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Performance of deep learning restoration 
methods for the extraction of particle dynamics 
in noisy microscopy image sequences

ABSTRACT Particle tracking in living systems requires low light exposure and short exposure 
times to avoid phototoxicity and photobleaching and to fully capture particle motion with 
high-speed imaging. Low-excitation light comes at the expense of tracking accuracy. Image 
restoration methods based on deep learning dramatically improve the signal-to-noise ratio in 
low-exposure data sets, qualitatively improving the images. However, it is not clear whether 
images generated by these methods yield accurate quantitative measurements such as diffu-
sion parameters in (single) particle tracking experiments. Here, we evaluate the performance 
of two popular deep learning denoising software packages for particle tracking, using syn-
thetic data sets and movies of diffusing chromatin as biological examples. With synthetic 
data, both supervised and unsupervised deep learning restored particle motions with high 
accuracy in two-dimensional data sets, whereas artifacts were introduced by the denoisers in 
three-dimensional data sets. Experimentally, we found that, while both supervised and unsu-
pervised approaches improved tracking results compared with the original noisy images, su-
pervised learning generally outperformed the unsupervised approach. We find that nicer-
looking image sequences are not synonymous with more precise tracking results and highlight 
that deep learning algorithms can produce deceiving artifacts with extremely noisy images. 
Finally, we address the challenge of selecting parameters to train convolutional neural net-
works by implementing a frugal Bayesian optimizer that rapidly explores multidimensional 
parameter spaces, identifying networks yielding optimal particle tracking accuracy. Our study 
provides quantitative outcome measures of image restoration using deep learning. We an-
ticipate broad application of this approach to critically evaluate artificial intelligence solutions 
for quantitative microscopy.
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INTRODUCTION
Sample illumination is a conundrum in live-cell imaging: too much 
light leads to fluorophore photobleaching and phototoxicity (Carl-
ton et al., 2010; Magidson and Khodjakov, 2013), whereas too little 
light results in poor images with low signal-to-noise ratio (SNR). Low 
SNR is detrimental to quantitative microscopy applications requiring 
precise localization and tracking of particles (Chenouard et al., 
2014). The issue of illumination versus SNR is compounded in sin-
gle-molecule tracking (SMT) experiments because each fluorescent 
molecule emits a limited number of total photons that can be col-
lected (so-called photon budget). In addition, fast imaging is often 
needed to precisely map particle trajectories, in particular for those 
particles that move rapidly. High-speed imaging requires short ex-
posure times that in turn give low SNR.

The different types of noise and the relationship between expo-
sure time and SNR for cameras (e.g., charge-coupled device [CCD] 
and scientific complementary metal oxide semiconductor [sCMOS]) 
are described by the equation (Eq. 1; Fellers and Davidson, 2004) 
and the schematic in Box 1. Shot noise is due to the statistical na-
ture of the rate of photons arriving on the camera, and the interval 
between arrival of photons is defined by Poisson statistics. This 
noise is captured by the factor (S + B) in the denominator of Eq. 1. 
An additional source of noise included in Eq. 1 is the background B 
generated by radiating fluorophores above and below the imaging 
plane, by scattered light in the microscope, as well as by autofluo-
rescing objects in the sample. Dark noise is due to the statistical 
variation of the electrons thermally generated by the camera. For a 
given camera, we assume constant P, QE, Nr, and Dc. Dark noise is 
negligible for exposure times of 1 s or shorter compared with the 
typical read noise at standard frame rates of Nr = 1.4 electrons root 
mean square (rms). Read noise is the noise generated by the ampli-
fying electronics in a camera that converts the electrons generated 
at a pixel into a voltage output and then into a digital value via an 
analogue-to-digital converter. A key difference between CCD and 
sCMOS cameras is that the read noise is almost identical for each 
CCD pixel, whereas sCMOS pixels have read noise that is pixel-de-
pendent. Note that read noise is squared in its contribution to the 
noise denominator in Eq. 1. Therefore only the signal and photon 

shot noise play significant roles in the variation of SNR with expo-
sure time τ.

Recognizing the various sources of noise and classifying their 
statistical features is at the core of several classic noise reduction 
algorithms. These include BM3D (Danielyan et al., 2012) and 
nd-safir (Boulanger et al., 2010). Both methods are based on col-
laborative filtering: they group together image patches with simi-
lar statistical properties and apply transformations that use all 
grouped patches to restore each grouped patch. The methods 
differ in how they define patch similarity, as well as in how they 
use the groups to restore patches. Nd-safir restores a patch by 
using the weighted average of the group, with more similar 
patches having greater weight in the average. BM3D weighs 
patch contributions within the group by its estimate of the noise 
they contain: less noisy patches carry greater weight. While effec-
tive in increasing the SNR of input images, these approaches are 
content agnostic: they use the statistical properties of the intensi-
ties within the input images, without regard to the image con-
tent. This makes them applicable to any data set as long as their 
assumptions are met. However, in some cases it may be benefi-
cial to sacrifice generalizability and use approaches that are data 
set–specific to achieve a further increase in the SNR and superior 
restoration. Denoising approaches that make this trade-off are 
called content-aware: they collect and use information about the 
content of the data set and can achieve higher SNR and notable 
qualitative image improvements as a result of exploiting this 
additional information.

With the rapid improvement in graphical processing units 
(GPU), deep learning has revolutionized quantitative image analy-
sis problems, including cell segmentation, object classification, and 
particle counting and tracking (Moen et al., 2019). In addition, 
deep learning methods that use empirical knowledge on noise 
have a great potential to restore low-SNR data sets, as mentioned 
above. The content-aware image restoration (CARE) network de-
veloped by Weigert et al. (2018) and based on the U-net convolu-
tional neural network (CNN) architecture (Ronneberger et al., 2015) 
is a popular tool for image restoration. In its original implementa-
tion, CARE uses pairs of images with high and low noise levels to 
generate data-specific denoising networks. High-quality “ground 
truth” (GT) images with high SNR are not always available, and self-
supervised approaches have been developed that eliminate the 
need for GT. One example is Noise2void (N2V) (Krull et al., 2018, 
2020). The innovation that allows N2V to denoise images with 
access to only a single noisy image (or set of images) is the intro-
duction of blind-spot networks. The N2V network is given an image 
patch and tasked with predicting the center pixel’s value. A con-
ventional U-net would learn to directly output the center pixel’s 
value, ultimately leaving the input image unchanged. In contrast, 
the N2V network has a blind spot at the center pixel, forcing it to 
infer the center pixel’s intensity from the surroundings. Krull et al. 
(2018, 2020) have shown that such blind-spot networks learn to 
remove pixel-wise independent noise.

