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Superspreading is the main driver of
transmission for themajority of pandemic
coronavirus cases.

The virus' genetic sequence, severity of
disease, and host conditions such as
age, sex, and comorbidities are not
linked to superspreading.
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While significant insights have been gained concerningCOVID-19, superspreading
of coronaviruses remains amystery. The vast majority of cases have been linked to
a relatively small portion of infected individuals. Yet, the genetic sequence of the
virus, severity of disease, and underlying host parameters, such as age, sex, and
health conditions, are not clearly driving the superspreading phenomenon. In this
commentary we discuss what is known and what is not known about coronavirus
superspreader transmission and explore whether characteristics of the virion, the
donor, or the environment contribute to this phenomenon.
The donor modification of the virion or
the donormicrobiomemay play a poten-
tial role in superspreading.

Physical constraints and environmental
factors may also contribute to the
superspreading phenomenon.
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Introduction
The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) marked a new era
in zoonotic transmission of coronaviruses. Nearly 20 years later, a litany of new viruses (influenza
H5N1, H1N1, MERS-CoV) and known viruses (Ebola, Nipah, Zika) have produced significant out-
breaks in humans. While major efforts have been made to improve recognition of zoonotic infec-
tions, limit their damage, and identify their sources in nature, the most important factor in the
initiation of an epidemic may be the ability of the pathogen to transmit. Numerous deadly viruses,
such as avian influenza, Nipah virus, and others, have been limited by their relatively poor
human-to-human transmission. In contrast, major epidemics associated with coronaviruses
(CoV), flaviviruses, and Ebola virus have been driven by more efficient transmission. Efficient trans-
mission is critical to the epidemiological success of zoonotic viruses, yet little is understood about
how coronaviruses transmit.

During the current COVID-19 pandemic, SARS-CoV-2 transmission is marked by cluster transmis-
sion phenotypes in which 80% of new infections are driven by <20%of infected individuals [1–4]. In
contrast, influenza virus transmission is likely less cluster driven, with a more uniform transmission
trajectory. Detailed contact tracing of influenza infections is not routinely conducted, complicating
similar analysis between SARS-CoV-2 and influenza virus. However, retrospective analysis of influ-
enza seasons has indicated that epidemics are driven by frequent short-distance local transmis-
sion, which may be consistent with coronavirus as well [5,6]. Cluster transmission was also
observed during previous coronavirus outbreaks – such as SARS and the outbreak caused by
Middle East respiratory syndrome coronavirus (MERS-CoV) – and is the result of superspreader
events. While consistent in epidemic strains, the superspreading phenomenon is not limited to
coronaviruses. Reports from the West African outbreak of Ebola indicated that just 3% of infected
patients accounted for more than 60% of all infections [7]. Similarly, several superspreaders have
been identifiedwithmeasles outbreaks in the last few years [8]. For bacteria that cause tuberculosis
and typhoid, human superspreaders have had a long, and complex history [9].

In addition to social connectivity and susceptibility of hosts, we contend that transmission of re-
spiratory pathogens can be influenced by four parameters: (i) donor-specific modifications of
the virion, (ii) the donor microbiome, (iii) physical constraints, and (iv) environmental conditions.
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Modulation of these parameters can impact transmission fitness and superspreading. In this
Opinion article, we discuss what is known and what is not known about coronavirus
superspreader transmission and explore whether features of the virus, the donor, or the environ-
ment contribute to this phenomenon.

Defining Superspreading
The reproduction number (R) describes the average number of infections spread from an individual
case; it will often decide the success or limitations of a pathogen [10,11]. The basic reproductive
number of a virus, R0, is defined as the initial spread of a virus through a completely susceptible
population, while Rt describes the effective reproductive value at a given point in time. For viruses
with a high R0/Rt, infection can spread exponentially and requires major efforts to quarantine. Mea-
sles has an R0 >10, indicating that the average infected patient passes the virus to 10 ormore peo-
ple [11,12]. In contrast, a virus with a low R0 is expected to transmit to fewer people. Importantly,
virulence and transmissibility are often independent, meaning that many deadly viruses may not
spread efficiently. For example, both highly pathogenic avian influenza (R0 <2) and Ebola (R0 <2)
viruses have relatively low transmissibility despite their high mortality [10,13]. Similarly, for most pa-
tients, SARS-CoV, SARS-CoV-2, and MERS-CoV have an R0 <1, limiting the number of infections
from an individual host.

