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Abstract

Circadian rhythms broadly regulate physiological functions by tuning oscillations in the levels of mRNAs and proteins to the 24-h day/night
cycle. Globally assessing which mRNAs and proteins are timed by the clock necessitates accurate recognition of oscillations in RNA and
protein data, particularly in large omics data sets. Tools that employ fixed-amplitude models have previously been used to positive effect.
However, the recognition of amplitude change in circadian oscillations required a new generation of analytical software to enhance the
identification of these oscillations. To address this gap, we created the Pipeline for Amplitude Integration of Circadian Exploration suite.
Here, we demonstrate the Pipeline for Amplitude Integration of Circadian Exploration suite’s increased utility to detect circadian trends
through the joint modeling of the Mus musculus macrophage transcriptome and proteome. Our enhanced detection confirmed extensive
circadian posttranscriptional regulation in macrophages but highlighted that some of the reported discrepancy between mRNA and pro-
tein oscillations was due to noise in data. We further applied the Pipeline for Amplitude Integration of Circadian Exploration suite to investi-
gate the circadian timing of noncoding RNAs, documenting extensive circadian timing of long noncoding RNAs and small nuclear RNAs,
which control the recognition of mRNA in the spliceosome complex. By tracking oscillating spliceosome complex proteins using the PAICE
suite, we noted that the clock broadly regulates the spliceosome, particularly the major spliceosome complex. As most of the above-noted
rhythms had damped amplitude changes in their oscillations, this work highlights the importance of the PAICE suite in the thorough enu-
meration of oscillations in omics-scale datasets.
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Introduction

Circadian rhythms are a cellular process that is observed across
all taxa, ranging from cyanobacteria to humans (Kondo et al.
1993; Reddy et al. 2020). These near 24-h oscillations are coordi-
nated by a molecular timekeeper, tightly conserved in metazoans
and loosely conserved in bacteria and plants, that is entrained to
a variety of external and internal cues, or zeitgebers. One of the
strongest of these zeitgebers is the daily natural light and dark
cycle, which synchronizes the transcription/translation negative
feedback loop that comprises the circadian clock in eukaryotic
organisms (Harmer et al. 2001). In mammals, circadian rhythms
have been implicated in the control of sleep, digestion, immune
function, and many other essential physiological mechanisms
(Scheiermann et al. 2013; Morf and Schibler 2013; Chatterjee and
Ma 2016; Valdez 2019; Segers and Depoortere 2021). The

disruption of the circadian cycle has been linked to sleep disor-
ders, obesity, cardiovascular illness, mental illness, stroke, and
cancer, emphasizing the importance of the circadian clock in hu-
man health and well-being (Arble et al. 2009; Zhu and Zee 2012;
Engin 2017; Thosar et al. 2018; Sulli et al. 2019; Stubblefield and
Lechleiter 2019; Walker et al. 2020).

While the disruption of circadian rhythms is known to in-
crease disease instances, the mechanisms by which this dysregu-
lation drives negative health consequences are poorly
understood. One hypothesis is that the disruption of circadian
timing causes the dysregulation of the immune system, which in
turn increases inflammation, thereby affecting many physiologi-
cal processes (Comas et al. 2017; Collins et al. 2021). The most
common molecular approach to infer disrupted circadian pro-
cesses is to identify mRNA, protein, and other key elements of a
cell that oscillate over circadian time using omics analysis (De los
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Santos et al. 2019, 2020, 2021). Analyzing these omics data to clas-
sify which elements in a cell are under the regulation of the circa-
dian clock is a complex and ever-evolving task (Hughes et al.
2010, 2017). For example, though it was known that circadian
oscillations often have a damping component, fixed-amplitude
oscillatory models were standard for oscillatory identification,
which are not designed to model these amplitude changes (ACs)
(Robertson and Takahashi 1988; Guilding et al. 2009; Beer et al.
2017; Kawamoto et al. 2020). In addition, noisy data types, e.g.
proteomics, hampered the identification of oscillations in omics
data (Hurley et al. 2018; Collins et al. 2021).

In response to this issue, we created programs using models
that can independently identify oscillations with ACs (Extended
Circadian Harmonic Oscillator or ECHO), analyze the ontologies
of each AC category (ECHO Native Circadian Ontological
Rhythmicity Explorer or ENCORE), and use less noisy data to
identify circadian oscillations in corresponding more noisy data
(Multi-Omics Selection with Amplitude Independent Criteria or
MOSAIC) (De los Santos et al. 2017, 2019, 2020, 2021). These indi-
vidual programs have the capability to more accurately report
the classification of genes and cellular pathways that undergo
circadian regulation (De los Santos et al. 2020; Collins et al. 2021).
They have also revealed the extent to which the amplitude of
these oscillations changes over circadian time, which may play a
role in circadian regulation (De los Santos et al. 2017).

As a part of this body of work, the effect of circadian timing on
the mammalian macrophage was analyzed using transcriptome
and proteome data gathered over the circadian day (Collins et al.
2021). While many mRNAs were found to be circadianly timed,
little alignment between oscillatory mRNA and proteins in mac-
rophages was noted, suggesting the presence of extensive post-
transcriptional regulation in macrophages (Collins et al. 2021).
This phenomena of circadian posttranscriptional regulation have
been noted in many different organisms (Romanowski and
Yanovsky 2015; Green 2018; Parnell et al. 2021). While there is
strong evidence of circadian posttranscriptional regulation, there
is a limited understanding of what molecular mechanism(s) coor-
dinate this regulation. Relevantly, noncoding RNA (ncRNA) and
the spliceosome are known to be indispensable regulators of pro-
tein expression and cell processes and could play a role in circa-
dian posttranscriptional regulation (Will and Lührmann 2011).
Previous work recognized that these ncRNAs may play regulatory
roles in circadian output (Cui et al. 2015; Fan et al. 2017;
Hardeland 2020). However, a global analysis exploring the effect
of circadian transcriptional regulation on total ncRNA levels, and
how this could affect circadian posttranscriptional regulation,
has not been completed.