Image restoration with deep learning for quantitative micros-
copy is still in its infancy. While image improvement with CARE and 
N2V (among other deep learning approaches) is qualitatively im-
pressive, to the best of our knowledge, the ability of these neural 
networks to restore data for quantitative analyses of molecular prop-
erties, such as diffusive behaviors, has not been rigorously evalu-
ated. Particle tracking is an ideal test case to objectively assess the 
performance of image denoising approaches, specifically, their abil-
ity to restore meaningful biological information, beyond cosmetic 
improvements. Here, we compare tracking performances after 

Different sources of noise in (cellular) imaging. In the schematic, 
noise dependent on the camera is color-coded bordeaux on blue 
background, whereas noise dependent on the sample is coded in 
red. The bar indicates relative proportions of sample- and camera-
related noise in typical imaging conditions. In Eq. 1, S = Pt is the 
signal (P is the incident photon flux [photons/pixel per second] 
and t is the exposure time [seconds]), QE represents the camera 
quantum efficiency (# electrons generated/incident photon), B is 
the background (same units as S), Dcis the dark current value (elec-
trons/pixel per second), and Nr represents camera read noise 
(electrons rms/pixel).

Box 1:
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FIGURE 1: Evaluation with synthetic data of the performance of 
supervised and unsupervised CNN denoising approaches for particle 
tracking. (A) Representative synthetic images of diffusing beads, 
without added noise (ground truth) or with noise added (σ = 0.5; see 
Materials and Methods). Noisy images were denoised with different 
algorithms, as indicated. Intensity profiles along the dotted lines are 
shown. Scale bar, 2 µm. (B) Illustration of particle trajectories in 
ground truth (GT) and denoised movies (CARE or N2V). Particles in 
noisy movies could not be tracked. (C) Averaged MSD curves from 
beads tracked in ground truth and denoised movies. (D) Diffusion 
values computed from the MSD curves. The dotted line indicates the 
theoretical value. (E) Anomalous diffusion coefficients (α) calculated 
from denoised and GT MSD curves. Statistical comparisons 
(D, E) using the Kruskal–Wallis test and Dunn’s multiple comparisons 
tests; n.s., P > 0.99. Median values are indicated.

RESULTS AND DISCUSSION
Restoring images of diffusing particles: proof-of-concept 
with synthetic movies
As an initial step to test whether CNN-based image denoising can 
improve accuracy in particle tracking experiments, we generated 
synthetic time lapses of moving beads. With this approach, the 
number of particles and their diffusion coefficient (D), background 
shot noise, and readout noise were defined for each movie. In these 
artificial movies, all particles underwent Brownian motion and their 
mean squared displacement (MSD) was used to describe changes in 
the positions of the particles with respect to the characteristic time 
interval (τ). For denoising with CARE, pairs of movies were created 
that had either no added noise (ground truth) or different levels of 
added noise (Figure 1A and Supplemental Figure S1A). A subset of 
the data was used to train CARE networks, which were then applied 
to denoise the remaining noisy movies. N2V only requires a series of 
noisy images for training, without corresponding GT. The beads in 
both denoised and GT movies were detected and tracked using a 
single-particle tracking algorithm with cross-linking to develop the 
trajectories (see Materials and Methods).

As expected, both CARE and N2V improved noisy synthetic 
movies, revealing beads barely distinguishable by the human eye in 
images with high noise levels. This improvement can be appreci-
ated with the intensity profiles shown in Figure 1A. Beads in movies 
with relatively low noise levels (σ = 0.2) could be precisely tracked 
after denoising (Supplemental Figure S1, B and C). In movies with 
high noise levels (σ = 0.5), for which tracking was not possible, 
CARE denoising enabled correct identification of ∼75% of the par-
ticles (Supplemental Figure S1D). Qualitatively, movies denoised 
with CARE showed individual particle trajectories closely resem-
bling the ones extracted from the ground truth. Similarly, trajecto-
ries after N2V denoising were similar to those in the ground truth 
(Figure 1B). Quantitatively, MSD curves derived from movies pro-
cessed with the CARE algorithm coincided with the ground truth 
(Figure 1C and Supplemental Figure S1C). Accordingly, diffusion 
coefficients and anomalous exponents derived from the denoised 
movies were consistent with the theoretically defined values (P > 
0.2, one-sample Wilcoxon test), and not different from the ground 
truth (Figure 1, D and E). Similarly, untrackable movies could be ana-
lyzed after denoising with N2V. The resulting diffusion and anoma-
lous exponent values were not different from the theoretical values 
or the values calculated from the ground truth movies. To further 
assess the accuracy of the denoised movies, we calculated the 
smallest distances between bead spot centers in GT and denoised 
movies. The cumulative values for these tracking errors are shown in 
Supplemental Figure S1F. After denoising with the CNNs (CARE 
and N2V), the mean cumulative localization error (over 300 frames) 
was ∼50 nm (or 1/5 of the size of the point spread function). It 
should be noted that this localization error did not deteriorate the 
restored particle trajectories; it just shifted the baseline of the MSD 
curves without affecting fitting results of D values (Michalet, 2010) 
(Figure 1C).

In summary, these experiments with synthetic images of diffusing 
particles show that CNN-based image restoration has the potential 
not only to improve the image quality, but also to recover the mo-
tion behavior of moving particles.

Content-aware denoising for tracking chromatin 
microdomains in live cells
After establishing proof-of-concept with a synthetic data set, we ap-
plied the CARE and N2V softwares to noisy time lapses of slow-dif-
fusing chromatin microdomains to evaluate whether and to what 

denoising with supervised and unsupervised CNNs, using synthetic 
image sequences of diffusing beads as well as chromatin dynamics 
as a cell-biological application.
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extent CNN-based denoising can restore kinetic information in a 
biological data set. We used a custom optical setup based on dif-
fractive optics to photoactivate 7 × 7 lattices of chromatin microdo-
mains in U2OS cells stably expressing histone H2A tagged with 
photoactivatable green fluorescent protein (PAGFP-H2A) (Bonin 
et al., 2018) (Figure 2A). Interlaced movies were collected from the 
photoactivated lattices, alternating short and long exposure times. 
Because the time difference between adjacent frames (short long 
exposures) is small, we consider the image sequence taken with 
long exposures as the ground truth for the noisy (N) image se-
quence. We applied the same approach with different short expo-
sures (10, 3, and 1 ms), corresponding to increasingly noisy images. 
To restore noisy image sequences, we used CARE networks trained 
on N/GT image pairs. Alternatively, we trained N2V networks tai-
lored to individual noisy sequences with the goal to maximize the 
outcome of unsupervised denoising.