Notably, R0 is not a static value for most respiratory viruses, including influenza and measles [11];
similar variations can be observed with secondary infections of SARS-CoV and SARS-CoV-2.
Themajority of SARS-CoV patients seed <1 secondary infection (Figure 1). However, on average,
one in ten SARS-CoV patients were found to be superspreaders; these superspreaders result in
>10 secondary infections and seeded a significant portion of the cases around the world [13]. A
breakdown of selected superspreading events of the three recent emerging coronaviruses is
shown in Table 1. These events demonstrate the impact of a single source infecting tens to
hundreds of other individuals. During the MERS-CoV outbreak, one traveler seeded the infection
of 29 others in South Korea, and one of these latter patients subsequently infected additional
people; this pattern differed significantly from the vast majority of MERS-CoV patients in South
Korea who infected <1 other person [14]. For SARS-CoV-2, a similar trend has been observed,
with the vast majority of cases (80%) seeded by <20% of COVID-19 patients [1,2]. Therefore,
the relative number of secondary infections is heterogeneous and can vary between individuals.

From the examination of limited data from known superspreaders, no common host traits or viral
mutations have been observed. Initial studies of superspreaders of SARS-CoV and MERS tended
to identify males, suggesting a potential sex bias (Table 1). However, during the ongoing COVID-
19 pandemic, infections occurred in equal proportions within males and females, but male patients
presented with more severe disease and higher viral loads [15]. Yet, examination of many of the
documented COVID-19 superspreading events revealed both female and male spreaders across
a wide age range (Table 1). Importantly, for both SARS-CoV and MERS-CoV, superspreading
events were not associated with mutations in the virus sequences that drive increased transmission
[16]. Similarly, for SARS-CoV-2, no genetic mutants to date have been linked to superspreading
events. Based on these observations, it is unlikely that changes to the viral genome are driving co-
ronavirus superspreading. Instead, we propose that cluster transmission is driven by a combination
of underlying host factors, nongenetic variations within the virus, or environmental constraints.

Potential Mechanisms Driving Cluster Transmission
With no evidence for host sex/age biases or changes in the viral genome, we considered other
factors that could influence coronavirus superspreading. A successful transmission event re-
quires the virus to maintain infectivity to infect a recipient host. However, it is clear from the
920 Trends in Microbiology, October 2021, Vol. 29, No. 10
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Figure 1. Superspreading in the Context of Coronaviruses. While coronaviruses such as severe acute respiratory
syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2) have a low R0 for most patients (<1), about 10% of patients have been
found to be superspreaders (red circles), accounting for >80% of infections associated with coronavirus outbreaks.
Factors that contribute to superspreading are unknown but are not due to changes in viral RNA sequence or severity of
disease in the host. Created with BioRender.com.
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infection data that other factors impact the ability of a person to become infected. For example,
virus expelled from a superspreader may bemore stable in the environment or havemodifications
that improve attachment or entry. Specific environmental or physical conditions may influence
superspreading capacity andmay be governed by permanent or transient host factors. Together,
these possibilities, both individually and in combination, are key drivers of superspreading in
coronavirus infection.