To close this critical gap in the field, we combined our ECHO,
ENCORE, and MOSAIC programs into the Pipeline for Amplitude
Integration of Circadian Exploration (PAICE) suite and applied the
power of the PAICE suite to our macrophage omics data with a
particular focus on the ncRNAs. To aid future use in the field, we
provided a comprehensive tutorial of the PAICE suite and its ap-
plication to circadian omics data. Exploring our previously pub-
lished macrophage data with the PAICE suite, we noted novel
relationships between circadianly regulated transcripts and pro-
teins in murine macrophages (De los Santos et al. 2020; Collins
et al. 2021). We found that noncoding genes are highly regulated
by the circadian clock in macrophages, many of which play roles
in metabolism or are implicated in human disease. We also iden-
tified that the small nuclear RNA (snRNA), and constituent cod-
ing transcripts and proteins of the major spliceosome complex,
undergo extensive circadian regulation, suggesting that the

spliceosome may be a source of circadian posttranscriptional reg-
ulation in macrophages.

Materials and methods
ECHO analysis of transcripts and proteins
We used the PAICE suite to extend the results of Collins et al.
(2021). Briefly, Collins et al. (2021) investigated rhythmic patterns
in the transcriptome and proteome of the mouse macrophage.
Bone marrow-derived monocytes harvested from male PER2::LUC
mice (C57BL/6J) were differentiated into macrophages, grown to
confluence, and then subjected to a 2-h serum shock to synchro-
nize their circadian rhythms. Samples were collected every 2 h
over a 48-h period with 3 replicates at each time point and ana-
lyzed using RNA-seq and TMT-MS (Collins et al. 2021). All hit
counts from RNA-seq data were normalized to transcripts per
million (TPM). LIMBR (Learning and Imputation for Mass-spec
Bias Reduction) was used to remove any transcripts or proteins
that were detected in less than 70% of the samples, impute miss-
ing values, and adjust for batch effects (Crowell et al. 2019).
Transcripts and proteins were free-run (i.e. no period restrictions)
through ECHO v3.0 to determine rhythmicity with additional
adjustments for z-score normalization, linear de-trending, and
data smoothing. Deviating from Collins et al.’s (2021) use of ECHO
v3.0, we used ECHO v4.0 to determine circadian genes. These
results were restricted postrun to period parameters of 20–28 and
18–30 h for transcripts and proteins respectively, and selected for
significance based on a BH-adjusted P-value cutoff of <0.05. The
resulting files were used as the input for all analyses of tran-
scripts and proteins in this manuscript with the exception of
MOSAIC analysis, where LIMBR-adjusted data were directly used
(see below) (Collins et al. 2021) (Supplementary Files 1 and 2). To
maintain consistency across gene naming conventions, 123 pro-
teins were manually remapped or deleted preceding further
analysis as labeled in Supplementary File 3.

ENCORE analysis of transcripts and proteins
The ECHO results were analyzed through ENCORE v4.0 using the
ECHO period parameters for transcripts and proteins respectively
(Supplementary Files 4 and 5). This exploration through the
ENCORE tool allowed for significantly more sophisticated onto-
logical analysis than that in Collins et al. (2021), due to ENCORE’s
integration of Gene Ontology Enrichment, STRING, QuickGO,
UNIPROT, and advanced visualizations (Ashburner et al. 2000;
Binns et al. 2009; Szklarczyk et al. 2017; UniProt Consortium 2019;
Collins et al. 2021). Consistent with the ECHO analysis, a BH-
adjusted P-value cutoff of <0.05 was used to determine signifi-
cance. A BH adjustment was used in place of the Bonferroni
correction often deployed in the PANTHER tool, as the Bonferroni
correction in PANTHER is adjusted from the traditional multipli-
cative adjustment to account for tree dependency, which is not
the implementation available in R (Thomas et al. 2003). As such,
we mitigated this by using a less strict adjustment.

MOSAIC analysis of transcripts and proteins
LIMBR-adjusted, but not ECHO-analyzed, transcript and protein
data were analyzed in MOSAIC v0.2.4 to jointly model the tran-
scriptome and proteome (Supplementary File 6). To maintain
consistency with ECHO/ENCORE analysis, MOSAIC joint analysis
was free-run and then restricted postrun. A BH-adjusted P-value
cutoff of >0.05 was entered as the statistical significance thresh-
old in MOSAIC. Each component of the PAICE suite and how they
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were used to enhance previous work is further described in the
PAICE Suite Tutorial.

lncRNA disease analysis
In addition to the analysis of the coding portions of the transcrip-
tome and proteome, we analyzed the noncoding transcriptome.
Raw TPM values for all analyzed ncRNA are available
(Supplementary File 7). The LIMBR-adjusted data for all noncod-
ing transcripts were free-run through ECHO with the parameters
described above to find rhythmic ncRNA. This gene set was
then further narrowed to a period of 20–28 h and a BH-adjusted
P-value of <0.05. These resulting significant circadian ncRNA
transcripts were sub-classified into AC categories, and a Fisher’s
exact test was used to determine whether each AC category was
enriched for mRNA or ncRNA. Further analysis stratified the
ncRNA into more detailed subtypes [long noncoding RNA
(lncRNA), pseudogene, small nucleolar RNA (snoRNA), snRNA,
etc.], and the Fisher’s exact test was repeated to determine
whether each subtype was enriched for circadian or noncircadian
gene expression. We next compared the list of circadian lncRNA
with the lncRNA disease database LncRNADisease v2.0 to find
which lncRNAs are both circadian and have an experimentally
determined role in disease (Bao et al. 2019) (Supplementary Files
8–10).