Qualitatively, images denoised (DN) with CARE or N2V were 
much sharper than the original noisy images and resembled the GT 
(Figure 2B and Supplemental Figure S2A). Accordingly, pixel inten-
sity profiles across photoactivated spots revealed clear peaks that 
appeared to be similar in GT and DN images. Even for movies with 
the highest noise levels (1 ms exposure), improvement of the noisy 
images with CARE was impressive at first sight (Supplemental Figure 
2B). Yet, closer examination revealed striking differences in the DN 

outcomes, when comparing images restored from very low (1 ms) 
versus low (10 ms) exposure data. In DN images from very low expo-
sures, fluctuations of background between frames were exacer-
bated, spot shapes appeared to have reduced complexity, and—
most concerning—DN images occasionally included hallucinated 
spots inside and outside of the photoactivated lattice. Hence, de-
noising results need to be carefully evaluated in situations with ex-
treme noise levels, in particular when periodic (and highly predict-
able) patterns are present in the images. Using patch sizes smaller 
than the periodicity of the repeated patterns is expected to mitigate 
these artifacts. However, this was not an option for our photoacti-
vated grids with our current resolution. Increasing the proportion of 
images with missing pattern elements in the training set is another 
strategy that we will consider in future experiments. Finally, systemic 
parameter optimization (see below) with a reward function minimiz-
ing spot hallucination may further alleviate this problem.

To compare tracking accuracies achieved with GT, noisy, and 
DN data, image sequences were registered to cancel cell motions, 
and the center position of each chromatin microdomain in each 
image frame was determined by fitting with a two-dimensional (2D) 
Gaussian function. We used these positions to calculate MSD 
curves and diffusion coefficient D values (Bonin et al., 2018). In 
fixed cells, we expect no microdomain motion; residual diffusion 
reflects drift of the microscope stage that was not properly 

FIGURE 2: Image denoising to track chromatin microdomains in live-cell nuclei. (A) Schematic of the approach to 
photoactivate chromatin microdomains in U2OS cells expressing PAGFP-H2A. Rapid successions of short and long 
exposure times were collected. (B) Representative images of photoactivated chromatin microdomain lattices taken with 
a long exposure (ground truth), with a short exposure (noisy), and after denoising with different algorithms. Pixel 
intensity profiles are shown across a row of microdomains. Scale bar, 5 µm. (C) Cumulative spot motions in fixed cells. 
No microdomain could be tracked in the noisy data set. (D) Percentages of photoactivated spots that could be tracked 
in noisy movies or after denoising with the different algorithms. For each cell, values are normalized to the number of 
spots tracked in the GT. (E) Chromatin diffusion (D) in live cells, comparing GT and denoised (DN) movies. Each dot in 
the graphs (D, E) represents the average value for a cell. (F) Representative traces of microdomain trajectories. *, P < 
0.05; ****, P < 0.0001; ns, not significant (analysis of variance and Tukey’s test). #, P < 0.05 (one-sample t test; theoretical 
mean of 100). Mean values are indicated in the bar graphs.
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subtracted, combined with imprecise Gaussian fitting, leading to 
errors in spot center positions. As a first step to compare the DN 
methods, we calculated cumulative spot displacements in fixed-
cell movies (Figure 2C and Supplemental Figure S2C). As expected 
(Bonin et al., 2018), spots in GT movies from fixed cells barely 
moved (D = 2.2 ± 1.3 nm2/s). In contrast, the apparent spot motions 
in the corresponding noisy movies (10 ms exposure) were 10 times 
greater, and most spots from movies with greater noise levels (3 ms 
exposure) could not be tracked, partly due to failure in image reg-
istration (Supplemental Figure S2F). CARE and N2V denoising re-
duced the apparent spot motion of noisy images. Increased accu-
racy in spot center determination and improved image registration 
both contributed to this improvement in the DN movies (Supple-
mental Figure S2E). Next, we used the same approach with live 
cells. The proportion of chromatin microdomains that could 
be tracked significantly increased after denoising with CARE 
(Figure 2D and Supplemental Figure S2D). Denoising with N2V 
also increased the proportion of trackable spots, albeit to a lesser 
extent. To assess denoising outcomes, D values from DN movies 
were plotted against the corresponding values in GT (Figure 2E). 
Restoration of 3 ms movies to the 300 ms GT with CARE led to 
DN-derived diffusion values that were significantly correlated with 

GT-derived D values (r = 0.72, P = 0.029). Moreover, individual mi-
crodomain traces from DN spots were qualitatively more similar to 
GT than to noisy source images (Figure 2F). Although CNN-based 
denoising (and CARE in particular) enabled tracking of >80% of the 
microdomains and yielded diffusion values correlated with those 
from GT, we note that D values in CARE-DN movies were system-
atically lower than their GT values. This effect may be due to the 
loss of dynamic changes in spot shape after denoising. Microdo-
main spots in our experiments have a typical size of 600 nm, and 
nonsymmetric shapes are usually observed in the GT, whereas im-
ages denoised with CARE display more symmetric spots with 
Gaussian profiles. In comparison, no such “smoothing” effect was 
observed with synthetic images (Figure 1A) or with single-molecule 
images (see next section; Figure 3B), in which spots are diffraction-
limited with very nearly Gaussian profiles. It is likely that fluctuating 
structural variations are interpreted as noise by the software.