Modification to the Coronavirus Virion
While analysis of the viral RNA genome has not foundmutations, the virions from superspreaders
may still be distinct. One possibility is that post-transcriptional modification of proteins on the
Trends in Microbiology, October 2021, Vol. 29, No. 10 921
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Table 1. Select Superspreading Events from SARS-CoV, MERS-CoV, and SARS-CoV-2

Coronavirus Event date Event location Venue Number
of seeded
infections

Sex of
donor

Age of
donor

Refs

SARS-CoV February 21,
2003

Hong Kong Hotel 13 Male ND [74]

March 15, 2003 Hong Kong to
Beijing

Airplane ~20 Male 72 [75]

March 1–May
31, 2003

Singapore Hospital >10 Female 22 [76]

March 1–May
31, 2003

Singapore Hospital >10 Female 27 [76]

March 1–May
31, 2003

Singapore Hospital >10 Female 53 [76]

March 1–May
31, 2003

Singapore Hospital >10 Male 60 [76]

March 1–May
31, 2003

Singapore Hospital >10 Male 64 [76]

MERS May 11, 2015 Multiple Hospital and clinics 26 Male 68 [77]

May 15–17,
2015

Seoul, South
Korea

Hospital 6 Male 35 [78]

May 15–17,
2015

Seoul, South
Korea

Hospital 23 Male 41 [78]

May 15–17,
2015

Seoul, South
Korea

Hospital 11 Female 75 [78]

May 27–29,
2015

Seoul, South
Korea

Emergency room 82 Male 35 [79]

SARS-CoV-2 January 19,
2020

Ningbo, China Bus 30 Female 64 www.nytimes.com/2020/09/01/
health/coronavirus-bus-china.html

January 24–28,
2020

France Resort 11 Male 53 www.theguardian.com/world/2020/
feb/10/super-spreader-brought-
coronavirus-from-singapore-to-
sussex-via-france

February 10,
2020

Daegu, South
Korea

Church 38 Female 61 www.theguardian.com/world/2020/
feb/20/south-korean-city-daegu-
lockdown-coronavirus-outbreak-
cases-soar-at-church-cult-cluster

Feb 26–27,
2020

Boston, MA International
conference

97 ND ~100 [4]

Monday, March
2, 2020

New York, USA Hospital (multiple) 90 Male 50 www.nytimes.com/2020/03/10/
nyregion/coronavirus-new-rochelle-
pneumonia.html

Tuesday,
March 10, 2020

Washington,
USA

Choir practice 52 ND ND [80]

June 17-20
2020

Georgia, USA Summer camp 260a ND Teenage [81]

Monday,
August 17,
2020

Paju, South
Korea

Coffee shop 56 Female Mid 30s www.businessinsider.com/56-got-
coronavirus-south-korea-starbucks-
mask-wearers-did-not-2020-8

May 27-29,
2020

Utah, USA Daycare facility 5 ND Adult [71]

ND, not disclosed.
aLimitation: may include infections resulting from before or after camp exposure and not based on a single transmission event.
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virion may alter transmissibility and infection. For example, the coronavirus spike protein is
cleaved by host proteases, which has implications for infection and spread [17]. Host-specific
differences in protease expression or distribution may alter virion processing and infectivity.
Similarly, the lipid composition of the coronavirus envelope may be distinct among different
donors, thus impacting the spread of the virus [18]. Other post-translational modifications of
the coronavirus spike, including phosphorylation or ubiquitination, may also vary between
hosts and should be studied further for their role in superspreading.

Notably, glycosylation is a key post-translational modification known to play a critical role in
attaching carbohydrates to proteins. Glycosylated proteins are abundant within the mucus
layer of the respiratory tract [19] and can impact the infectivity and spread of viruses.Work by sev-
eral structural biology groups has indicated the formation of a glycan shield on the surface of the
coronavirus spikes [20,21]. N-linked glycosylation has been identified throughout the spike
(Figure 2), but strikingly, regions adjacent to the receptor-binding domain and the S1/S2 cleavage
site, needed for entry and fusion, lack glycanmotifs. Other groups have predicted sites for O-linked
glycosylation, but the lack of data from purified virions creates a gap in this analysis [22]. Additional
analysis of variations in spike glycosylation between hosts would provide strong evidence that this
feature could contribute to transmission heterogeneity.
TrendsTrends inin MicrobiologyMicrobiology

