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Abstract: Despite the existence of many attempts at nerve tissue engineering, there is no ideal
strategy to date for effectively treating defective peripheral nerve tissue. In the present study,
well-aligned poly (L-lactic acid) (PLLA) nanofibers with varied nano-porous surface structures
were designed within different ambient humidity levels using the stable jet electrospinning (SJES)
technique. Nanofibers have the capacity to inhibit bacterial adhesion, especially with respect to
Staphylococcus aureus (S. aureus). It was noteworthy to find that the large nano-porous fibers were
less detrimentally affected by S. aureus than smaller fibers. Large nano-pores furthermore proved
more conducive to the proliferation and differentiation of neural stem cells (NSCs), while small
nano-pores were more beneficial to NSC migration. Thus, this study concluded that well-aligned
fibers with varied nano-porous surface structures could reduce bacterial colonization and enhance
cellular responses, which could be used as promising material in tissue engineering, especially for
neuro-regeneration.

Keywords: well-aligned nano-porous fibers; bacterial growth inhibition; cellular responses; nerve
regeneration

1. Introduction

Peripheral and central nerve tissue defects have been the focus of constant attention
for decades, and despite extensive clinical research endeavors, successful neuron repair
still faces vast challenges due to various factors such as axonal outgrowth inhibition,
neuron cell division restriction, and astrocyte dysfunction [1–3]. Nerve autografts are
currently the preferred and optimal method for treating long nerve gap defects, but this
technique is restricted due to the shortage of donor sites, risks of complications, the
formation of neuroma, and lengthy and multiple surgical procedures [4–6]. With the
development of tissue engineering techniques, especially neural tissue engineering, more
bespoke treatments are called for in order to overcome the numerous medical obstacles
mentioned above. Offering the advantages of high porosity, large superficial areas, and
a tailorable surface, 3D porous nanofiber scaffolds offer the capacity to be functionally
modified by biological molecules, carbohydrates, chemical compounds, and proteins [7,8].
Nanofibrous scaffolds that are supportive of cell adhesion, migration, proliferation, and
differentiation, share similarities with the structure and function of natural extracellular
matrix (ECM) [9–12]. Thus, biomimetic nanofibrous scaffolds are likely candidates to
be selected for the purposes of performing autografts to repair neuronal defects. For
instance, Kim et al. produced a porous and aligned polycaprolactone (PCL)/silk/quercetin
fibrous scaffold to enhance neural cell adhesion, migration, and direction of growth, which
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resulted in increased neural regeneration [13]. Evidently, alignment of electrospun fibers
for nanotopographical guidance of nerve cells is critical for nerve tissue engineering.

Electrospun fiber surface nanotopography has been known to regulate cell function
for various tissue engineering applications [14–21]. This nanotopography improves human
mesenchymal stem cell proliferation and migration [14], reduces RAW 264.7 cell elonga-
tion [15], modestly regulates cytokine expression of macrophages [16], and modulates
skeletal differentiation of human mesenchymal stromal cells [17]. We previously demon-
strated that aligned electrospun poly (L-lactic acid) (PLLA) fibers with elliptical nano-pore
surfaces enhanced the cellular response of vascular smooth muscle cells [18]. Special for
never tissue engineering, Zamani et al. showed that electrospun poly (lactic-co-glycolic
acid (PLGA) porous cylindrical fibers with nanometer surface roughness improved the
attachment, growth, and proliferation of human A-172 nerve cells [19]. Yang et al. reported
that aligned electrospun PLLA pore fibers increased the alignment degree of neurite out-
growth and neurite length of pheochromocytoma (PC12) cells [20]. Johnson et al. revealed
that electrospun fiber surface nanotopography could influence astrocyte elongation and
the capability of astrocytes to direct neurites [21]. Although aligned electrospun fiber
scaffold have been extensively investigated in never tissue engineering, little is known
about the influence of introducing nanotopography on their surface for neural stem cell
(NSC) differentiation.