Another limitation in our comparisons is that the unsupervised 
CNN that we used (N2V) cannot identify or remove structural noise. 
To address this issue, we implemented Structured Noise2void 
(structN2V) (Broaddus et al., 2020), a generalized version of N2V 
that uses blind-spot masks based on noise structure (Supplemental 
Figure S3). Autocorrelation analyses in image regions lacking cells 

FIGURE 3: Restoration of the fast dynamics of nucleosomes captured with single-molecule imaging. (A) Schematic of 
the oblique light sheet imaging approach with U2OS cells expressing H2B-HaloTag. Rapid successions of short (10 ms) 
and longer (50 ms) exposure times were collected, leading to matching noisy (N) and ground truth (GT) movies. 
(B) Representative ground truth and noisy images, as well as images denoised with CNN algorithms. Pixel intensity 
profiles along the dashed lines are shown. Scale bar, 10 µm. (C) Illustration of particle trajectories in GT and denoised 
(CARE) movies. Particles could not be tracked in noisy movies. (D) Representative MSD curves. (E) Diffusion values (D) of 
single nucleosomes in GT and denoised movies. (F) Comparison of anomalous diffusion coefficients (α) derived from 
single-nucleosome MSD curves. Statistical comparisons (E, F) using Mann–Whitney test. Median values are indicated.
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showed that, for the camera used to image chromatin microdo-
mains, the main correlation was along a horizontal row of pixels 
(Supplemental Figure S3A). Indeed, horizontal stripes are clearly ap-
parent in the background of images denoised with N2V (Figure 2B). 
Therefore, we used a horizontal blind mask to denoise chromatin 
microdomain movies with structN2V, which efficiently removed the 
horizontal stripe pattern, leaving only some vertical fiber-like fea-
tures in the background of the images. Surprisingly, despite the 
qualitative improvement of structN2V (compared with N2V), track-
ing accuracy did not improve. On the contrary, apparent motions in 
fixed cells increased, fewer spots were tracked, and correlation of D 
with the ground truth decreased in movies denoised with structN2V 
compared with N2V (Supplemental Figure S3, B–D). Next, we used 
a combinatorial approach to select blind masks, using [–], [|], and [+] 
mask patterns with different pixel sizes (Supplemental Figure S3E). 
The background stripe artifacts completely disappeared when using 
plus-shaped [+] blind masks. Yet, tracking precision did not improve 
compared with N2V with any of the 15 blind masks tested (Supple-
mental Figure S3E). It is likely that fine-tuning the blind masks be-
yond our combinatorial approach (for example, using a Bayesian 
approach; see below) can improve restoration of particle dynamics. 
Still, our results highlight that nicer images are not necessarily better 
for quantitative microscopy, and in particular for particle tracking. 
Our interpretation is that increasing the size of the blind spot (N2V) 
to a larger mask (structN2V) leads to less information in the training 
process, causing a loss in accuracy for individual image features.

To benchmark the results obtained with CNN-based denoising, 
the same noisy image sequences were processed using two soft-
ware solutions not based on deep learning, BM3D (Danielyan et al., 
2012) and nd-safir (Inria©) (Boulanger et al., 2010). Both qualita-
tively and quantitatively, BM3D did not achieve CNN-based denois-
ing outcomes (Figure 2, B–D, and Supplemental Figure S2A, C, and 
D). This was expected because this software is best suited for im-
ages with a large proportion of signal rather than dominance of 
background pixels. In addition, BM3D requires an estimate of the 
noise variance, which was not trivial to assess. Overall, results ob-
tained with nd-safir with moderately noisy images (10 ms exposure) 
were comparable to those obtained with unsupervised deep learn-
ing (Supplemental Figure S2). With higher noise levels (3 ms expo-
sure), movies denoised with nd-safir could not be tracked (Figure 2). 
The nd-safir software can handle 4D data sets. We may therefore 
have underestimated the performance of this software to restore 
tracking information because we did not exploit the temporal com-
ponent of the movies. Nevertheless, the results suggest that CNN-
based denoising outperforms classic approaches, at least for this 
specific quantitative microscopy application.

Application of CARE for tracking single molecules 
in live cells
Next, we applied CNN-based denoising to single-molecule imag-
ing by tracking the dynamics of individual nucleosomes in nuclei 
with stochastically labeled histone H2B. For these experiments, we 
used U2OS cells expressing H2B fused to the HaloTag, to which a 
fluorescent ligand can bind specifically (Liu et al., 2018). Stochastic 
labeling of H2B was achieved by incubating U2OS H2B-HaloTag 
cells with a low concentration of fluorescent ligand, for a short 
amount of time. For imaging, live cells were illuminated by an 
oblique light sheet and the fluorescent signal was collected by a 
camera at a rate of up to 100 frames/s (Figure 3A). Compared with 
microdomains of chromatin, single nucleosomes have much faster 
kinetics that can be captured only by imaging at high frame rates 
(Nozaki et al., 2017). And similarly to other SMT experiments, the 

photon budget of each labeled nucleosome is limited, meaning that 
low illumination intensity is needed to capture time-lapse series of 
meaningful length. To train CNN denoising networks, we used fixed 
cells and captured matching pairs of low exposure (10 or 50 ms) and 
ground truth (1 s) images. For CARE, both noisy and ground truth 
images were used for supervised learning, while only the noisy data 
were used for N2V training. We used the same approach as the one 
used for chromatin microdomains, recording movies alternating 
short (10 ms) and longer (50 ms) exposures (Figure 3, A and B). The 
trained CARE and N2V networks were applied on the short expo-
sure movies, while the longer exposure movies were used as ground 
truth.

Again, the performances of CARE exceeded that of N2V in re-
storing single-molecule images, as indicated by the intensity pro-
files of individual nucleosomes (Figure 3B). CARE restored both the 
localization and relative fluorescence intensity of nucleosome foci, 
whereas N2V partially recovered spots from the raw image, with in-
tensity profiles indicating broadening of spot signals compared with 
the ground truth. CARE enabled tracking of ∼59% of the nucleo-
some foci detected and tracked in ground truth images, whereas 
N2V restored about 15% of nucleosome foci in noisy movies. There-
fore, for this data set and with the CNN training parameters that we 
used, the supervised denoising approach was better-suited than the 
unsupervised approach, as the pattern and statistical features of the 
noise are largely unknown. We found that minor changes to N2V 
training parameters have a strong impact on the denoising out-
come. It is therefore likely that improvement of single-nucleosome 
tracking performance after N2V denoising is possible by further op-
timizing N2V training.

