) the underlying mechanisms
that regulate and modulate these MSCs should be better
understood. For instance, homing of MSCs involves CXCR4
and SDF-1 alpha but the exact mechanism is still unclear
to avoid off-target homing; (vi) the precise mechanism(s)
by which MSCs regulate the immune response is/are
also undefined.

From the overall studies published to date, it becomes
thus clearer that the use of hMSCs for clinical applications,
at least in regenerative medicine, will increase.
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