Bacterial contamination of medical implants is associated with bacteria biofilm for-
mation and resulting in implant rejection, which remains a critical problem in tissue
engineering [22–24]. Antibiotics treatment was often used to kill the bacteria on surgical
implants. However, due to antibiotic abuse, bacteria has developed into antibiotic-resistant
bacteria that would lead to more deaths than cancer in future decades [25]. Reduced
microorganism colonization with an implant might be another effective way to enable the
immune system to eliminate bacteria, which was found to be capable of resolving the issue
of bacterial contamination of surgical implants [26,27]. Previous studies have reported that
micro/nano-topographies could prevent implant surfaces from microorganism coloniza-
tion [28–31]. Recently, Machado-Paula et al. initially generated macro-fibers with special
topography surfaces by rotary jet spinning in order to protect bacterial colonization [32].
In this sense, engineering electrospun aligned nanofiber surfaces with nano-topographies
could be taken into consideration when designing electrospun biomimetic fibrous scaffolds
for never tissue engineering. However, little knowledge on the influence of electrospun
aligned nanofiber surface nano-topographies on bacterial colonization is available.

Herein, we aimed to provide the first report to investigate the influence of electrospun
aligned nanofiber surface nano-topographies on bacterial colonization and the differentia-
tion of NSCs. Well-aligned nano-porous PLLA nanofibers were generated under various
ranges of ambient humidity on the basis of our previous work [18]. Fiber surface roughness,
morphology, crystallinity, and wettability were investigated using various characterization
techniques. Moreover, the nano-porous PLLA fibers were cultured with bacteria to explore
the effects of fiber nano-pore surfaces on bacterial colonization. In addition, the fibers
were seeded with NSCs to observe the influence of nano-porous fibers on cell adhesion,
migration, proliferation, and differentiation.

2. Results and Discussion
2.1. Preparation and Characterization of Aligned Electrospun PLLA Pore Fibers

The SJES method had been developed to produce well-aligned nano-porous PLLA
fibers under various ambient humidity conditions (40% and 70%). This was achieved
by forming a fairly extended, constant, linear jet measuring several tens of centimeters
in length (Figure 1). SEM and AFM images revealed the presence of a large number of
nano-scaled ellipsoidal pores with their major axis along the direction of the fiber on
the surfaces of the well-aligned single PLLA ultrafine fiber (Figure 2). Fiber surfaces
were filled with more and larger ellipsoidal nano-pores as humidity levels increased.
Specifically, the mean diameter of ellipsoidal nano-pores fibers measured 1.7 ± 0.2 µm at
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70% humidity (RH70), which was slightly higher than the 1.4 ± 0.3 µm determined at 40%
humidity (RH40) (Figure 2A,B). However, there was no significant differences between two
different humidities, indicating that varying humidity had negligible effect on the resultant
fiber finesse. Pore structure on electrospun ultrafine fibers could be achieved through
various approaches including varying collector temperature, solvent and ambient humidity,
nanoimprint lithography, wet chemical etching methods, and gas plasma [15,33,34]. In
the current study, the solvent and relative humidity method was chosen because it is a
simple and direct process without any post treatment, higher flexibility in controlling the
roughness, and homogeneous treatment of each single fiber [17,18]. Indeed, the results
above have clearly showed that the nano-pore on electrospun aligned PLLA ultrafine
fiber surfaces could be easily controlled by relative humidity and enlarged with increased
humidity. The mechanism of nano-pore formation on aligned PLLA ultrafine fibers is
correlated with the phase separation (induced by vapor, thermal, or non-solvent) and
breath figure effect [17,18]. Moreover, ellipsoidal-like nano-pores on the aligned PLLA
fiber surfaces were oriented in the direction of the long axis. This was due to the fact that
the electric field jet, which extended in a uniaxial direction, also provided torque from the
rotary drum in the process of electrospinning [18].
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Figure 1. Schematic diagram of fabrication of the aligned nano-porous poly (L-lactic acid) (PLLA) fibers under various
humidity environments via the stable jet electrospinning (SJES) method.

AFM was also employed to explore the effects of ambient humidity variations on the
topology of nano-pores. The results showed that RH40 and RH70 fibers presented different
surface roughnesses, namely, 66 ± 10 nm and 122 ± 27 nm (Figure 2C,D), respectively. It
was suggested that the ambient humidity during the SJES process could alter nano-porous
surface texture when fiber surfaces presented variable roughness, which was consistent
with the SEM data mentioned above. This is in good compliance with previous studies as
well [17,18].