Next, we evaluated the dynamics of the nucleosomes following 
CNN-based image restoration. We had established that movies of 
nucleosomes taken with a 50 ms exposure can be used for single-
molecule tracking with our system, whereas 10 ms movies could not 
be tracked due to the high background noise. First, we verified 
whether CARE denoising of “trackable” nucleosome movies induces 
artifacts. We obtained similar tracking results with 50 ms exposure 
images and the same images processed with the CARE network de-
scribed above (Supplemental Figure S4). We then focused on high-
noise movies. As illustrated in Figure 3C, trajectories of the same 
nucleosome tracked in both 50 ms exposure (GT) and denoised 10 
ms exposure movies were qualitatively similar. More importantly, the 
calculated MSD curves based on the GT trajectories had slopes and 
shapes matching the ones derived from the 10 ms denoised trajec-
tories (Figure 3D), with the y-axis shift due to the larger localization 
error of DN spots. Diffusion values derived from the denoised mov-
ies were about twofold larger than from the GT movie. This differ-
ence can be explained by the fact that motion blur is greater for 
longer exposure movies and leads to an underestimation of particle 
velocity, as observed previously by other groups (Amitai and Holc-
man, 2017; Miné-Hattab et al., 2017; Shukron et al., 2019). Statisti-
cally, the α values were similar for the GT and DN movies (Figure 3F) 
and lower than 0.5, indicating that the subdiffusive behavior of nu-
cleosomes (Nagashima et al., 2019) was captured in DN movies.

Denoising and tracking of 3D data set
The results presented so far were all derived from simulated or ex-
perimental 2D images, with positions and trajectories projected and 
extracted from a single z-plane. While these types of measurements 
are practical and generally well-suited for flat samples, such as cell 
nuclei in monolayer cell cultures, 3D measurements improve particle 
tracking accuracy, in particular for round nuclei where the relation-
ship between 2D and 3D distances deteriorates, and for short 
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distances (<5 μm) where the average 2D/3D discrepancy is ∼30% 
(Finn et al., 2017). Tracking of genomic loci in the small, round, and 
tumbling nuclei of yeasts is one instance where 3D data sets are re-
quired (Gasser, 2002; Chacón et al., 2014; Lawrimore et al., 2018). 
The radius of confinement (Rc), which corresponds to the area ex-
plored by a given genetic locus, is often used as a metric to quantify 
chromosome dynamics. As a gauge of the requirement for accuracy, 
the Rc of different genetic loci vary approximately threefold through-
out an entire chromosome (Verdaasdonk et al., 2013). Hence, Rc 
measurements need to be highly accurate to capture small differ-

ences in chromatin dynamics following a variety of perturbations. To 
assess particle tracking performance after CNN-based denoising of 
image volumes, we generated simulated 3D microscopy time lapses 
of the budding yeast pericentric region (Lawrimore et al., 2016) with 
different noise levels (see Materials and Methods). These movies 
model DNA loops containing 200- or 400-base-pair fluorescent re-
porter operator arrays (Figure 4A). The loops exhibit confined mo-
tion due to the tethering of the simulated DNA at the centromere. 
The 400-base-pair-array signal is twice as bright as the 200-base-
pair-array signal. Figure 4B shows representative images of the 

FIGURE 4: Effect of CNN-based image volume restoration on tracking performance for single-chromosomal loci. 
(A) Schematic of the fluorescent labeling of a single loop from a ChromoShake simulation of the budding yeast 
pericentromere (Lawrimore et al., 2016). (B) Representative images generated from ChromoShake simulations with 
0 noise (GT) and normally distributed random noise with a SD of 5 AU. The noised images were generated with 100-, 
1000-, and 10,000-fold gains to create images with different SNRs. Each image is displayed to show the image’s full 
intensity range. The contrast differs between images. (C) Ensemble MSD curves of GT and denoised image foci of the 
simulated 200- (top) and 400 (bottom)-base-pair arrays. Each plot is composed of 64 different loops from a single-
pericentromere simulation. Error bars represent SEM. Initial localization of the focus within the noised 100× images of 
200-base-pair array and of 400-base-pair array exceeded the cropping region of the 3D Gaussian fitting in 23.45% and 
0.004% of images, respectively (see Materials and Methods). The large percentage of mislocalized foci in the 100× 
images of the 200-base-pair array caused the large Rc values in D. Ground truth MSDs were calculated directly from 
simulation coordinates. (D) Comparison of radii of confinement (Rc) from GT and tracked images for 200- and 400-base-
pair arrays. The schematic shows that the higher Rc values correspond to foci that are lower in the z-dimension for the 
denoised images of the 200-base-pair array. **, P < 0.001; ***, P < 0.0005; ****, P < 0.0001; #, P < 0.0001 compared with 
GT; ns, not significant (Kruskal–Wallis and Dunn’s multiple comparison test). N = 64 simulated time lapses. Median values 
are indicated.
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simulated loci, with the different noise levels. Image sequences 
without any added noise are shown as ground truth comparison.

The content-aware denoising software that we have so far eval-
uated can also be trained on 3D data. Becausee ground truth im-
ages are rarely available for existing biological data sets, and con-
sidering that N2V is fully implemented in ImageJ, an image 
analysis software broadly used in the cell biology community, we 
focused on unsupervised denoising with N2V. The simulated hy-
perstacks were denoised using N2V, with one N2V network trained 
for each imaging condition on all images of that condition. The 
foci were tracked using a Gaussian fitting approach, and the MSDs 
at different time intervals were calculated for each of the tracks 
(Figure 4C). The plateau value of each MSD curve was converted 
into a Rc value. The ground truth MSDs and confinement radii 
were calculated directly from simulation coordinates and com-
pared with values from noisy and N2V-denoised simulation mov-
ies. As expected, time lapses with low noise levels could be 
tracked precisely, yielding Rc values not statistically different from 
their respective ground truth values (Figure 4D and Supplemental 
Table S1). For the dimmest array (200 base pairs), processing with 
N2V did not significantly alter the tracking outcome (Figure 4, C 

and D, compare 10,000 gain and GT). For the other brightness 
and noise conditions, denoising with N2V lead to significant over-
estimation of the Rc values, compared with both GT and noisy in-
put movies. We think that this effect is due to increased localiza-
tion uncertainty for individual beads after N2V denoising in this 
data set. Indeed, Rc values and localization errors are significantly 
correlated, for both the original and denoised images (Pearson 
correlation coefficient = 0.99 and 0.79, respectively; Supplemental 
Figure S5). Only in the most extreme condition (dimmer 200-base-
pair array and highest noise level) did N2V denoising significantly 
improve tracking outcome. For these images, in which individual 
loci were barely distinguishable and tracking essentially failed 
(Figure 4D, top, 100× gain), N2V denoising enabled tracking, 
yielding Rc values overestimated by a factor of two. The bimodal 
distributions present in the denoised 200-base-pair-array images 
are due to significantly more variation in the z-dimension tracking 
when the foci were near the bottom of the z-stack (see schematic 
in Figure 4D). We conclude that, when genomic loci can be tracked 
in 4D data sets, CNN-based denoising may introduce artifacts. 
Denoising becomes a more attractive solution when noise levels 
are very high (e.g., SNR < 1.5).