snRNA and spliceosome analysis
Information from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways database and ECHO was used to manually iden-
tify transcripts in the spliceosomal pathway that were circadianly
regulated (Kanehisa et al. 2016; De los Santos et al. 2020)
(Supplementary Files 11 and 12). SnRNAs were manually identi-
fied from the NCBI Nucleotide database and classified into their
respective spliceosomal category (Supplementary File 13). All
rhythmic snRNA were further segregated into their respective AC
categories as identified by ECHO. All transcripts, proteins, and
snRNA were graphed using Prism 9.1.1 (GraphPad Software, San
Diego, California USA, www.graphpad.com), and figures were cre-
ated with and assembled in BioRender.com.

Results
Tutorial for the application of the PAICE suite to
circadian omics data
To combine the individual powers of ECHO, ENCORE, and
MOSAIC, we created the PAICE suite (Fig. 1). The PAICE suite is
designed to identify, visualize, analyze, and contextualize cir-
cadian rhythms in a high-throughput fashion in the context of
large omics data sets (De los Santos et al. 2019, 2020, 2021).
This suite of R programs, freely available on GitHub (https://
github.com/delosh653/ECHO, https://github.com/delosh653/
ENCORE, https://github.com/delosh653/MOSAIC) and as R
packages (https://cran.r-project.org/web/packages/echo.find/
vignettes/echo-vignette.html, https://cran.r-project.org/web/
packages/mosaic.find/vignettes/mosaic-vignette.html), is op-
erated via web-browser-based shiny apps that offer a variety
of point-and-click options to assist in the ease of use, allowing
users to customize the data analysis options to best suit their
data and interests.

The first program of the data analysis pipeline, ECHO, identi-
fies and categorizes statistically significant oscillations into 3 AC
categories: damped, harmonic, and forced (Fig. 1). To begin analy-
sis, omics data are entered into ECHO’s “Finding Rhythms” tab
where users may then select appropriate data parameters (such

as time course length and resolution and number and type of repli-
cates), various statistical corrections, preprocessing categories, and
the temporal period of interest. The ECHO results are summarized
in the ECHO output file, which displays the AC, period, and phase
shift of each individual gene, among other descriptors. Users may
download and input this file into the “Visualizing Results” tab to
generate heat maps, gene lists, expression graphs, and Venn dia-
grams of the discovered oscillations.

The second step of the analysis pipeline, ENCORE, creates on-
tological visualizations from the ECHO results. The ECHO output
file generated from the initial analysis must be entered into
ENCORE’s “Create ENCORE File” tab to use the app. To leverage
ENCORE’s integration of Gene Ontology (GO) Enrichment,
STRING, QuickGO, and UNIPROT databases, users must select an
organism name, gene ID type, and other parameters that describe
the data (Ashburner et al. 2000; Binns et al. 2009; Szklarczyk et al.
2017; UniProt Consortium 2019). These user-entered specifica-
tions will produce an ENCORE file to be downloaded and inputted
into the “Explore” tab. The Explore Tab hosts the 3 core ontologi-
cal visualizations: the “Ontology Map,” the “Ontology Explorer,”
and the “Group Comparison Tool” (Fig. 1). The Ontology Map is an
interactive Sankey diagram with ontological pathways colored by
AC category. Users may click on any GO term in the Ontology
Map to load the Ontology Explorer and Group Comparison Tool
with data about the selected term’s ontological children. The
Ontology Explorer is an interactive histogram that shows the fold
enrichment, AC breakdown, and fraction annotated for each dis-
played GO term. Users may click on the node under any GO term
to advance the Ontology Explorer to the next hierarchy of onto-
logical children. The Group Comparison Tool is an interactive
chord diagram where a circular heatmap of ontologically related
gene expression appears along the outer edge. The inner chords
visualize STRING protein–protein interactions, allowing the user
to explore how circadian oscillation affects the connected func-
tionality. Users may also access an “Auxiliary Information” tab to
explore expression graphs, ECHO fit, and phase-shift for all genes
involved in the selected GO term.

While the ECHO and ENCORE applications can analyze indi-
vidual types of omics data, the MOSAIC application jointly
models less and more noisy data that are correlated (e.g. tran-
scriptomic/proteomic data or proteomic/metabolomic data) to
improve oscillatory model fit, visualize continuity between corre-
sponding data (e.g. a coding transcript and its protein), and iden-
tify nonoscillatory trends. MOSAIC also has an expanded library
of models to describe a greater breadth of oscillation than the
ECHO application. Linear and exponential trends indicate that a
nonoscillatory trend is detected, signifying a pattern of gene ex-
pression that is distinct from circadian regulation, and MOSAIC
fits the basic mathematical definition of these line types. The
ECHO trend indicates that one of the 3 types of AC oscillation is
detected (damped, harmonic, or forced). If oscillation in a gene is
detected, but MOSAIC’s joint modeling is needed to detect it, it is
classified as ECHO Joint. The ECHO Linear trend models genes
that exhibit both oscillation and a linear trend, with oscillations
that increase in a linear manner, possibly due to coregulation of
noncircadian and circadian mechanisms. Finally, ECHO Linear
Joint models demonstrate the above-described ECHO Linear trend
but can only be detected by the joint modeling of the 2 related
omic data sets with MOSAIC (De los Santos et al. 2021). To use
MOSAIC, the LIMBR-adjusted omics data from the more and less
noisy data types must be inputted through the MOSAIC “Finding
Rhythms” tab. As with ECHO, the user is able to describe the data
parameters and select their preferred statistical tests. The
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resultant MOSAIC output file can be uploaded into the
“Visualizing Results” tab. This tab provides the user with joint ex-
pression graphs, AC coefficient density plots, and heatmaps. In
addition, MOSAIC visualizes a distribution of significant trends,
allowing the user to explore the relationships between oscillatory
and nonoscillatory genes. Uniquely, these features are able to
display similarities and differences in expression patterns be-
tween corresponding data.