XRD was used to investigate the crystallinity of the RH40 and RH70 fibers. It is
noteworthy that at around 2ϑ = 16◦, a peak appeared in all XRD patterns of the PLLA fibers
obtained under different ambient humidity conditions, which corresponded to α-form
crystals [35]. The greater intensity in the RH70 nano-porous fibers denoted the higher
crystallinity of electrospun PLLA fibers with RH70 (Figure 3A). Figure 3B shows the DSC
thermograms of RH40 and RH70 nano-porous fibers. The glass transition temperatures
(Tg) for RH40 and RH70 were about 62 and 65 ◦C, respectively. This was ascribed to the
fact that the thermal vibration of the PLLA molecular segment was restrained after the
increase in nano-pore size on the PLLA fiber surfaces. The cold crystallization peak (Tc)
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of RH40 and RH70 increased from 77 ◦C to 79 ◦C due to the large nano-pores restricting
the formation of hydrogen bonds between PLLA molecules. The melting temperatures
(Tm) were approximately 180 ◦C, indicating that the nano-pores had no effect on the
formation of α-form PLLA crystals [35]. The crystallinities (Xc%, calculated by Equation
(1)) of RH40 and RH70 PLLA fibers were 36% and 45%, respectively. The crystallinity of
RH70 nano-pore PLLA fibers noticeably increased, which was consistent with the XRD
results. Similar results were also reported by previous studies [35]. These findings are
very important because crystallinity affects polymer physical configuration, which shows
important characteristics that control bacterial adhesion and cellular responses [18,32].
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It is known that surface roughness can affect scaffold wettability and thus affects
bacterial and cellular responses [18,32]. Therefore, surface wettability of a scaffold allows
one to predict the hydrophilicity/hydrophobicity of the scaffold and consequently bacte-
rial and cellular susceptibility. The wettability of nano-porous aligned PLLA fibers was
evaluated by WCA (Figure 4). Figure 4 shows that both WCAs in the x-direction (ϑx) were
smaller than in the y-direction (ϑy) with a featureless surface of anisotropic wettability,
which suggests a faster spreading speed for water droplets along the fiber axis than in
the perpendicular direction because of the existence of energy barrier to wetting [36,37].
Moreover, the increasing size of nano-pores, when the x/y direction contact angle indices
(|ϑx−ϑy|) were augmented from 9.96 (RH40) to 13.1 (RH70) (Figure 4), which demon-
strated that the air stably fixed in the electrospun fiber pore surface resulted in the increased
hydrophobicity [16]. Together, these results illustrated that the nano-porous surface of indi-
vidual fibers demonstrated a sound capacity to adjust the aligned PLLA fibers’ wettability.
Increasing the surface roughness or nano-pore size of these fibers furthermore contributed
to enhancing surface hydrophobicity.
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2.2. Bacterial Activity in Response to Aligned Electrospun PLLA Pore Fibers

Bacteria colonization on the scaffolds was determined here through CFUs and SEM.
Figure 5A shows the CFUs for S. aureus (Gram-positive) and Figure 5B for E. coli (Gram-
negative). Clearly, the RH70 fibers showed reduced colonization from both bacteria strains
as compared to the RH40 fibers. Interestingly, the RH70 fibers showed a significant differ-
ence in the reduction of S. aureus colonization and no difference for E. coli. The difference
between Gram-positive and Gram–negative bacteria may correlate with the bacterial wall
structure. The Gram-positive bacteria presented a simple surface made up of a membrane
and a few layers of peptidoglycans. In contrast, the surface of the Gram-negative bacteria
was complex, consisting of one membrane, some layers of peptidoglycans, and one exter-
nal membrane comprising a capsule of polysaccharides and lipopolysaccharides (LPS).
Gram-negative bacteria presented much greater resistance to surface geometries because
of the surface complexity. Furthermore, evidence showed that the presence of LPS in the
membrane played a critical role in incipient bacterial adhesion to surfaces. Moreover, the
capsule consisting of primarily long-chain polysaccharides provided increasing resistance
as an external barrier to bacterial protection [38,39]. The Gram-negative bacteria displayed
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better bacterial colonization, implying that surface morphology may have been overcome
by the bacterial wall structure. The inset SEM image in Figure 5A also displays much more
adherent S. aureus covering the RH40 fibers than the RH70 fibers. These results suggested
that the larger nano-pore RH70 fiber could inhibit S. aureus colonization on the surface and
may facilitate its disinfection. However, nano-pore RH70 fibers in this study only showed
a physical interference, but they did not kill bacteria. In the future, the nano-pore fibrous
scaffolds with the addition of some antibiotics will extend their biological applications.
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2.3. NSC Differentiation on Aligned Electrospun PLLA Pore Fibers