Figure 2. Severe Acute Respiratory
Syndrome Coronavirus (SARS-CoV
Spike with Glycan Shield. SARS-CoV
trimer (green, PDB: 6NB6) [20] displaying
N-linked glycan distribution (blue spheres
and the predicted sites for potentia
O-linked glycosylation based on Net-
O-Gly server 4.0 (red residues) [22].
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Glycosylation of the spike protein could have functional consequences for coronavirus infection. It
has been suggested that the coronavirus glycan shield helps to mediate antibody escape [23],
similar to reports for other respiratory viruses [24–27]. Similarly, glycosylation may also play a role
in binding and attachment, as seen in a subset of coronaviruses [28]. In addition, glycosylation of
viral proteins may influence interactions with specific glycans in the respiratory tract. Recent data
have demonstrated that human respiratory mucus from differentiated airway epithelial cells pro-
tects enveloped viruses (influenza and bacteriophage Phi6) from decay in aerosols and droplets
[29]. Therefore, it is feasible that glycosylation of the spike protein will enhance interaction with air-
way components. Importantly, the efficiency of glycosylation and branching may be host-specific
and independent of viral sequence changes. Taken together, the glycosylation profile of the
spike protein by different donors may modulate interactions within the airway and thus contribute
to coronavirus infectivity and transmissibility.

Building on this idea, blood-group antigens confer phenotypic differences in glycosylation
between individuals which may alter the virion in a host-dependent and viral sequence-
independent manner. Human blood types can be divided into four different groups based on
the glycan epitopes expressed on their red blood cells. Inherited from parents, the glycan
epitopes are encoded by glycosyltransferases expressed from the ABO, FUT1, and FUT2 loci
in the human genome [30,31]. The resulting blood groups all form the H antigen on erythrocytes
but are further subdivided into A, B, and O blood groups. The A allele encodes N-
acetylgalactosamine (N-Gal) as a terminal glycan, and the B allele encodes galactose (gal) as its
terminal glycan. O blood group individuals express inactive A/B glycosyltransferases and lack
these terminal glycans [32]. Finally, A/B blood group individuals express both A and B glycosyl-
transferase alleles and thus express both terminal glycans on their red blood cells. Together,
the blood group antigens identify key differences in the glycosylation machinery based on
individual genetics. Importantly, an individual’s blood group can contribute to differences in the
glycosylation profiles of host glycoproteins, lectins, and mucins [33].

Differences in blood-group antigens have been implicated in susceptibility to virus infections.
Human challenge studies, examining asymptomatic gastrointestinal infection caused by Norwalk
virus, have revealed that a lack of FUT2 in the ABH histo-blood group was sufficient to block in-
fection [34]. Similarly, worldwide distribution of rotavirus infection suggests an evolutionary impact
of human blood groups since the VP8 protein in human rotavirus strains can interact with A-type
histo-blood group antigen [35,36]. Blood-group status has also been identified as playing a role in
susceptibility to HIV [37]. Multiple studies have suggested an increase in COVID-19 infections in
non-O blood groups [38–41]. A similar observation of individual blood-group status and infectivity
was reported during the original SARS-CoV outbreak indicating [42] a potenial role in infection
and spread. Recently, two reports have suggested a link between SARS-CoV-2 binding to
sugars associated with blood group A [43,44]. These data leave the intriguing possibility that
SARS-CoV-2 produced in individuals with distinct blood groups may differ in their glycosylation
patterns and subsequent transmission. Future studies combining blood-group status with con-
tact tracing will provide critical insight into the transmissibility and susceptibility of individuals
based on blood-group antigen.

