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Abstract

Normal brain functioning is presumed to depend upon interacting regions within

large-scale neuronal networks. Increasing evidence exists that interictal network

alterations in focal epilepsy are associated with cognitive and behavioral deficits.

Nevertheless, the reported network alterations are inconclusive and prone to low

statistical power due to small sample sizes as well as modest effect sizes. We

therefore systematically reviewed the existing literature and conducted a meta-

analysis to characterize the changes in whole-brain interictal focal epilepsy

networks at sufficient power levels. We focused on the two most commonly used

metrics in whole-brain networks: average path length and average clustering

coefficient. Twelve studies were included that reported whole-brain network

average path length and average clustering coefficient characteristics in patients

and controls. The overall group difference, quantified as the standardized mean

average path length difference between epilepsy and control groups, corresponded

to a significantly increased average path length of 0.29 (95% confidence interval

(CI): 0.12 to 0.45, p50.0007) in the epilepsy group. This suggests a less integrated

interictal whole-brain network. Similarly, a significantly increased standardized

mean average clustering coefficient of 0.35 (CI: 0.05 to 0.65, p50.02) was found in

the epilepsy group in comparison with controls, pointing towards a more segregated

interictal network. Sub-analyses revealed similar results for functional and structural

networks in terms of effect size and directionality for both metrics. In addition, we

found individual network studies to be prone to low power due to the relatively small

group differences in average path length and average clustering coefficient in

combination with small sample sizes. The pooled network characteristics support
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the hypothesis that focal epilepsy has widespread detrimental effects, that is,

reduced integration and increased segregation, on whole brain interictal network

organization, which may relate to the co-morbid cognitive and behavioral

impairments often reported in patients with focal epilepsy.

Introduction

Traditionally, the brain has been perceived as a set of brain areas with highly

specialized functions. However, there is increasing evidence that brain functioning

is emerging from a complex interplay of different brain areas. This shift from a

‘location specific’ to a more ‘network oriented’ approach has revealed novel

insights into the physiological functioning of the brain and further clarified

neurological diseases, including epilepsy [1, 2]. Several studies have shown a

relation between epilepsy and disrupted functional and structural brain networks.

This relation could, at least partly, be attributed to the cognitive and behavioral

impairments often found in patients with epilepsy [3, 4, 5, 6].

To quantify and characterize brain networks, studies are increasingly using

network analysis as a mathematical paradigm [7, 8, 9, 10]. Network analysis

reduces complex systems to a collection of ‘nodes’ (that is, brain areas) and ‘edges’

(that is, connections between brain areas). From these elementary network

building blocks various quantitative metrics can be inferred. Two very informative

metrics, the path length and clustering coefficient, have been widely used to

characterize brain network organization and changes herein in healthy and

epileptic brains (Fig. 1). Path length refers to the minimal number of edges that

must be traversed to travel from one node in the network to another. The average

path length of a network is inversely related to the level of network integration.

The clustering coefficient is defined as the connection probability of nearest

neighbor nodes and the average clustering coefficient represents network

segregation. A highly segregated network has a high average clustering coefficient.

A short average path length and a high average clustering coefficient characterize

healthy brain networks: a so-called small-world configuration [8, 10]. A small-

world configuration is considered optimal for network functioning as the number

of long distance connections is minimized while high average clustering of

neighboring nodes is retained. This reduces the network’s ‘building and

maintenance costs’ without compromising fast exchange of information [2].

It is important to accurately quantify changes in brain network organization to

increase our understanding of epilepsy and its associated cognitive and behavioral

comorbidities. Both clinical and experimental neurophysiological and imaging

studies have, in general, reported a less optimal interictal network organization in

patients with epilepsy. Nevertheless, these case-control studies have reported

contradictive results. Increased, decreased or unchanged average path length and/

or average clustering coefficient have been described in patients with epilepsy as
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compared to controls; for overviews see [4, 11, 12]. A possible explanation for the

inconclusive network characterization, as found in the individual network studies

comparing focal epilepsy with controls, is a lack of sufficient statistical power. The

number of included subjects is typically in the range of 20–40 per group. As a

consequence the chance of detecting a true effect might be reduced and,

consequently, results less reliable [13].