Joint modeling of the transcriptome and
proteome with the PAICE suite improves the
identification of circadian multiomic oscillations
To investigate circadian posttranscriptional regulation, Collins
et al. (2021) used ECHO to identify circadian oscillations in the
murine macrophage transcriptome and proteome, reporting sig-
nificant discrepancies (Collins et al. 2021). However, due to tech-
nical limitations, higher rates of technical noise from the
proteomic data sets could have introduced false negatives into
this comparison (Hurley et al. 2018). We therefore analyzed the
data from Collins et al. (2021) using MOSAIC to determine if the
wide discrepancy between oscillations in the transcriptome and
proteome was maintained when the data were jointly modeled
(Fig. 2) (Supplementary File 6). For reference, we provide the gene
Eifb23 as an example of a possible false negative in ECHO analy-
sis. Independent ECHO analysis of the Eifb23 transcript
revealed an oscillation (P-value ¼ 1.48 � 109), but the protein
did not (P-value¼ 0.93). MOSAIC revealed that the root mean

squared error, an estimate of noise, was 0.24 for the transcript
and 0.35 for the protein and identified an oscillation in EIFb23
protein (P-value ¼ 2.75 � 108). In addition, as MOSAIC automat-
ically omits any terms that do not have detectable expression
at both omic levels (i.e. a gene must have both detectable
mRNA and protein expression to be analyzed), it was necessary
to manually filter the LIMBR-adjusted data in the same manner
before entering the data into ECHO for proper comparison.

For both the ECHO and MOSAIC analyses, 20–28 and 18–30-h
period restrictions were applied to determine circadian trends in
the transcriptome and proteome respectively. CT was calculated
based on peak and trough Per2 expression of ex vivo peritoneal
macrophages as reported in Keller et al. (2009). Our ECHO analysis
closely resembled the data from Collins et al. (2021) (Fig. 2a). By
comparison, MOSAIC found fewer total circadian terms (Fig. 2b),
but a greater percentage of circadian proteins with circadian
transcripts (Fig. 2, a–c). This suggests both that noise from the
proteomic data could introduce false positive and false negative
oscillatory trends and that, as predicted, MOSAIC is able to use
correlated data with less technical noise to infer oscillations
more accurately.

However, even with an increase in the relative overlap of pro-
teins, there were still many proteins that oscillated without an
oscillating transcript, suggesting that posttranscriptional regula-
tion is an important part of circadian timing in macrophages
(Fig. 2b). Furthermore, while in general the phases of oscillating
transcripts were more aligned with the phases of the oscillating

Fig. 1. The work flow of the PAICE suite. After ECHO detects oscillations in time-resolved omics data, ENCORE combines information from GO, STRING,
QuickGO, and UniProt to create visualizations related to the functional categories of the ECHO-identified oscillating elements, taking the AC into
account. MOSAIC improves upon the ECHO fit, identifies nonoscillatory trends, and jointly models transcriptomic and proteomic data from the same
sample to dampen the effect of biological or analytical noise. Representative data shown analyzed by the PAICE suite from Collins et al. (2021), Li et al.
(2019), and this work.
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proteins in the MOSAIC analysis (Supplementary Fig. 1, a and c),

phase delays noted in the Collins et al. (2021) data set were main-

tained whether ECHO or MOSAIC was used to analyze the data

(Supplementary Fig. 1, b and d).

The PAICE suite enhances ontological analysis of
the murine coding transcriptome and proteome
Collins et al. (2021) noted that 15.3% of the macrophage coding

transcriptome was modeled by an approximately 24-h oscillation

using ECHO and that these oscillations were biased toward a

damped waveform, rather than harmonic or forced waveforms

(Collins et al. 2021). We hypothesized that the damping of these

rhythms may have a coordinated effect on the regulation of cir-

cadian output. Therefore, to understand the effect of the damp-

ing of circadian rhythms on macrophage physiological processes,

we applied the PAICE suite, particularly ENCORE’s visualizations,

to the Collins et al. (2021) data (Supplementary File 4). ENCORE

predicted that categories enriched in oscillatory genes were ex-

clusively modeled by damped waveforms and discovered several

enriched ontologies that were not found in Collins et al. (2021)

(Fig. 3a).

As Collins et al. (2021) showed how the circadian production of
ATP regulated the immune response ex vivo (Collins et al. 2021),
we explored this process further using ENCORE to focus on tran-
scripts within immunometabolic ontologies that undergo circa-
dian oscillations. We found few enriched ontologies under the
general immune system processes ontology. However, the down-
stream ontology term, macrophage activation, was enriched for
genes under circadian regulation at the level of the transcrip-
tome. The ENCORE Gene/Term Explorer revealed that the 3 circa-
dianly regulated transcripts in this ontology, cx3cr1, tlr3, and il33,
were highly connected genes in this term (Fig. 3b). Using the
chord diagram feature of ENCORE, we showed how these 3 genes
interacted with one another and the clock coordinated the phase
of their oscillation so that the peak phases occurred at the same
time during the circadian cycle, suggesting that this pathway is
targeted for tight circadian regulation.