Impact of the Host Microbiome on Virus Transmission
Similar to glycosylation, the host microbiome may influence superspreading. Comprising a di-
verse group of commensal bacteria inhabiting spaces within the body, the host microbiome is
unique to each individual host. Research examining enterovirus transmission has revealed a crit-
ical need for virus–microbiome interactions to enhance virus stability, virulence, and spread be-
tween hosts [45,46]. Interestingly, respiratory viruses, such as coronaviruses and influenza
924 Trends in Microbiology, October 2021, Vol. 29, No. 10
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viruses, are maintained within the enteric systems of their reservoir hosts (bats and aquatic fowl,
respectively). Therefore, given the gut origins of these viruses, it is possible that bacterial–viral as-
sociations may be maintained within the respiratory tract. Supporting this notion, several reports
have linked SARS-CoV infection in activating an immune response to bacterial moieties, including
Toll-like receptors (TLRs) and complement pathways [47–50]. In addition, the coronavirus spike
protein has domains known to interact with polysaccharide moieties [28,51,52].

To date, the majority of studies examining the effect of the host microbiome on spread of patho-
gens have focused on enteric pathogens. However, during SARS and MERS-CoV infections the
host respiratory tract is the primary site of infection with limited links to the enteric pathways in
humans [53,54]. Recent studies in the ferret model have revealed that treatment with topical
antibiotics in the nasal cavity results in reduced airborne transmission of influenza viruses [55],
suggesting a link between nasal microbiota composition and transmission fitness of respiratory
viruses. Notably, studies in mice and ferrets have suggested that coinfection with a common
commensal bacterium, Streptococcus pneumoniae, decreases viral replication of respiratory
syncytial virus and influenza viruses and reduces airborne transmission of influenza viruses
[56,57]. These observations suggest that nasal microbiome communities can influence efficient
airborne transmission of respiratory viruses. Integration of microbiome analysis in animal and
human transmission studies may provide critical knowledge on the interplay between microbial
communities and the airborne transmission of viruses.

Phyisical Factors Driving Transmission
Independent of the host, physical constraints of a given space may play a critical role in
superspreading. Respiratory viruses transmit through multiple modes: (i) direct contact, (ii) indirect
contact through a contaminated surface, (iii) large droplet spray, or (iv) aerosol transmission
(Figure 3). The relative efficiency of each mode is still unknown, but all modes are feasible. Release
of virus-laden aerosols in a large-size range contributes to both close-up and long-range transmis-
sion [11,58]. At close contact all modes of transmission are possible and transmission is highly effi-
cient. Close-contact transmission likely accounts for linear secondary transmission events (Figure 1,
gray circles), although not all infectionswill result in a secondary infection. However, in suprespreader
TrendsTrends inin MicrobiologyMicrobiology

Figure 3. Airborne Transmission o
Respiratory Viruses. An infected dono
can expel a range of aerosol sizes tha
can be virus-laden. These aerosols can
fall onto surfaces to create fomites or be
inhaled by a donor. At close range a
recipient is exposed to all aerosol sizes
increasing infection probability. At a
further distance away, recipients wi
inhale smaller aerosols. Created with
BioRender.com
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events long-range transmission is likely to mediate a large proportion of the cases. For example, in a
recent superspreader event in a South Korean coffee shop, many of the unmasked costumers be-
came infected even with a >6 f. (~2 m) distance between the source and recipients, while the
masked employees were not infectedi. Therefore, persistence of SARS-CoV-2 in virus-laden
aerosols is critical for long-range transmission in a superspreader event. Aerosol release from
COVID-19 patients revealed that ~20% of the patients expel signifcantly more aerosols into the en-
vironment, and this was found to be related to the body mass index (BMI) age of the individual [59],
suggesting that an obese donor may contribute to superspreading through the release of more
virus-laden aerosols. Other factors that can influence aerosol release include singing, speaking in
certain dialects, and the volume of one’s voice [60]. Together, the mechanical and physical factors
of a space or donor may strongly contribute to superspreading.