In this meta-analysis we first aimed to obtain an accurate estimate of the

changes in interictal network organization in patients with epilepsy as compared

to healthy individuals using existing literature. The advantage of a meta-analysis

over a qualitative review is that it enables a quantitative analysis of the current

literature and provides data on the between-study heterogeneity. We were

exclusively interested in network studies including patients with focal epilepsy as

these often have cognitive and behavioral impairments that are not necessarily

directly associated with the epileptogenic focus [14, 15]. This implicates that brain

areas outside the epileptogenic focus are affected as well, which is supported by

the widespread changes of white matter structure that have been found in focal

epilepsy using diffusion tensor imaging [16]. Network analysis offers a unique

Fig. 1. Clustering coefficient and path length. Explanation of the clustering coefficient and path length
using a schematic whole-brain binary network representation of nodes (circles) and binary edges (black lines).
The clustering coefficient is based on triangles (one triangle shown in blue) and is equivalent to the fraction of
the node’s neighbors that are also neighbors of each other. The average clustering coefficient is a global
measure of network segregation and reflects the clustered connections around individual nodes. The path
length in a binary network is the minimal number of edges that must be traversed to travel from one node to
another. In red an example path is given which contains the minimal number of edges (i.e. three) between the
two uniform red nodes. The average path length, a global measure of network integration, is this average
minimal number of edges of all possible node connections.

doi:10.1371/journal.pone.0114606.g001
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perspective to investigate the complex involvement of the different brain areas in

focal epilepsy outside the epileptogenic zone. Second, to help to increase

reproducibility of – and reduce spurious findings in – future focal epilepsy

network studies, we aimed to estimate the statistical power of existing literature

and proposed the minimal sample size required to have sufficiently powered

future network studies comparing focal epilepsy with healthy individuals.

Methods

Information sources and search strategy

Studies were identified by searching the online databases Pubmed (NCBI), ISI

Web of Science (Thomson Reuters) and Embase (Excerpta Medica Database), and

reviewing the reference lists of selected studies. Language was restricted to English.

Search terms related to epilepsy, different neurophysiological and imaging studies,

and network analysis were used. Details on the search strategies are presented in

S1 Table in File S1. The search was conducted January 16th, 2014.

Selection criteria

We included studies that compared brain networks of focal epilepsy patients with

controls using the average path length, average clustering coefficient or both, in

networks not restricted to a specific part of the brain (whole-brain networks),

irrespective of acquisition technique.

We allowed included studies to differ in various ways, such as in acquisition

technique and network construction. Multiple clinical neurophysiology and

imaging techniques are available to infer functional or structural connectivity

between brain regions and construct networks. Functional connectivity may be

derived from synchronized neuronal activity recorded from distinct brain regions

using electroencephalography (EEG), magnetoencephalography (MEG) or rest-

ing-state functional MRI. Diffusion tensor imaging is an MRI technique that

enables the characterization of directional water diffusion in white matter

bundles. It might be exploited to map structural connectivity between remote

brain regions using tractography [17]. Another means to infer structural

connectivity from MRI data is to correlate cortical thicknesses between functional

fields [18].

When network analysis was introduced in the field of neuroscience, most

studies relied on methods that calculated the average path length and average

clustering coefficient without taking the strength (or ‘weight’) of network

connections into account. This is called a binary analysis. The construction of

binary networks depends on an arbitrary threshold. A high threshold results in a

network with a high level of sparsity (that is, only the strongest connections are

retained), and vise versa. More recently threshold-free methods are favored that

use the connection strength to calculate these two network metrics, which is called

weighted analysis [7]. In addition to these methodological differences a subset of
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studies normalized their network metrics for statistical comparison, using null

models [19]. This normalization might enhance statistical comparability between

groups within studies [20]. In our statistical analysis we took these differences

between studies as much as possible into account using i) a standardized mean

difference measure, ii) a random-effect model, iii) sensitivity analyses and iv) a

leave-one-out validation method (the analysis is explained below).