FIGURE 5: N2V denoising does not mask reduction of chromatin motion upon benomyl treatment. (A) Schematic of 
10 kb lacO/LacI-GFP tandem repeat array located 1.8 kb from CEN15. The spindle body is labeled with Spc29-RFP. 
Z-stacks were collected, and maximal intensity projections were used for tracking the array and spindle body. 
(B, C) Radius of confinement (Rc) for sister LacI-GFP signals (B) and Spc29-RFP (C) for original images and images 
denoised with N2V. **, P < 0.01; ****, P < 0.0001; ns, not significant (Mann–Whitney test). Mean values are shown. 
(D) Representative time-lapse montage of lacO/LacI-GFP sister foci signals and Spc29-RFP signals in original and 
N2V-denoised images of untreated or benomyl-treated, metaphase cells. Images are sum intensity projections with an 
interval of 30 s. Scale bars, 1 µm.
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Denoising single-chromatin loci in yeasts cells
We tested whether denoising using N2V would significantly alter 
the results of a single-particle tracking experiment. Time-lapse 
images of a 10 kb lacO/LacI-GFP array positioned 1.8 kb from 
centromere 15 and of spindle pole bodies labeled with Spc29-
RFP (Figure 5A) were denoised using N2V. Low-dose benomyl 
treatment is known to restrict the motion of pericentric chroma-
tin in yeast (Lawrimore et al., 2015). The restriction of the motion 
of the foci in benomyl-treated cells was apparent in the original 
time-lapse images as well as in the denoised time lapses. The 
motion of the spindle pole bodies was not restricted upon beno-
myl treatment, and this result was recapitulated in the denoised 
time lapses (Figure 5B). While denoising did introduce tracking 
errors (outliers in Figure 5, B and C) for a few loci, these did not 
lead to statistically different results compared with the original 
images. Denoising maintained higher SNR over the time course 
(Figure 5D), meaning that implementing N2V could allow longer 
observations.

A systematic approach to optimize the parameters of CNN 
networks
A nontrivial aspect of training CNN networks such as CARE is 
choosing the network’s parameters and deciding on the size of 
the training set. While some hyperparameters such as the learn-

FIGURE 6: Optimization of CARE network parameters. (A) Schematic of the approach to 
simultaneously assess multiple parameters using Bayesian optimization. For chromatin 
microdomain tracking, the reward function minimized the cumulative tracking error. (B) Effect of 
the patch size and the number of training subsamples on tracking accuracy. The graph shows 
that the optimizer sparsely explored the entire parameter space before focusing on the most 
promising areas (dotted line). Each dot on the graph represents the performance (tracking 
accuracy) of a CARE network, mapping noisy (10 ms exposure) images to GT (300 ms) images 
from interlaced live-cell movies. (C) Approach to determine optimal size of the training set, with 
CARE CNNs trained on different numbers of image pairs. (D) The tracking error, expressed 
relative to the original noisy images, is shown as a function of the training set size. Each curve 
represents the data from one movie.

ing rate may be application-invariant and 
thus are generally kept as described by the 
authors (Weigert et al., 2018), other net-
work architecture parameters such as the 
restoration patch size are more applica-
tion-specific. Refining these parameters, 
which are accessible and implementable 
by biological users, with a system may im-
prove the restoration outcomes. Yet rely-
ing on trial-and-error is time consuming. 
To rigorously identify parameters optimal 
for our type of data, we employed Bayes-
ian optimization (Nogueira, 2014) (Figure 
6A). In this approach, the network’s para-
meter space is modeled using Gaussian 
processes. This optimization can find para-
meter values that lead to the best perfor-
mance at the task at hand while minimizing 
the number of evaluations. The approach 
is thus especially useful when the evalua-
tion of the target function is expensive, as 
in our case in which an image restoration 
network needs to be trained and its pre-
dictions tracked at each evaluation step of 
the optimizer. We used three different ob-
jective functions for assessment: cumula-
tive tracked motion in fixed cells, cumula-
tive tracking error in live cells, and relative 
number of spots tracked. Figure 6B shows 
the sets of optimal parameter values found 
by the Bayesian optimization process 
identified using these target functions. 
Compared with the default parameter set 
of the CARE implementation used, the pa-
rameters found through this optimization 
resulted in a model producing restorations 
with a 12.8% lower cumulative tracking 
error.

Producing large training sets for the supervised deep learning 
approach with matching noisy and clean images can be time con-
suming. To investigate the effect of training set size on the restora-
tion outcome, we trained CARE networks with identical hyperpa-
rameters on differently sized training sets and quantified the 
change in tracking error (Figure 6, C and D). As expected, we found 
that models trained with more training data had a lower cumulative 
tracking error. A performance plateau was achieved with a surpris-
ingly small number of training image pairs (10–100). This suggests 
that, at least in our experimental conditions, significant improve-
ment in image quality and tracking precision can be achieved with 
a small data set. We do not exclude the possibility that further im-
provements would have been achieved with a much larger training 
set but considered that a very large set of matched noisy/GT image 
pairs is experimentally and computationally impractical.

Conclusion
We evaluated the performance of content-aware deep learning 
methods for denoising microscopy image sequences, using particle 
tracking outcomes as an objective assessment. In contrast to con-
ventional denoising approaches, CNN-based image restoration 
makes little or no assumptions on noise. No preacquisition of cam-
era-based noise features or calibrations is needed, which facilitates 
the implementation of these methods. By learning the noise pattern 
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of a given image (or image pairs), both N2V and CARE remove noise 
regardless of its source (shot noise, dark noise, readout noise, etc.), 
with the notable exception of structural noise for N2V. Overall, we 
find that the deep-learning methods can restore biophysical infor-
mation from very noisy data sets, highlighting their potential for 
quantitative microscopy. As expected, the supervised method 
(CARE) generally performed better than the unsupervised methods 
(N2V and structN2V). Yet, results with N2V and stN2V are promising 
because an unsupervised learning approach is the only option when 
paired training data sets are not obtainable. We also do not exclude 
that better N2V performances may be achieved with longer training 
times (which were not practically achievable for this study). Our re-
sults are very encouraging because individual chromophores in sin-
gle-molecule tracking experiments have a limited photon budget, 
necessitating minimal excitation light during image acquisition. 
CNN-based denoising in our analyses was particularly efficacious to 
restore single-image planes, with mixed results obtained for image 
volumes. We also conclude that these methods are mostly relevant 
when noise levels are high and note the important caveat that, in 
contrast to classic denoising methods, content-aware deep-learning 
approaches can fabricate biologically irrelevant information that 
needs to be carefully evaluated. We find that image registration of-
ten fails when SNR is low, which is a major issue for particle tracking. 
In contrast, spot identification and Gaussian fitting are surprisingly 
resilient (except in cases of extremely high noise). Hence, it will be 
interesting to test a mixed approach, where content-aware denois-
ing is used to define registration parameters; registration and parti-
cle identification and tracking would be done on the original image 
sequence. We anticipate further improvements in deep-learning de-
noising methods as the field rapidly expands and propose that the 
approach presented here will be useful to rigorously assess their 
performances.