Environmental Contributors to Transmission
The environmental conditions provide another factor that may affect superspreading. Persistence
of viruses in the environment is primarily driven by temperature and humidity [61]. However, in-
door spaces have a well-controlled temperature with small fluctuations; therefore, it is possible
that relative humidity is more likely to alter the stability of viruses in the environment. Previous
studies have determined that the SARS-CoV andMERS viruses are stable at low and high relative
humidity but have a higher rate of decay at mid-range humidity conditions [62–64]. This is similar
to other respiratory viruses such as influenza viruses [65,66]. Examination of SARS-CoV-2
stability in virus-laden aerosols, using a rotating Goldberg drum, revealed a half-life of 1.1 h at
65% relative humidity [67]. However, these stability studies were done in the absence of respira-
torymucus which has been shown to protect enveloped viruses from humidity-mediated decay in
submicron aerosols and droplets [29,68,69]. Therefore, it is feasible that virus persistence in the
environment is longer than previously reported, and at short time scales and relative humidity may
contribute to cluster transmission of SARS-CoV-2.

Examination of multiple documented superspreader events reveals a variety of location types rang-
ing from hospital settings, churches, and coffee shops, including events at the White Houseii

(Table 1). This wide variety in the type of environmentmeans a range of air-exchange rates and ven-
tilation capacities, suggesting that these factors do not directly contribute to superspreader events.
However, it is clear that increased ventilation and reduced capacity in indoor spaces will decrease
transmission of SARS-CoV-2. Thus, engineering parameters of a space, such as ventilation rates,
occupancy, and air exchange, may enhance transmission. Therefore, until the host specifics of a
superspreader are known, basic nonpharmaceutical interventions, like increased ventilation and
air-exchange rates, may alter the consequences of a superspreading event.

Other Considerations for COVID-19 Superspreading Transmission
While the parameters we outline in the preceding text have the potential to play a role in
superspreading, many other factors may also contribute in ways that are not yet clear. Immuno-
compromised individuals have been shown to lead to enhanced viral burden and persistence viral
shedding, whichmay contribute to increased transmissibility [70]. Thus, variations in host immune
status could be factors specific to superspreaders. The infectious dose of SARS-CoV-2 is still un-
known and may vary based on age, pre-existing immunity of individual recipients, and the viral
population swarm expelled by a donor. Similarly, transmission within pediatric populations has
not been as prevalent, but more recent examples from contact tracing in day-care and classroom
outbreaks [71,72] indicate a threat for spread despite mild severity of SARS-CoV-2 infection in
children. The emergence of SARS-CoV-2 variants with altered transmission fitness may also be
driven by superspreading [73]. Mutations within the spike protein can alter tissue tropism, recep-
tor avidity, and have consequences for protein glycosylation, interaction with the hostmucus, and
926 Trends in Microbiology, October 2021, Vol. 29, No. 10
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Outstanding Questions
Can key features that lead to
superspreading be defined?

Once identified, are superspreaders
always likely to transmit to high
numbers of people?

Can understanding superspreading
parameters limit the emergence of
future events?

Will findings from coronavirus
superspreaders have utility against
other infections, including influenza
and Ebola?
overall viral persistence in the environment. While no such data are available for the currently
circulating variants, the impact of these variant mutations on factors that influence superspreading
events must be considered. Notably, vaccination against SARS-CoV-2 has the potential to mitigate
COVID-19 transmission; however, understanding the factors that contribute to superspreadingmay
be crucial to maintaining vaccine efficacy and preventing breakthrough infections.

Concluding Remarks
Many aspects of the ongoing COVID-19 pandemic are still unknown and will take years to under-
stand. Among these, the factors that drive superspreadingmay be themost unclear. The spread of
COVID-19 has been heterogeneous in terms of age, gender, and genetic features. Yet, we know
that the vast majority of cases are linked to a small proportion of infected individuals. While trans-
mission of a virus requires that two individuals be within a given space at the same time, other pa-
rameters influence the likelihood of getting infected. These may include donor-derived modification
of the virion, altered infectivity due to the host microbiome, or physical/environmental conditions
that play a role in optimizing transmission. With the continuing spread of SARS-CoV-2, the oppor-
tunity exists to explore this question and develop an understanding of how superspreading trans-
mission occurs. These insights will be critical to disrupt the ongoing outbreak and mitigate the
spread of future emergent virus strains (see Outstanding Questions).
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