Study exclusion criteria were: network analysis of a specific part of the brain

only (that is, no whole brain networks; this includes corticography studies), no

data on average path length and average clustering coefficient, no comparisons

with controls, brain surgery in the focal epilepsy group, or different studies using

an identical patient population.

Data extraction

Two authors independently performed the literature search and screened all study

titles and abstracts. From the eligible articles, full-text versions were retrieved and

reviewed. Data were extracted by one author [WZ] and checked by another

[EvD]. For missing data the corresponding authors were contacted.

Disagreements on study inclusion and data extraction were resolved by reaching

consensus through discussion with a third author [WMO]. The following data

was extracted:

Study population

Group sizes, sex distribution, age at data acquisition, age at epilepsy onset,

duration of epilepsy, antiepileptic drug usage and presumed etiology.

Acquisition

Technique specific information such as modality, field strength (for imaging

studies) and sampling frequency (for neurophysiological studies).

Network construction

Network size, connectivity measure, binary or weighted connections and sparsity

level if binary connections are used.

Network metrics

The mean and standard deviations (SD) of the average path length and average

clustering coefficient are used. If SDs were not provided we calculated those from

the standard error or 95% confidence intervals (CIs). If a range of sparsity levels

was given, values corresponding to the lowest, middle and highest level were

extracted. For studies reporting on both binary and weighted networks, all data

were extracted (we used the binary data for the sensitivity analysis and included

the weighted data for the summary estimates). Normalized and non-normalized

measures were extracted if both were reported. If network metrics were reported

for subgroups only, they were combined into a single value using weighted mean

calculation. The average path length was defined as the reciprocal of the network

efficiency if studies reported the latter only [21]. We did not differentiate between

Meta-Analysis of Epileptic Brain Networks

PLOS ONE | DOI:10.1371/journal.pone.0114606 December 10, 2014 5 / 21



slightly different mathematical formulations of the average clustering coefficient

that exist in literature (for instance, the global [22] or the averaged local [23]

clustering coefficient).

EEG and MEG network studies often report network metrics for different

frequency bands. For those studies the average path length and average clustering

coefficient values were only extracted for the theta frequency band networks, as

several studies have shown that network alterations in patients with focal epilepsy

are most prominent in the theta frequency band [24, 25, 26, 27, 28, 29, 30].

Quality assessment

Study quality was assessed independently by two authors [WZ, WMO] with the

adjusted Newcastle-Ottawa scale method [31]. Disagreements were resolved by

consensus. This scale is developed for non-randomized studies and allocates stars

to the following domains: the selection and comparability of study groups, and

the ascertainment for the exposure of interest for case-control or the outcome of

interest for cohort studies. A star system is used in the Newcastle-Ottawa scale for

semi-quantitative analysis wherein high quality studies get more stars, with a

maximum of seven in total.

Methods of analysis

All data were entered in RevMan version 5.2.6 for analysis (http://ims.cochrane.

org/revman). Average path length and average clustering coefficient summary

group differences, and their CIs, were calculated by fitting random-effect weighted

standardized mean difference models using restricted maximum likelihood

estimation [32]. A random-effect model was used because this provides a more

conservative effect than a fixed-effect model as it takes heterogeneity between

studies into account. We used the standardized mean difference because we

expected that scale differences of the average path length and average clustering

coefficient values between studies might be affected by modality, connectivity

measure, network construction (for example, binary or weighted, normalization

or no normalization) and sparsity level. The standardized mean difference model

is a well-excepted method to calculate summary values if scale variation is present.