Collins et al. (2021) further described that 29% of the proteome
was circadianly regulated, noting that damping was more wide-
spread in the proteome than in the transcriptome (Collins et al.
2021). Using ENCORE, we found that while there was widespread
damping in the proteome, unlike in the transcriptome, many of
the highly enriched processes contained proteins from all 3 AC

Fig. 2. MOSAIC analysis suggests posttranscriptional regulation in macrophages. a) Venn diagram comparing statistically significant (BH-adj P-value
<0.05) circadian RNA (period¼ 20–28) and proteins (period¼ 18–30) identified by ECHO in the transcriptome and proteome. LIMBR-adjusted data were
filtered for genes that have detectable mRNA and protein expression. Relative percentages of circadian RNA that has no corresponding protein,
circadian RNA with corresponding protein, circadian protein with corresponding RNA, and circadian protein that has no corresponding RNA are listed
(L–R). b) Venn diagram comparing statistically significant (BH-adj P-value <0.05) circadian RNA (period¼ 20–28) and proteins (period¼ 18–30) identified
by MOSAIC in the transcriptome and proteome. MOSAIC automatically filtered LIMBR-adjusted data for genes with detectable expression at both
mRNA and protein levels. Relative percentages of circadian RNA that has no corresponding protein, circadian RNA with corresponding protein,
circadian protein with corresponding RNA, and circadian protein that has no corresponding RNA are listed (L–R). c) Bar graph comparing the
distribution of significant trends in the transcriptome and proteome as defined by MOSAIC. Each bar graph is divided into segments that represent
linear, exponential, ECHO, ECHO Joint, ECHO Linear, and ECHO Linear Joint trends, respectively, and each segment is labeled with the number of genes
in the category (De los Santos et al. 2021). The width of each category represents the percentage of each category in comparison to the total number.
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categories (Fig. 3a) (Supplementary File 5). Relevantly, genes
in the ontological category that included immune system pro-
cesses were predominantly damped. Further, investigation of
this categories’ ontological subcategories, including myeloid
cell homeostasis, immune effector processes, positive regula-
tion of immune system processes, and leukocyte activation,

showed that these subcategories were also damped (Fig. 3a).
Relevantly, the immune system processes ontology was pre-
dominantly damped in its ontological subprocesses, including
myeloid cell homeostasis, immune effector processes, posi-
tive regulation of immune system processes, and leukocyte
activation (Fig. 3a). These data suggest that immune

Fig. 3. ENCORE highlights differences in both ontologies and AC categories between the macrophage transcriptome and proteome. a) Bar plots
displaying the AC categories of enriched ontologies in the macrophage transcriptome and proteome (DM, damped; FA, forced; HA, harmonic). The
fraction annotated of each ontological term is plotted on the y-axis, with ontological terms abbreviated as follows: (1) locomotion, (2) developmental
process, (3) metabolic process, (4) biological regulation, (5) cellular process, (6) macrophage activation involved in immune response, (7) cellular
component organization, (8) metabolic process, (9) localization, (10) cellular process, (11) cell killing, (12) pigmentation, (13) immune system process,
(14) biological adhesion, (15) developmental process, (16) antigen processing and presentation, (17) myeloid cell homeostasis, (18) immune effector
process, (19) positive regulation of immune response, (20) regulation of immune system process, (21) leukocyte activation, (22) negative regulation of
immune response, (23) immune response, and (24) immune system development. b) ENCORE’s Group Comparison Tool reveals chord diagrams of
mRNAs involved in the macrophage activation ontology and the related expression graphs. An overall and sectioned (by gene) chord diagram for
oscillating genes in the macrophage activation gene ontology. The first chord diagram is the overall chord diagram and gene connections, and each
subsequent diagram represents one of the 3 specific genes and its connections in the macrophage activation gene ontology, cx3cr1, tlr3, and il33. The
heatmaps surrounding the chord diagram represent the oscillatory nature of each of the genes. The relative expression of each of the transcripts, as
analyzed by ECHO, is displayed below each of the chord diagrams.
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responses are broadly damped in these culture conditions,
linking a decrease in available bioproducts (potentially en-
ergy) to a reduction in oscillations in the immune response, as
was suggested by Collins et al. (2021).

Circadianly regulated lncRNAs are implicated in
human disease
While the murine macrophage data set from Collins et al. (2021)
contained information on ncRNAs, the effect of circadian regula-
tion on these ncRNAs was not reported (Collins et al. 2021). This
omission is important as there are little data on the circadian reg-
ulation of ncRNAs, though what is known points to a clock effect
on ncRNAs and their posttranscriptional regulation (Cui et al.
2015; Fan et al. 2017; Hardeland 2020). Therefore, to investigate
clock effects on ncRNAs, we analyzed the transcriptome from
Collins et al. (2021) using the PAICE suite to identify ncRNAs oscil-
lating with a circadian period in murine macrophages (Collins
et al. 2021) (Supplementary Files 8–12). The filter referenced in
Fig. 2a was expanded to include the entire LIMBR-adjusted data
for ECHO analysis in this section, including the ncRNAs.