One of the challenges in nerve tissue engineering is to produce a scaffold with low
bacteria colonization and promote cell behaviors as well. Figure 6A shows the morphology
of NSCs attached to RH40 and RH70 nano-pore nanofibers for 1 day. On the aligned fibers,
the NSCs were elongated in the fiber direction, indicating that the aligned fibers provided
the topographical guidance of NSCs that mimicked the nerve tissues. RH70 nano-pore
nanofibers also displayed increased cell adhesion and distribution compared to the RH40
nano-pore nanofibers, which may have been since the former offered a greater surface for
cell attachment. Furthermore, Figure 6B shows that two nano-porous fibers were conducive
to cell proliferation, and in particular, the RH70 fibers were more predisposed to cell growth.
This result is similar with those of previous studies, in which cells responded better to the
larger nano-pore fibers surfaces owing to their higher roughness [17,18]. Despite the RH70
fibers reducing bacteria colonization, they did not inhibit the NSC proliferation. It is likely
that the dimensions of NSCs could allow a few focal adhesion points on the fibers through
filopodia and lamellipodia formation, enabling their attachment and growth [32]. These
data demonstrated that large nano-pores on aligned fibers could enhance cell adhesion and
proliferation, which was beneficial to ECM depositing and tissue remodeling. However, it
was remarkable to note that NSCs preferred to migrate on RH40 rather than RH70 fibers
(Figure 6C), indicating that small nano-pores on aligned PLLA fibers were beneficial for
cell migration.
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Figure 6. (A) Immunofluorescence images of neural stem cells (NSCs) cultured on RH40 and RH70
for 1 day. The green staining is actin, and the blue staining is the cell nucleus. Scar bar = 10 µm.
(B) Cell proliferation of the NSCs cultured on RH40 and RH70 fibers. TCP stands for tissue culture
plate. (C) Cell migration of the NSCs cultured on RH40 and RH70 fibers (* p < 0.05, ** p < 0.01).

β-Tubulin (Tuj1) and Doublecortin (DCX) are commonly associated with NSCs and
are expressed at the stage of neuron precursor cells [40,41]. RT-PCR was employed to
further survey the impact of varied nano-porous fibers on NSCs. Figure 7A,B showed
that Tuj1 and DCX in NSCs from larger nano-porous fibers, especially in the case of RH70
fibers, were suggestive of promoting even higher expression in NSCs. Tuj1-representative
images of the stained NSCs on different matrices, obtained after a 7-day culture, are
presented in Figure 7C. It can be observed that the existence of larger nano-pores on
well-aligned fibers remarkably influenced Tuj1 protein expression. It should further be
highlighted that an intense expression of the associated protein marker by the NSCs was
noted on the RH70 fibrous matrices compared to those of RH40. This may therefore
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serve as a preliminary indicator of success in employing the larger, nano-porous surface-
designed fibers to facilitate NSC differentiation. In the current stage, the mechanisms
about the nano-pore RH70 fiber induction effect were not totally clear, and future studies
should be performed to investigate some probably involved signal transduction path-
ways. For example, the existing studies showed that some signal transducers, including
Rho proteins/Rho-associated protein kinase (RhoA/ROCK) and phosphatidylinositol 3-
kinase/protein kinase B (PI3K/AKT) [18,42], are involved in NSC differentiation when a
nanotopography was applied.
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3. Materials and Methods
3.1. Generation of Well-Aligned Nano-Porous PLLA Fibers

Well-aligned nano-porous PLLA (Mη = 500 kDa, Jinan Daigang Biomaterials Co.,
Ltd., Jinan, China) fibers were prepared using a PLLA/dichloromethane (DCM; Merck,
Germany) solution via the stable jet electrospinning (SJES) method [18]. Briefly, 0.3 g PLLA
was firstly dissolved in 10 mL DCM under stirring at ambient temperature (20–25 ◦C)
for 12 h. A 10 mL syringe with an 18-gauge flat needle was used to load the solution
and the feeding rate was set to 1.0 mL/h with a syringe pump (Longer, Baoding, China).
The PLLA solution was electrospun into various nano-pore fibers at room temperature
(20–25 ◦C) under the following parameters: high-voltage power supply (13 kv), tip-to-
collector distance (24 cm), rotating drum speed (600 rpm), and relative humidity (40% or
70%, termed as RH40 or RH70).