It has the advantage of resulting in a scale-free summary estimate (that is, free of

the original measurement scale) [33]. Significant heterogeneity between studies

was defined by p value ,0.1 using the x2 test or an I2.75%. An I2 value below

40% suggests negligible heterogeneity, between 40 and 75% moderate hetero-

geneity, and above 75% considerable heterogeneity [34]. In the latter case,

summary estimates are unreliable. To detect a reporting bias in the included

studies, we visually inspected funnel plots for asymmetry and excluded outliers

[35]. Furthermore, we checked whether individual studies had a significant effect

on the heterogeneity by means of a leave-one-out analysis (that is, omitting one

study at the time with recalculation). We excluded studies with significant effects

on summary estimations. Furthermore, we performed meta-regression to explain
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the potential heterogeneity in the standardized mean differences of the average

clustering coefficient and average path length. We regressed the individual study

standardized mean difference values against the i) mean age of the patients,

control subjects and ages from patients and controls combined, and the ii) mean

duration of epilepsy.

Subgroup and sensitivity analyses

We distinguished overall changes in functional and structural networks using sub-

analyses based on modality: functional synchronization for functional networks

and white matter or cortical thickness connectivity for structural networks.

Considering the brain network alterations during lifespan [36, 37], we performed

separate sub-analyses comparing children with adults. To investigate the influence

of different types of epilepsy on network alterations, we conducted separate

analyses for temporal lobe epilepsy, extratemporal epilepsy and patients with

epilepsy secondary to brain tumors. The robustness of the summary estimates was

tested by means of sensitivity analysis. In this analysis, changes in point estimates

and CIs were determined using recalculations at different network sparsity levels

for binary or weighted networks.

Statistical power

We calculated the power of each individual study using the estimated summary

effect obtained from the random-effect analysis to which it contributed. Power

calculations were done with the pwr package (http://cran.r-project.org/web/

packages/pwr) of the R software. The individual study powers for the average path

length and average clustering coefficient are presented as mean ¡ SD.

Results

Article selection

The literature search and study selection flow chart is given in Fig. 2. We found no

previous systematic literature reviews or meta-analyses on network organization

in focal epilepsy. From 65 manuscripts, full text was reviewed and reference lists

were inspected. Eventually, thirteen studies were initially included

[21, 25, 29, 30, 38, 39, 40, 41, 42, 43, 44, 45, 46]. Study characteristics are summar-

ized in Table 1; more detailed methodological information on the included

electrophysiological and functional MRI studies is provided in S2 Table in S1 File.

Two of the included studies only reported on the average clustering coefficient

and not the average path length [40, 45].

The quality of included studies was variable with a range in Newcastle-Ottawa

scores between five and seven stars (see S3 Table in S1 File). Based on the

asymmetry in the average path length funnel plot, as shown in5S1 Figure in S1

File, we excluded two obvious outliers from the average path length data from the

final analysis [29, 46]. No obvious outliers were detected in the average clustering
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coefficient funnel plot, shown in S2 Figure in S1 File. We tested the remaining

studies on their individual contribution to heterogeneity.

All data are provided in the Supporting Information (S1 Data).

Average path length

Average path length summary estimates were based on data from nine studies

[21, 25, 30, 38, 39, 41, 42, 43, 44]. The standardized mean difference summary

estimate, based on 351 patients with focal epilepsy and 277 control networks was

0.29 (CI: 0.12 to 0.45, p50.0007; Fig. 3). In other words, the network

organization in patients with focal epilepsy was characterized by an increased

average path length as compared to controls. There was no evidence for

heterogeneity: I250%, p50.57 (Table 2). Data for the summary estimate was

taken from normalized weighted network analysis, or the highest sparsity level if

the study used binary networks only. Sensitivity analysis revealed only very small

differences (that is, in the order of 1–10%) in summary estimates and CIs and p

values if we changed the type of network or sparsity level (see S4 Table in S1 File).

Average clustering coefficient

Average clustering coefficient summary estimates were based on twelve studies

[21, 25, 30, 38, 39, 40, 41, 42, 43, 44, 45, 46]. The standardized mean difference

Fig. 2. Flow chart. Flow chart of the literature search and identification of studies for inclusion in the meta-
analysis.

doi:10.1371/journal.pone.0114606.g002
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summary estimate, including 404 networks from focal epilepsy patients and 339

control networks, was 0.35 (CI: 0.05 to 0.65, p50.02; Fig. 4). Stated differently,

the network organization in patients with focal epilepsy was characterized by an

increased average clustering coefficient as compared to controls. There was

moderate heterogeneity in the data: I2573%, p,0.0001 (Table 2), indicating that

the summary estimate might be unreliable. Results were, similar to the average

path length estimate, stable in the sensitivity analysis (see S4 Table in S1 File).