In total, we identified 2,765 out of 16,236 ncRNAs (17.03%) os-
cillated with a circadian period. Compared to oscillating mRNA,
ncRNAs were more likely to have a forced or harmonic oscillation
(Fisher’s exact test, damped oscillation odds ratio ¼ 1.59, P-value
<2.2 � 10�16, forced oscillation odds ratio ¼ 0.64, P-value¼ 3.86 �
10�13, harmonic oscillation odds ratio ¼ 0.89, P-value¼ 0.04)
(Fig. 4a). We next stratified the ncRNAs into long lncRNA (which
includes antisense lncRNA, sense lncRNA, bidirectional promoter
lncRNA, long intergenic lncRNA, sense intronic lncRNA, and
sense overlapping lncRNA), pseudogene RNA, snoRNA, and
snRNA subgroups. Smaller ncRNAs, such as miRNA, were not in-
cluded in this analysis given the sequence length limitations of
the RNAseq approach used. We found that lncRNA was the only
ncRNA enriched in circadian transcripts over noncircadian tran-
scripts (Fisher’s exact test, odds ratio ¼ 1.14, P-value ¼ 6.45 �
10�4) (Fig. 4b). Out of 5,691 lncRNA transcripts, ECHO identified
995 (17%) of those as having significant circadian oscillations
(Supplementary Fig. 2). Given the enrichment for oscillation
among lncRNAs and their role in human disease (particularly in-
flammatory diseases), we next explored the role of circadian
regulation of disease-associated lncRNAs by comparing the
995 oscillating lncRNAs to the lncRNA disease database
LncRNADisease v2.0 (Bao et al. 2019; Chen et al. 2019; Zhang et al.
2019). Out of the 370 experimentally determined disease-
associated lncRNAs, 25 (16 unique) disease-associated lncRNAs
were found to oscillate with a circadian period (Fig. 4c)
(Supplementary File 9). These lncRNAs play roles in the epige-
netic regulation of anxiety, Parkinson’s disease-related inflam-
mation, cancer, cardiac and liver disease, septicemia, and
neurodegenerative disease (Poffenberger et al. 2010; Spadaro et al.
2015; Huang et al. 2017; Sunwoo et al. 2017; An et al. 2018; Cao
et al. 2018; Zhu et al. 2018; Shin et al. 2019; Bu et al. 2020). A query
for human orthologs of these oscillating lncRNAs was also con-
ducted, revealing 4 additional disease relevant lncRNAs for future
exploration (Supplementary File 10).

Key regulatory components of the spliceosome
pathway are circadianly regulated
While lncRNAs were the only ncRNA subclass enriched over
background, we found several categories of ncRNAs that were
regulated extensively by the circadian clock. One such class was
snRNAs, which are essential for the proper recognition of mRNA-
binding sites for splicing. snRNAs bind with the protein

complexes of the spliceosome pathway to form small nuclear
ribonucleoproteins (snRNPs) to guide the complex to bind exon-
intron sites on pre-mRNA (Morais et al. 2021). snRNAs have also
been previously suggested to be under circadian control in sev-
eral model organisms (Perez-Santángelo et al. 2014; Schlaen et al.
2015; Aitken and Semple 2017; Ma et al. 2019).

From our PAICE suite analysis, 92/588 (15.6%) snRNA tran-
scripts were identified to oscillate with a circadian period (Fig. 5a)
(Supplementary File 12). We next used NCBI Nucleotide to manu-
ally categorize all the snRNA transcripts into the well-studied
classes of snRNA: U1, U2, U4, U5, and U6 (associated with the ma-
jor spliceosome), U11, U12, U4atac, and U6atac (associated with

Fig. 4. The PAICE suite identifies disease-linked ncRNAs under circadian
regulation. a) Bar plot comparing the likelihood of finding coding genes
over noncoding genes in each AC category (Fisher’s exact test odds ratio).
b) Manhattan plot of the likelihood of identifying circadian oscillations in
each ncRNA category. Statistically significant categories exceed the
threshold of P ¼ 0.05 (Fisher’s exact test). c) Venn diagram displaying the
overlap of circadian lncRNAs identified in murine macrophages and
disease-associated lncRNAs from LncRNADisease v2.0. In (a) and (b),
statistical significance is indicated as follows: P < 0.05*, P < 0.001**, P <
2.2e�16***.
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the minor spliceosome), and U7 (histone pre-mRNA processing)
(Fig. 5, b and c) (Supplementary File 13) (Morais et al. 2021). The
stratified circadian snRNAs were then categorized by AC category
(damped, harmonic, or forced) (Fig. 5d). Two classes, U11 and
U6atac, which had low numbers in each class, were not repre-
sented in the circadian transcripts. Of the remaining classes, we
found no enrichment of circadian oscillations (Fig. 5, b and c).
The largest class, U6, displayed all 3 waveforms, but most U6
snRNAs were damped. U1 and U12 snRNAs only oscillated with
damped or harmonic waveforms, and the U2 snRNAs were either
damped or forced (Fig. 5d). Rnu12, the only circadian snRNA to
have been studied in depth and a member of the U12 snRNA fam-
ily, has a damped waveform and oscillates antiphase to Bmal1
transcript and in-phase with Per2 transcript, suggesting direct
regulation of Rnu12 by BMAL1 (Fig. 5e). Notably, mutations of
Rnu12 detected in monocytes lead to early onset of cerebellar
ataxia, a neurodegenerative disease that is known to correlate

with sleep disruption (Velázquez-Pérez et al. 2011; Elsaid et al.
2017; Werdann and Zhang 2020).

While the major snRNA classes were broadly represented in
the forced category, no minor snRNAs displayed forced wave-
forms. Splicing is a highly ATP-dependent process, with ATP re-
quired for nearly every step (Shi 2017). During nutrient-limiting
conditions, macrophages adjust their transcriptional programs to
adapt to their environment and the damping of the minor spli-
ceosome may be part of that process. Limiting oscillations in the
minor spliceosome components may be a way for macrophages
to sequester ATP for the essential energy-demanding splicing
reactions by the major spliceosome as the media is depleted in
our culture conditions. In an exception to this, however, U7
snRNAs displayed consistently harmonic circadian oscillations
(Fig. 5c). As the primary function of U7 snRNAs is to bind histone
pre-mRNA within the U7 snRNP in order for splicing to occur, this
suggests that the recognition of histone transcripts for splicing is