MATERIALS AND METHODS
Synthetic data to evaluate denoising performances for 
particle tracking in 2D
A synthetic model was designed by our lab where the number of 
particles, diffusion coefficient, and noise can be defined for each 
movie. MSD was used to characterize particle motions. MSD is de-
fined by the following equations:

( ) ( ) ( ) ( )τ = ∆ τ = + τ − r r t r tMSD 2 2  (2)

In two dimensions,

( )τ = ταDMSD 4  (3)

The term D in Eq. 3 is the diffusion coefficient of the particle, and 
the exponent α is a unitless parameter that characterizes the type of 
diffusion; α = 1 for simple diffusion, and α = ½ for a stretch of beads 
in a long-chain polymer (Osmanović and Rabin, 2017). In a Brownian 
motion model, the MSD is dependent on the size of the moving 
object as well as the mechanical and physical properties of the me-
dium, as described in Eq. 4 (the Stokes–Einstein equation):

= πηD kT R/6  (4)

Here η is the viscosity of the medium, T is the temperature, R is 
the particle radius, and k is the Boltzmann constant. To match ex-
perimental observations, the pixel size of the synthetic data was set 
as 80 nm. The particle was simulated as a 2D Gaussian function with 
a radius of 60 nm, and the intensity level was scaled from 0 to 1 with 
a Poisson distribution. To avoid merging of multiple foci, the D value 

was set to 3.1 nm2/s. Movies including 49 particles lasting for 300 
frames were simulated with a temporal interval of 1 s. The noise 
level of synthetic images was simulated as Gaussian noise, where 
the standard derivation (σ) varies as σ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 
0.6. Synthetic movies without noise (σ = 0) were used as ground 
truth, and the coordinates of each particle were also used as ground 
truth for MSD curves. For restored images, the motion of the parti-
cle was tracked by a home-written algorithm (details below). A cut-
off distance of 150 nm was used to define matching particles in two 
corresponding movies.

Image generation and tracking of simulated genomic loci
We used ChromoShake (Lawrimore et al., 2016) simulations of the 
budding yeast pericentric region to simulate yeast genomic loci. 
These simulations were converted into synthetic images using 
Microscope Simulator 2 (Quammen et al., 2008). In Microscope 
Simulator 2, a custom point spread function was generated using 
the “Calculated Gibon-Lanni Widefield PSF” method for a 100× 
magnification, 1.49 numerical aperture objective. The custom point 
spread function was convolved with either 10 or 20 consecutive 
monomer units, representing 200- or 400-base-pair fluorescent re-
porter operator arrays, respectively. These were positioned at the 
apex of 64 different loops in the pericentric simulations by first re-
moving the header from the ChromoShake outfile and converting 
the coordinates from meters to microns. The resulting text file was 
converted to a series of Microscope Simulator 2 model files. The 
model files were converted to TIFF stacks. The simulated TIFF 
stacks were concatenated into 4D hyperstacks (50 × 50 pixels, 5 z-
planes, 200 nm z-step, 201 time points) using FIJI (Schindelin et al., 
2012). All simulations were converted into images containing either 
no noise (ground truth), or randomly distributed noise with a SD of 
5 AU. The gain of the signal of the noisy images was set to 100-fold, 
1000-fold, and 10,000-fold, to generate images with different SNRs.

The simulated DNA loci were tracked in each 4D hyperstack us-
ing a custom MATLAB code that locates the brightest voxel in a z-
stack, crops a 15 × 15 × 5 region surrounding the brightest voxel, 
and uses MATLAB’s lsqcurvefit function to fit a 3D Gaussian function 
to the cropped region. The center of the fitted Gaussian function 
was calculated for each time point to create a single track per time 
lapse. The ground truth track for each time lapse was calculated 
by taking the mean position of all the labeled masses directly from 
the simulation model XML file using a custom MATLAB program. 
The MSD and radius of confinement were calculated by custom 
MATLAB programs.

Mammalian cell culture
U2OS osteosarcoma cells were cultured in DMEM supplemented 
with 10% fetal bovine serum (Sigma) at 37°C, 5% CO2. Cells were 
seeded in 35 mm glass-bottom dishes (MatTek) at 100,000 cells per 
dish and imaged 48 h after seeding. U2OS cells stably expressing 
PAGFP-H2A (Bonin et al., 2018) were used to track chromatin micro-
domains. For single-nucleosome imaging, we generated U2OS cells 
stably expressing H2B fused to the HaloTag by transfection of the 
pBREBAC-H2BHalo plasmid (Addgene plasmid #91564) using 
Lipofectamine 3000 (ThermoFisher) followed by clonal selection 
with geneticin. Before live-cell imaging, H2B-HaloTag U2OS cells 
were incubated with 10 pM fluorescent JF 459 HaloTag ligand 
(Grimm et al., 2015) for 1 h, washed three times with phosphate-
buffered saline, and incubated in DMEM without phenol red for at 
least 30 min. This concentration of dye proved to be optimal for 
imaging and tracking. For fixed imaging, cells were imaged after 
fixation with Formalin (Sigma #HT5011; 20 min).
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Chromatin microdomain tracking
Grids of photoactivated chromatin microdomains (7 × 7) were gen-
erated in U2OS PAGFP-H2A cells with a custom diffractive optical 
element module (Bonin et al., 2018) inserted into the condenser 
arm of an inverted Olympus IX83 microscope. Cells were kept at 
37°C in the custom-built enclosure of the microscope. Images were 
taken with a 60× oil lens (N.A. = 1.35) and an sCMOS camera 
(ORCA-Flash 4.0 v3; Hamamatsu Photonics; dark current Dc = 0.2 
electrons/pixel per second when cooled to –15°C), using the 
CellSens software. Images were registered using the StackReg plug-
in in ImageJ (Thévenaz et al., 1998). Tracking of chromatin microdo-
mains was done in MATLAB, as described (Bonin et al., 2018).