Table 2. Leave-one-out analysis.

Average path length Average clustering coefficient

Excluded study SMD (CI) I2 (%) x2 (p-value) SMD (CI) I2 (%) x2 (p-value)

None 0.29 (0.12, 0.45) 0 0.57 0.35 (0.05, 0.65) 73 ,0.0001

Bernhardt et al., 2011 0.22 (0.04, 0.41) 0 0.68 0.32 (20.01, 0.66) 73 ,0.0001

Bonilha et al., 2012 0.30 (0.13, 0.47) 0 0.55 0.29 (20.01, 0.59) 71 0.0001

Bosma et al., 2009 0.31 (20.00, 0.62) 74 ,0.0001

Horstmann et al., 2010 0.30 (0.12, 0.47) 0 0.48 0.36 (0.04, 0.69) 75 ,0.0001

Liao et al., 2010 0.30 (0.13, 0.47) 0 0.49 0.36 (0.03, 0.69) 75 ,0.0001

Quraan et al., 2013 0.37 (0.05, 0.69) 75 ,0.0001

Raj et al., 2010 0.29 (20.01, 0.60) 71 0.0001

Vaessen et al., 2012 0.30 (0.13, 0.48) 0 0.51 0.40 (0.09, 0.72) 73 ,0.0001

Vaessen et al., 2013 0.29 (0.12, 0.46) 0 0.47 0.37 (0.04, 0.70) 75 ,0.0001

van Dellen et al., 2012 0.26 (0.08 0.43) 0 0.56 0.31 (20.01, 0.63) 73 ,0.0001

van Diessen et al., 2013 0.33 (0.16, 0.51) 0 0.76 0.40 (0.08, 0.72) 73 ,0.0001

Vlooswijk et al., 2011 0.26 (0.08, 0.43) 0 0.59 0.44 (0.18, 0.71) 61 0.004

The leave-one-out analysis results are shown in this table. The effect of leaving out one study on the overall heterogeneity is presented as the recalculated
standardized mean differences (SMD) (after removal of the study in the first column) and the 95% confidence interval (CI) and corresponding I2 statistic and
x2 test p-value.

doi:10.1371/journal.pone.0114606.t002

Fig. 3. Meta-analysis of the average path length. The forest plot displays the standardized mean differences of the average path length between focal
epilepsy patients and controls with the 95% confidence intervals (CI). No difference is specified with a vertical line at 0. The overall pooled SMD was 0.29
(CI: 0.12 to 0.45, p50.0007), that is, a significant higher average path length was observed in whole brain networks of focal epilepsy patients relative to
controls.

doi:10.1371/journal.pone.0114606.g003
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Meta-regression average path length and average clustering

coefficient

No significant relation was found between the standardized mean difference

values (for average path length and average clustering coefficient) and the mean

age (patients, controls or both) or mean duration of epilepsy.

Fig. 5. Meta-analysis of the average path length separated by network modality. The forest plot displays the standardized mean differences (SMD)
between focal epilepsy patients and controls with the 95% confidence intervals (CI) for the functional and structural network studies reporting the average
path length. No difference between patients and controls is specified with a vertical line at 0. The overall pooled SMD for the functional average path length
was 0.26 (CI: 0.05 to 0.47, p50.02) and 0.30 for the structural average path length (CI: 0.01 to 0.60, p50.04). The SMDs of these subgroups were not
statistically different (p50.82, I250%).