Fig. 5. The circadian clock regulates snRNA expression. a) Heatmap displaying the relative (Z-scored) expression of circadian snRNAs as identified by
the PAICE suite (period¼ 20–28 h, BH-adjusted P-value <0.05). HPS, hours following serum shock for circadian synchronization as in Collins et al. (2021);
CT, circadian time based on peak and trough Per2 expression of ex vivo peritoneal macrophages as reported in Keller et al. (2009). b) Bar graph
displaying the % distribution of snRNA categories in all detected snRNA transcripts, with gene numbers indicated in parentheses below the bar graph
legends. c) Bar graph displaying the % distribution of snRNA categories in all oscillating snRNA transcripts. d) Distribution of oscillating snRNA
transcripts across 3 AC categories by snRNA category (n¼ 92 total genes, damped n¼ 25 genes, harmonic n¼ 35 genes, forced n¼ 32 genes). e)
Expression of ECHO-fitted Rnu12 transcript (period¼ 23.1 h, BH-adj P-value¼ 4.18E�4), LIMBR-adjusted Per2 transcript (period¼23.1 h, BH-adj P-
value¼ 3.89E�18), and Bmal1 transcript (period¼ 29.3 h, BH-adj P-value¼ 3.96E�20). Dark lines represent the ECHO model while shading represents the
standard deviation of the data. The color key references snRNA categories in (b)–(d).
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resistant to the depletion of the media in our culture conditions
(Dominski and Marzluff 2007).

Corresponding to our identification of circadian oscillations

among snRNAs, Collins et al. (2021) noted circadian oscillations in
many members of the spliceosome complex at the protein level,

with a peak in the late circadian day (CT15–CT3) (Collins et al.
2021). As the spliceosome pathway could play a role in the post-

transcriptional regulation of circadian output, we next investi-
gated oscillations of both the proteins and their corresponding

mRNAs which are involved in the spliceosome complex using the
PAICE suite (Fig. 6) (Supplementary File 13). We identified 57/64

(89.06%) of transcripts that code for proteins in the major spliceo-

some complexes U1, U2, U4/U6, and U5 oscillated with a circa-
dian period, though a P-value could not be assigned due to the

unusual AC patterning of these genes. Notably, the characteristic
waveform for these spliceosomal mRNAs closely aligned with the

cycling patterning of the transcript of clock, one of the main regu-
latory genes of the positive arm of the circadian clock, suggesting

a direct relationship between the expression of clock and the ex-
pression of the members of the spliceosome complex (Fig. 6b).

All transcripts oscillated in-phase with each other save 2, the

U5 transcripts Prpf6 and Snrnp200 (Fig. 6a). Prpf6 is essential in
creating binding stability among the proteins of the tri-snRNP

complex (U4/U6.U5) in order for complex B to form and, conse-
quently, for splicing to proceed, suggesting that the clock may

use Prpf6 to time the formation of complex B in the splicing pro-
cess. Besides its role in the U5 splicing complex, Snrnp200 plays

an additional role as an activator of interferon beta (IFN-beta) in

macrophages in the presence of viral RNA (Tremblay et al. 2016).

SNRNP200 recognizes and binds with viral RNA and, together

with its partner TBK1, activates the IFN-beta transcription factor,

IRF3, which in turn promotes transcription of Ifn-beta. SNRNP200,

IRF3, and Ifn-beta oscillate with highly similar waveforms to each

other and to clock, and all peak during the inflammatory phase of

the day as defined by (Collins et al. 2021) (Supplementary Fig. 3).

This presents a possible mechanism for IFNb regulation, and per-

haps IFN-beta-mediated regulation of inflammation, through the

clock-control of spliceosome components. Beyond SNRNP200,

ECHO identified 24/64 (37.5%) of proteins in the spliceosome com-

plex oscillated with a circadian period, a larger proportion than

was seen in the overall oscillating proteome (29%), with a signifi-

cant discordance between the oscillating mRNA and oscillating

proteins (Collins et al. 2021).

Discussion
The recognition of novel oscillatory characteristics is essential for

the study of circadian rhythms, and a new generation of analyti-

cal tools is needed to address the changing modeling require-

ments for this task (De los Santos et al. 2020; Patke et al. 2020).

Key areas where current tools are lacking are in the ability to ana-

lyze different AC categories, the accessibility and usability of the

software, the application of multiple hypothesis testing and joint

modeling, and support for a wide range of model organisms

(Smolen and Byrne 2009; Diz et al. 2011; Betini et al. 2017; De los

Santos et al. 2021). We have created the PAICE suite as a tool to

Fig. 6. Circadian oscillations in the transcripts of the components of the spliceosome pathway mirror that of the clock transcript. a) Schematic
representation of the canonical spliceosome pathway with the transcripts and proteins in each major complex aligned with the first step in which the
complex plays a role in splicing. A newly transcribed pre-RNA binds to members of the U1 and U2 complexes to create complex A. The preassembled
U4/U6 and U5 tri-snRNP complexes bind to complex A to create complex B, which, after dissociating from the U1 and U4 complexes, forms activated
complex B*. Complex B* and subsequent complex C actively cleave and excise the intron lariat, thereby joining exons 1 and 2 to create the mature RNA,
releasing the U2, U5, and U6 complexes, which are recycled back into the spliceosome pathway. The graphs for each major complex (U1, U2, U4/U6, U5)
highlight the transcripts and proteins within each respective complex that oscillate with a circadian period, with transcript plots using post-LIMBR data
points and protein plots showing ECHO-fitted curves. b) The expression of the clock transcript from the Collins et al. (2021) macrophage data set. HPS,
hours following serum shock for circadian synchronization as in Collins et al. (2021); CT, circadian time based on peak and trough Per2 expression of ex
vivo peritoneal macrophages as reported in Keller et al. (2009).
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address all of these challenges and present here a comprehensive
user tutorial of this unique oscillatory modeling software. The
PAICE suite, which encompasses ECHO, ENCORE, and MOSAIC, is
capable of modeling ACs and jointly modeling multiomics data
sets; provides robust user-friendly interfaces and visualizations;
offers several statistical corrections for multiple hypothesis test-
ing and ontological analysis of well-studied organisms; and is
readily available as an open-source project on GitHub (Fig. 1).