3.2. Characterization

To endow the fibers with improved conductivity, we sputter-coated gold onto the fiber
surface for 50 s. The fiber morphology was determined using scanning electron microscopy
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(SEM) at 8–10 kV. Atomic force microscopy (AFM) was used to detect fiber profile surface
roughness by NanoScope IV (Veeco, Plainview, NY, USA). The scanning probe microscope
used in AFM was Dimension 3100. A tapping mode was then applied to scan the samples
in the air. The roughness value (Ra) was calculated as the average value of Z-trace, which
was calculated through AFM images.

X-ray diffraction (XRD) spectroscopy was performed on a Rigaku D/max 2550 PC
with Cu Ka radiation, operated at 40 kV, 30 mA, and a 5◦(2ϑ) per min scanning rate.
Differential scanning calorimetry (DSC; Q10, TA instruments, New Castle, DE, USA) was
employed to determine the thermal parameters of the prepared fibers, which were as
follows: heating rate: 10 ◦C/min, temperature: from −150 to 250 ◦C, and N2 atmosphere:
flow rate: 50 mL per min. The weight of the sample increased from 8 to 10 mg. Utilizing
the sessile drop method, the static water contact angle (WCA) of varied nano-porous fibers
was measured by video-enabled goniometer (VCA-optima, AST, Pittsburgh, PA, USA). A
distilled water drop (0.25 mL) was placed at all 8 locations per sample. The fibers’ shapes
did not change noticeably once they had affixed themselves to the fibrous membrane
surface. The projected images of the droplets were analyzed to define their contact angles,
and crystallinity of each sample was ascertained using the following equation [35]:

Xc% = [(∆Hm−∆Hc)/93] × 100% (1)

where ∆Hm represents the fusion heat of the fusion endothermic peak and ∆Hc represents
the fusion heat of the raw PLLA of 100% crystalline.

3.3. Bacterial Activity and SEM

Escherichia coli (E. coli, ATCC 8739) or Staphylococcus aureus (S. aureus, CMCC 26003)
(104 cells/mL) were cultured for 14 h in 3% tryptic soy broth (TSB) medium. The RH40 and
RH70 fibers were then placed into culture plates with 24 wells, to which 1000 µL bacterial
solution was added. After 24-h culture, all bacteria were removed from the samples with
gentle washing with phosphate-buffered saline (PBS). The solution suspension was diluted
serially (10×, 100×, 1000×) and subsequently laid on a tryptic soy agar plate in 10 µL
aliquots, and cultured for 14 h at 37 degrees Celsius. The colony-forming units (CFUs)
were calculated. A PBS solution including 2.5% glutaraldehyde and 4% paraformaldehyde
was used to fix the bacteria for 1 h. Then, acetone solutions were applied to dehydrate the
above bacteria solution until 100% was achieved, followed by rinsing with acetone with
hexamethyldisilane (HMDS) (1:1) and pure HMDS for 10 min. Lastly, SEM was employed
to observe bacterial morphology.

3.4. Cell Culture and Seeding

Mouse NSCs (MUBNF-01001, cyagen, China) were preserved in Eagle’s minimum
essential medium (EMEM; ATCC) containing 10% fetal bovine serum (FBS, Zhejiang
Tianhang Biotechnology Co., Ltd., China) as well as 1% penicillin/streptomycin (Tianjin
Haoyang Biological Products Technology Co., Ltd., China) at 37 ◦C, and with a CO2
concentration of 5%. Prior to cell seeding, nanofibrous scaffolds underwent sterilization
with 30-min ultraviolet (UV) irradiation, 30-min 70% concentration ethanol, 15-min rinse,
and immersion in PBS. Afterwards, NSCs (1 × 104 cells) were seeded onto the nanofibrous
scaffolds in a 500 µL medium of a 24-well plate. By using the cell counting kit-8 (CCK-8,
Dojindo, Japan), we then assayed the proliferation of cells at 1, 4, and 7 days.

3.5. Cell Morphology

Cell morphology was analyzed after 1 day. To sum up, 4% (w/v) paraformaldehyde
was added for the 30-min fixation of the cells, which were then rinsed 3 times using
PBS. 0.1% (v/v) TritonX-100 (Aldrich, St. Louis, MO, USA) was subsequently utilized to
permeabilize the cells for 15 min, followed by a triple wash with PBS. Thereafter, the actin
was stained with fluorescein isothiocyanate (FITC)-conjugated phalloidin (diluted in PBS
at 1:40, Gibco, Waltham, MA, USA) for 30 min in the dark environment, after which the
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nucleus was stained with 4,6-diamidino-2-phenylindole (DAPI; concentration: 0.8 mg/mL)
(Gibco, Waltham, MA, USA) for 15 min.