doi:10.1371/journal.pone.0114606.g005

Fig. 4. Meta-analysis of the average clustering coefficient. The forest plot displays the standardized mean differences (SMD) of the average clustering
coefficient between focal epilepsy patients and controls with the 95% confidence intervals (CI). No difference is specified with a vertical line at 0. The overall
pooled SMD was 0.35 (CI: 0.05 to 0.65, p50.02), that is, a significant higher average clustering coefficient was observed in whole brain networks of focal
epilepsy patients relative to controls.

doi:10.1371/journal.pone.0114606.g004
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Subgroup analyses

Modality specific summary estimates for the average path length and average

clustering coefficient are provided in Fig. 5 and 6, respectively. Both functional

and structural focal epilepsy networks were characterized by a significantly

increased average path length as compared to control networks: 0.26 for the

functional (CI: 0.05 to 0.47, p50.02) and 0.30 for the structural networks

(CI: 0.01 to 0.60, p50.04) (Fig. 5). The average clustering coefficient was

significantly increased in structural focal epilepsy networks: 0.64 (CI: 0.09 to 1.18,

p50.02). There was no significant difference in average clustering coefficient for

the functional epilepsy networks: 0.20 (CI: 20.14, 0.55, p50.25) (Fig. 6). Age

group specific estimates revealed an increased average path length and average

clustering coefficient only for the adults with epilepsy in comparison with controls

(see S3a Figure and S3b Figure in S1 File). No difference in average path length

(p50.18) and average clustering coefficient (p50.13) was found between adults

and children with epilepsy. Specific estimates for the subgroup analysis for

different types of epilepsy revealed an increased average path length and clustering

coefficient for the temporal lobe epilepsy patients only in comparison with

controls. There was no difference between the temporal lobe, extratemporal and

brain tumor groups in terms of average path length (p50.48). The standardized

mean differences were significantly different for the average clustering coefficient

(p50.0002) with an evidently increased segregation for the temporal lobe epilepsy

Fig. 6. Meta-analysis of the average clustering coefficient separated by network modality. The forest plot displays the standardized mean differences
(SMD) between focal epilepsy patients and controls with the 95% confidence intervals (CI) for the functional and structural network studies reporting the
average clustering coefficient. No difference between patients and controls is specified with a vertical line at 0. The overall pooled SMD for the functional
average clustering coefficient was 0.20 (CI: 20.14, 0.55, p50.25) and 0.64 for the structural average clustering coefficient (CI: 0.09 to 1.18, p50.02). The
SMDs of these subgroups were not statistically different (p50.18, I2543.2%).

doi:10.1371/journal.pone.0114606.g006
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subgroup, but due to a considerable heterogeneity (I2588.1%), not reliable (see

S4a Figure and S4b Figure in S1 File).

Statistical power

The average statistical power of included studies was (very) low: 20.8¡7.6 and

25.5¡10.3% for the average path length and average clustering coefficient,

respectively (note that the standard recommended statistical power is in the range

of 80 to 90%). Based on the average path length standardized mean difference of

0.29, at least 188 subjects per group are required to obtain a power of 80%. A

group size of 251 is required to reach a power of 90%.

Discussion

In this systematic review and meta-analysis we obtained information on an issue

that has not been unequivocal: the network organization in patients with focal

epilepsy as compared to healthy individuals. Previous qualitative reviews have

identified that case-control studies investigating interictal networks often reveal

contradictive results [4, 11]. Here, we tried to remove this ambiguity by means of

a quantitative estimate of the group differences in average path length, a measure

of network integration, and average clustering coefficient, a measure of network

segregation. Interictal brain networks in patients with focal epilepsy are

characterized by a significant increase in both average path length and average

clustering coefficient, compared to healthy controls. Finally, the statistical power

of the included individual network studies was low.