Here, we demonstrate the PAICE suite’s effectiveness by
extending the findings from Collins et al. (2021) on the circadian
regulation of murine macrophages (Collins et al. 2021). We
revealed that, while accounting for the noise in proteomics
data, there is still significant circadian posttranscriptional
regulation occurring in mammalian macrophages (Fig. 2 and
Supplementary Fig. 1) (Collins et al. 2021). This reinforces that the
clock selectively targets cellular functions at specific times of day
via posttranscriptional mechanisms, as has been previously sug-
gested (Kojima et al. 2012; Caster et al. 2016; Wang et al. 2018;
Zinn-Brooks and Roper 2021). We further demonstrated that spe-
cific ontologies were aligned with specific ACs (Fig. 3). In general,
we predict that the extensive damping that we noted in the tran-
scriptome, particularly the transcripts involved in immune ontol-
ogies, may be related to the depletion of nutrients from the
media, driving the cells to enter a starvation response as the time
course progresses (Fig. 3) (Collins et al. 2021). This finding aligns
with previous evidence that the circadian clock participates in
propagating the starvation response and the overall energy main-
tenance in immune cells (Pakos-Zebrucka et al. 2016; McAlpine
and Swirski 2016; De los Santos et al. 2020; Collins et al. 2021).

A limitation to the ontological analysis program in the PAICE
suite (i.e. ENCORE) is that currently it can only analyze proteins
and protein-coding RNA, as its underlying repositories only sup-
port those analyses (De los Santos et al. 2019). This is a significant
limitation as the circadian clock has been suggested to control
ncRNA levels (Cui et al. 2015; Fan et al. 2017; Zhang et al. 2018;
Hardeland 2020). While the correction of this issue is a future di-
rection for the development of the PAICE suite, we coupled ECHO
with noncoding ontological databases to investigate the regula-
tion of ncRNAs in mammalian macrophages (Bao et al. 2019). We
found that ncRNAs were more likely to be forced or harmonic, in-
dicating a different circadian regulatory program on ncRNAs as
compared to mRNAs. The circadian timing of ncRNAs is medi-
cally relevant, as lncRNAs tied to disease phenotypes were
enriched among the circadian ncRNAs (Fig. 4). The role of
lncRNAs in neurodegenerative disease is of particular note as our
work has shown that macrophages play a role in the metabolism
of amyloid beta; this suggests that lncRNAs may be a part of this
metabolism (Clark et al. 2022).

Beyond the role in the health of an organism, the timing of
ncRNAs may also be a primary mechanism by which the clock
regulates posttranscriptional modification. lncRNAs have roles
as trans-acting repressors of RNAPII, locus-specific silencing, and
cis-acting chromosome inactivation, meaning that the timing of
lncRNAs could regulate the timing of output (Kornienko et al.
2013). Beyond lncRNAs, analysis with the PAICE suite also
revealed circadian regulation throughout the spliceosomal path-
way, including the regulatory snRNA, mRNA, and proteins, which
suggests ubiquitous clock control over regulation of the spliceo-
some. This likely indicates robustness in the clock’s ability to
control splicing events, suggesting a further mechanism of circa-
dian posttranscriptional regulation. However, further experi-
ments directly targeting these genes and pathways will be
required to validate these findings. While the functionality of the

oscillating ncRNAs of interest is much debated, we provide the
relative counts as well as raw TPM values for all ncRNAs in our
dataset (Supplementary File 7). In total, the PAICE suite has
allowed for a deeper understanding of the mechanisms by which
the clock times mammalian macrophages and potentially other
cell types.

Data availability
All data are available on Mendeley data (https://data.mendeley.
com/datasets/vrt3wdnf6y/2). Supplementary File 1 contains the
ECHO analysis of all macrophage protein-coding RNAs.
Supplementary File 2 contains the ECHO analysis of all macro-
phage proteins. Supplementary File 3 contains the list of proteins
that required manual identification or deletion preceding analy-
sis. Supplementary File 4 contains the ENCORE analysis of all
macrophage protein-coding RNAs. Supplementary File 5 contains
the ENCORE analysis of all macrophage proteins. Supplementary
File 6 contains the MOSAIC analysis of the comparison between
mRNA and protein. Supplementary File 7 contains raw TPM val-
ues of detected ncRNA. Supplementary File 8 contains the ECHO
analysis of the ncRNA categories for pseudogenes and snoRNA.
Supplementary File 9 contains the ECHO analysis of the ncRNA
category for lncRNA. Supplementary File 10 contains a list of the
circadian, disease-associated mouse lncRNAs analyzed using the
LncRNADisease v2.0 database and their human orthologs.
Supplementary File 11 contains the list of spliceosomal genes
adapted from KEGG to identify the spliceosomal transcripts and
proteins in the spliceosomal complexes. Supplementary File 12
contains the ECHO analysis of the ncRNA category for snRNA.
Supplementary File 13 contains the NCBI annotation of all
snRNAs. Supplementary Fig. 1 shows comparisons between
ECHO and MOSAIC analyses of peak timing of circadian RNA and
circadian protein. Supplementary Fig. 2 describes the AC catego-
ries and oscillations of the circadian lncRNA. Supplementary Fig.
3 describes the oscillation of the Snrnp200-IRF3B-Ifnb pathway.

Supplemental material is available at G3 online.
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