3.6. Cell Migration

To assay cell migration, we produced cell-free wound-like gaps by customized steel
loops with a (1 mm) central barrier. In summary, NSCs (2 × 105 cells) were seeded onto
each nanofibrous scaffold using the steel loops, and distributed over plates comprising
24 wells, before being cultured in the standard medium for about 3 h. This serum-free
medium was subsequently used for a further 36-h culture to suppress cell proliferation.
The steel rings were then removed and cells were subjected to 36-h culture. Lastly, DAPI
staining was conducted to observe migration.

3.7. Reverse Transcription Polymerase Chain Reaction (RT-PCR)

On the basis of the manufacturer’s protocol, we employed the RNA extraction kit
(Takara, Japan) to extract the total RNA from NSCs, and the High Capacity Complementary
DNA (cDNA) Reverse Transcription kit (AB Applied Biosystems, Carlsbad, CA, USA)
was utilized for reverse-transcribing the first strand cDNA. The ABI Prism 7500 Sequence
Detection System with SYBR Green Supermix was used to conduct RT-PCR, the primers of
which are tabulated in Table 1. In addition, the 2−∆∆Ct method was applied to evaluate the
relative mRNA expression levels of a target gene, and the housekeeping gene GAPDH was
taken as an internal reference.

Table 1. Primer sequences of specific genes for quantitative RT-PCR analysis.

Genes Forward Primer Sequence (5’–3’) Reverse Primer Sequence (5’–3’)

Tuj 1 ACTTTATCTTCGGTCAGAGTG CTCACGACATCCAGGACTGA
DCX CAGAAGCCATCAAACTGGA AATCATGGAGACAAGTTACCTG

GAPDH TGACCTCAACTACATGGTCTACA CTTCCCATTCTCGGCCTTG

3.8. Immunocytochemistry

Once NSCs had been cultured for 7 days, a β-Tubulin (Tuj-1) neuronal marker was
used for immunostaining. We utilized 4% paraformaldehyde for the 30-min fixation of the
cell scaffold, which was later permeabilized by 0.5% TritonX-100 for about 15 min. NSCs
were thereafter blocked with 1% bovine serum albumin (BSA) for 30 min. Subsequently, a
primary antibody (Tuj-1, Abcam, United Kingdom) was used to stain the samples for 1 h,
which were then dyed with a secondary antibody (Rabbit Anti-Mouse IgG (H+L)-FITC,
USA) for the same duration. Furthermore, the nuclei were stained with 4′,6-diamidino-2-
phenylindole (DAPI) prior to examination through a confocal microscope (Nikon, Japan).

3.9. Statistical Analysis

Quantitative data were all expressed as means ± standard deviation. To determine
differences between groups, we used Origin 8.0 software to carry out the statistical analysis
with ANOVA of Tukey’s test. When p < 0.05, it was considered statistically significant.

4. Conclusions

In summary, the novel SJES method was employed to easily produce well-aligned
PLLA fibers with uniform ellipsoidal-shaped nano-porous surface textures, wherein the
nano-pore sizes were determined by variable ambient humidity conditions during the SJES
process. The greater the ambient humidity, the larger the nano-pore sizes. The roughness of
fiber surfaces was also enhanced by the increase in ellipsoidal nano-pores. For example, the
size and surface roughness produced on the RH40 fibers were 1.4 ± 0.3 µm and 66± 10 nm
in an ambient humidity of 40% during the SJES process, respectively. For RH70, they were
1.7 ± 0.2 µm and 122 ± 27 nm at an ambient humidity of 70%, respectively. These data
results were noteworthy in that RH70 fibers decreased bacterial colonization for S. aureus
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compared to RH40 fibers, but neither of these two fibers had any inhabit bacterial effect on
E. coli. Moreover, the ellipsoid nano-porous fibers impacted cellular responses including
cell adhesion, migration, proliferation, and differentiation, as well as the expression of
desired NSC phenotype markers. Compared to the small nano-pores, the large ones
proved more beneficial in terms of the adhesion, proliferation, and differentiation of NSCs.
However, NSCs preferred migrating on the aligned fibers with a small ellipsoid nano-
porous surface texture. The authors contend that together with a uniform nano-porous
surface texture, well-aligned electrospun fibers could serve as a promising biomaterial with
NSC responses and low bacterial colonization. The proposed method could be applied to
achieve improved and adjustable cellular responses in nerve tissue engineering.
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