This systematic review adds unique information to previous qualitative reviews

[3, 4, 5, 47]. First, it clarifies the type of network change in focal epilepsy

interictally: whole brain networks of patients are characterized by a less integrated

and more segregated organization (that is, a more regular network organization)

than healthy controls. Interestingly, a shift towards an even more regular

organization is found during the ictal phase, relative to the interictal phase (for

review, see [4, 11]). Studies focusing on dynamic network changes in epilepsy –

namely before, during and directly after a seizure – have shown that a shift in

network organization towards a more regular state increases further during a

seizure and eventually returns to pre-ictal values [48, 49, 50]. Possibly, the regular

interictal network organization facilitates fast spreading activity in the brain

[48, 50] making it more susceptible to seizures. Second, our results suggest that

(frequent) epileptic seizures may have widespread detrimental effects on the

structural and functional integrity of interictal brain networks. Data supporting

this hypothesis comes from studies characterizing white matter integrity in focal

epilepsy, for overview see [51]. A recent systematic review and meta-analysis of

clinical studies provided evidence for widespread structural white matter damage

distant from the epileptogenic zone [16]. Similarly, an animal study revealed that

diffuse, widespread damage to the connecting white matter tracts coincides with
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reduced functional connectivity and network efficiency [52]. The pathophysio-

logical mechanism of the remote white matter damage remains unknown.

Potential explanations include Wallerian degeneration, axonal swelling caused by

frequent recurrent seizures, decreased axonal density, increasing permeability of

axonal membranes and demyelination [53, 54]. Additionally, it remains unclear,

whether epileptic seizures cause the (interictal) network organization to change or

if seizures are merely an epiphenomenon of epileptogenic networks [25, 28].

Previous research has revealed that (remote) white matter abnormalities coincide

with cognitive impairments in focal epilepsy [55, 56]. More recently, Vaessen and

colleagues found distinct structural network changes in cognitively impaired

patients with epilepsy, while non-impaired patients did not show network

alterations [43]. Interestingly, subgroup analysis in our current study showed that

both functional and structural network alterations point in the same direction,

although the number of network studies looking at white matter connectivity was

too small to draw a firm conclusion. The interplay between structural and

functional network alteration is essential to understand the cognitive and

behavioral impairments that occur in a considerable part of patients with epilepsy.

Future studies, using simultaneous acquisition of functional and structural

connectivity, are required to address this issue [57, 58, 59]. We found no

difference between adults and children with epilepsy, however the number of

included studies is too small to draw a firm conclusion. More studies on children

with epilepsy are needed to clarify if, and to what extent, the developing brain

organizes itself differently in comparison with the adult brain when epilepsy

manifests. Similarly, subgroup analyses for different types of epilepsy did not

reveal significant differences between temporal lobe, extratemporal and brain

tumor patients, but heterogeneity in the data might obfuscate a true difference.

Increasing the number of studies per subgroup could provide better insights to

what extent these subgroups have a different network organization. In addition,

we performed meta-regression to explain part of the variation in average path

length and average clustering coefficient between the individual studies. We

expected differences in network organization to relate to subjects’ age and

duration of epilepsy (for instance, more damage – and consequently an even less

efficient network organization – if a brain is longer exposed to recurrent seizures).

However, we found no significant association. Information on other network

modifiers such as antiepileptic drug treatment, age at onset, type of epilepsy,

presence or absence of a structural lesion, and location of the epileptogenic focus

could also be useful in obtaining more details on the relationship between

network organization and focal epilepsy, but these patient characteristics were not

reported in most of the included studies. Meta-regression was restricted to the

mean values reported per study, masking individual subject values. This, or the

small number of regression points, could explain the lack of association between

patient characteristics and network metrics. A solution to mean regression is

individual patient data (IPD) meta-analysis, which is known to provide more

reliable estimates than standard meta-analysis, but requires the collection of the

original networks and patient datasets for all studies, which is very time
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consuming and requires active participation of the corresponding authors of all

included studies [60].