Single-nucleosome tracking
Motion of single nucleosomes in live U2OS cells was tracked using a 
custom-built oblique light sheet microscope, based on ASI’s rapid 
automated modular microscope (Applied Scientific Instrumentation). 
A solid-state laser (559 nm, 30 mW; Olympus) was focused by a tube 
lens to the side of the back pupil of an oil immersion objective (60× 
N.A. = 1.2; Olympus), leading to a thin sheet of light that illuminated 
the cell. Fluorescent signals were collected by the same objective 
and further filtered by a multiband emission filter (69013M; Chroma). 
Finally, the fluorescent signal was detected by an ORCA-Flash 4.0 
sCMOS camera. Cells were maintained in a physiological environ-
ment using a live-cell imaging chamber (INU-TIZ-F1; Tokai Hit). The 
microscope system and the time-course image acquisition were con-
trolled by the open-source software MicroManager. Single-nucleo-
some motions were analyzed with a custom single-molecule image 
analysis platform, smCellQuantifier. Specifically, the localization of 
each nucleosome locus was detected and fitted with a 2D Gaussian 
function. Trajectories of single nucleosomes were established with a 
multitemporal association tracking algorithm (Shafique and Shah, 
2005; Winter et al., 2012). The MSD of each focus was calculated 
based on the trajectory profile, and the diffusion coefficient D as well 
as the anomalous coefficient α were calculated with Eq. 3.

Tracking genomic loci in yeast
Budding yeast strain KBY8065 (Mat a CEN15(1.8)-GFP[10kb] ade2-
1, his3-11, trp1-1, ura3-1, leu2-3,112, can1-100, LacINLSGFP:HIS3, 
lacO::URA3, Spc29RFP:Hyg) was grown in liquid yeast extract pep-
tone dextrose at 24°C. Cells were imaged in liquid yeast complete 
medium at 24°C. Time-lapse images were acquired on an Eclipse Ti 
wide-field inverted microscope (Nikon) with a 100× Apo TIRF 1.49 
NA objective (Nikon) and a Clara CCD camera (Andor) using the 
Nikon NIS Elements imaging software. Time lapses were 10 min in 
duration with 30 s intervals. At each interval, a seven-step Z-stack of 
400-nm step size was acquired in the GFP, RFP, and Trans channels.

Metaphase yeast cells (medium budded cells with two Spc29-RFP 
foci) were cropped by hand from the original time-lapse images. 
Both original and denoised time lapses were automatically tracked 
using a custom MATLAB program. The motion of the two sister lacO/
LacI-GFP foci and the two sister Spc29-RFP foci were the motion of 
one focus relative to the other as in Chacón et al. (2014), and the ra-
dius of confinement was calculated by a custom MATLAB program. 
For the images shown as illustrations, the heterogeneous back-
ground was subtracted with the rolling-ball method (10 pixel radius) 
in FIJI. Tracking results are from original and N2V-denoised images.

CNN training and Bayesian optimization of network 
parameters
For synthetic bead data (2D), 100 pairs of noisy and GT images 
were used for training the CARE algorithm, using a patch size of 

128 × 128 pixels. N2V networks were trained on images with 
high noise levels (σ = 0.5), using a patch size of 64 × 64 pixels, 
100 epochs, and 100 steps per epoch.

For restoration of chromatin microdomain images, dedicated 
CARE networks were trained for each exposure time condition (1, 3, 
10 ms) using pairs of cropped images taken from fixed cells. These 
training pairs were obtained by alternately imaging at the target ex-
posure time (e.g., 3 ms) and an exposure time sufficient to achieve a 
high SNR (e.g., 300 ms) for 100 times and subsequently cropping 
image stacks centered at the grid of photoactivated chromatin micro-
domains. The parameters for patch size (28 × 28 pixels) and samples 
per image (64) were chosen by applying the Bayesian optimization 
implementation by Nogueira (2014). This method initially randomly 
samples the hypothesis space and then fits Gaussian processes to the 
observations. An acquisition function then determines the next point 
in the parameter space that would improve this model of the para-
meter space the most. Using this active learning approach, near-opti-
mal parameter values are found without having to exhaustively search 
the parameter space. In our application, the parameter space is 2D 
with the number of samples taken per image as one, and the side 
length of the samples as the other dimension. The reward function of 
the optimizer is to find the set of parameters that minimize cumulative 
tracking error. We calculated tracking error as pixels per microdomain 
per frame: we summed the magnitude of the difference between the 
motion vector tracked in the ground truth and the motion vector 
tracked in the denoised image for each frame delta across all spots 
and then divided by the number of frame deltas and spots. 

N2V networks for use with the chromatin microdomain images 
were trained on the cropped target image stacks directly, with one 
network trained for each image stack. We evaluated performance on 
training N2V networks on the full images (2048 × 2048 pixels) but 
found no improvement. Rather, training on the full images signifi-
cantly increased training time. For denoising with structN2V, we first 
assessed the spatial autocorrelation of the noise using the MATLAB 
autocorr2d function and single images that were away from any cells. 
For both CARE and N2V we used a 90%–10% train-validation split.

To restore single-nucleosome images, a CARE network was 
trained using 100 pairs of fixed-cell images, captured at 1 s and 
10 ms. N2V was trained using stacks of fixed images (100; 10 ms 
exposure). We optimized patch size (128 × 128 pixels for CARE and 
64 × 64 for N2V) before training the networks. Because we had high-
quality fixed-cell images (1 s exposure) as the GT, we were able to 
decide on the most accurate network.

For yeast genomic loci and spindle pole bodies, images were 
processed using 3D N2V to generate denoised time lapses. For 
both simulated genomic loci and spindle pole body time lapses, 
one N2V network was trained for each observation, with a patch size 
of 32, 32, and 4 pixels for X, Y, and Z, respectively.

Statistical analyses
Statistical analyses were done using GraphPad Prism 8. The 
D’Agostino & Pearson omnibus normality test was used to test for 
normality. Nonparametric tests were used if the data did not pass 
the normality test (at alpha = 0.05). Statistical tests are indicated in 
the figure legends. P values ≤0.05 were considered significant. All 
statistical tests were two sided.
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