Our power analysis results suggest that future studies that aim to characterize

the network organization in terms of average path length and average clustering

coefficient in focal epilepsy should consider minimal sample sizes of 188 per

group, as the effect sizes of these two specific network metrics were found to be

small. Collaborations between academic institutions could help to obtain the

required sample sizes. This strategy has been successful in increasing the reliability

of study results in the field of genetic epidemiology [61]. The Human

Connectome Project, with over a thousand combined functional MRI scans, is a

first successful attempt to boost statistical power in the field of neuroscience and

could also serve as an example for future network studies [62]. Other possibilities

to decrease the required sample size are to increase the homogeneity of patients, as

was shown for the temporal lobe epilepsy subgroup analysis (S4a Figure and S4b

Figure in S1 File), or to use more advanced network metrics such as the

modularity [25, 44]. Using the minimum spanning tree approach, which focuses

on the connectivity backbone of the network, might also help to increase study

power as these network backbones are less susceptible to noise [63, 64, 65].

Our study has limitations. Despite the important and intuitively appealing

network metrics we used in this study, more information can be obtained from

the network organization apart from the average path length and average

clustering coefficient. In fact, these two metrics are highly correlated, arguing for

more and distinct features in characterizing focal epilepsy networks [66]. Also,

average path length and average clustering coefficient provide only information

on global network topology. Eligible network features are i) the long-tailed degree

distribution compatible with the existence of super connected nodes, ii) the

modular community structure, that is, multiple network groups of densely

interconnected nodes, iii) usage of the minimum spanning tree approach, a robust

method that enables comparison of different types of networks [67] and iv) the

rich-club ordering, which is the tendency of nodes with high centrality to form

tightly interconnected communities (for reviews see: [2, 9, 68]). Furthermore,

network analysis in neurophysiological studies is often performed in different

frequency bands. In our study, we chose to include only theta frequency derived

networks. Most studies have repeatedly identified epilepsy specific changes in this

frequency band [11]. Other frequency bands, however, might contain additional

information on epilepsy related network changes that were not considered in our

study. Finally, the included studies were diverse in modality, network size and

analysis strategy. This heterogeneity relates to the inconsistency between

individual study results. Some studies combined different modalities into one

study and revealed inconsistent results [30, 69]. For that reason, we performed

subanalysis for functional and structural studies. We found a less integrated

network organization in patients, both in functional and structural networks, as

compared to controls. A more segregated network in patients was found for

structural networks only. This might indicate that different mechanisms (or

detection sensitivities) are at play for structural and functional network alterations
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in patients with epilepsy. No differences were found between the epilepsy patients’

functional network data and patients’ structural network data (Figs. 5 and 6). It is

therefore not possible to make an unambiguous statement on the differences

between functional and structural networks and if these networks interact. Studies

investigating functional and structural networks concomitantly are needed to

clarify the similarities or discrepancy between modalities [30, 69].

A difference in the number of network nodes will influence network metrics

[20]. Also, different analysis strategies might affect the eventual outcome of

network metrics [11, 70]. These differences complicate direct comparison of

individual study results. However, using the standardized mean difference in our

meta-analysis, we intended to correct for scale differences between studies due to

modality, connectivity measures and network construction or size. Another

important issue, related to our hypothesis, is our implicit assumption that

network alterations in focal epilepsies are similar, regardless their etiology. One

could argue that this is not the case, as studies have revealed differences in

network connectivity and topology for patients with different etiologies [25, 26].

Unfortunately, we were not able to investigate etiology-related differences in

network topology due to missing information in most of studies.

In conclusion, this systematic review and meta-analysis revealed that interictal

whole brain networks are characterized by a less integrated and more segregated

organization in focal epilepsies. A large, sufficiently powered study is required to

confirm our findings. Future work may focus on i) pinpointing the exact cause of

changes in brain-wide network organization, ii) identification of relevant effect

modifiers such as antiepileptic therapy, duration of epilepsy or type of epilepsy

and iii) characterizing network differences in specific subgroups of focal epilepsy

using a range of features beyond measures that quantify network integration and

segregation. When interested in functional connectivity, we encourage using more

than one connectivity measure to investigate the robustness of the possible

network alterations found in patients with epilepsy. Finally, when attempting to

unravel causality in the relation between epileptic seizures and network alterations

in patients with epilepsy, we suggest the use of longitudinal studies and a

systematic evaluation and interpretation of the data according to guidelines how

to draw a conclusion on causality [71].
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