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ABSTRACT The microbiota of the built environment is an amalgamation of both
human and environmental sources. While human sources have been examined
within single-family households or in public environments, it is unclear what effect a
large number of cohabitating people have on the microbial communities of their
shared environment. We sampled the public and private spaces of a college dormi-
tory, disentangling individual microbial signatures and their impact on the microbi-
ota of common spaces. We compared multiple methods for marker gene sequence
clustering and found that minimum entropy decomposition (MED) was best able to
distinguish between the microbial signatures of different individuals and was able to
uncover more discriminative taxa across all taxonomic groups. Further, weighted
UniFrac- and random forest-based graph analyses uncovered two distinct spheres
of hand- or shoe-associated samples. Using graph-based clustering, we identified
spheres of interaction and found that connection between these clusters was en-
riched for hands, implicating them as a primary means of transmission. In contrast,
shoe-associated samples were found to be freely interacting, with individual shoes
more connected to each other than to the floors they interact with. Individual inter-
actions were highly dynamic, with groups of samples originating from individuals
clustering freely with samples from other individuals, while all floor and shoe sam-
ples consistently clustered together.

IMPORTANCE Humans leave behind a microbial trail, regardless of intention. This
may allow for the identification of individuals based on the “microbial signatures”
they shed in built environments. In a shared living environment, these trails inter-
sect, and through interaction with common surfaces may become homogenized, po-
tentially confounding our ability to link individuals to their associated microbiota.
We sought to understand the factors that influence the mixing of individual signa-
tures and how best to process sequencing data to best tease apart these signatures.
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Numerous recent studies have uncovered the extent to which humans influence the
microbial ecology of the spaces they occupy through microbial exchange between

skin and the built environment. Most of these studies have focused on home-associated
microbial communities (1–4), with home size, number of occupants, and building
materials differentiated between sampling locations. Each of those confounding factors
may have a significant impact on microbial community structure, and they are difficult
to disentangle. Other studies have focused instead on the microbial ecology of public
spaces, such as classrooms and hospital entrance halls (5–11). Although they have been
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able to demonstrate that most of the taxa colonizing those spaces are skin-associated
taxa, they are unable to link individual human microbial signatures to their data.

Individuals create their own “microbial cloud” (12) by constantly shedding their own
microbiota (13, 14). Individuals shed around 30 million bacterial cells per hour (13), and
thus leave behind a “microbial fingerprint” which has been shown to be stable over
time (15, 16), although body sites vary in their stability (17). Microbial flow in the built
environment is a keen topic of interest, as human skin is the dominant contributor to
the microbiome of built environments (18). Cohabitation of multiple individuals has
been shown to influence the microbiota of common spaces and of the constituents
themselves (3, 8, 11), and common areas may serve as mechanisms of microbial
exchange between individuals (19, 20). Dormitory buildings, which have a standardized
architectural design, common building materials and furnishings in the rooms, and
even a common ventilation system, represent an intriguing model system in which to
characterize the direct effects of an individual’s skin microbiota on their surroundings
and to further elucidate the forensic potential of skin microbial signatures. In one sense,
dorm rooms represent a number of replicates that can be used to uncover general
patterns of human microbial exchange with the built environment. In a different sense,
they are a “metacommunity” in which it is possible to record a network of interaction
by logging visits between rooms and the use of common spaces. The divide between
private rooms and common spaces such as hallways, lounges, and restrooms further
enables us to tease apart individual microbial signatures in shared spaces.

Identifying microbial signatures relies on recovering individual-specific taxa, either
through the use of universal markers such as the 16S gene (21), clade-specific markers
(22, 23), or metagenomic information (24). It is unclear how methodological differences
in sequence clustering impact the ability to link individuals to their surroundings
through microbial similarity. To determine how to optimize the inference of individual
microbial signatures, we employed three sequence processing methods to determine
which was most discriminative in characterizing individuals. It has been observed that
in many built environment studies, a large fraction of reads are attributed to a small
number of operational taxonomic units (OTUs) (3, 11, 25). These OTUs come from a
small selection of skin-associated taxonomic groups, including corynebacteria, staph-
ylococci, pseudomonads, and streptococci (26, 27). As much of the differentiation
between individuals occurs within a small number of taxonomic groups, it is unclear
how to optimize sequence clustering for forensic inference, as OTU clustering may
lump together similar sequences by design. OTU clustering is commonly used as a way
to control for error introduced during sequence processing and sequencing, which can
produce artifacts that obscure the true composition of a sample (28, 29). OTU clustering
commonly occurs at the 97% similarity level, as this roughly corresponds to species
identity (30). Among the most commonly used pipelines for OTU clustering is UPARSE
(31), a method that constructs OTUs by prioritizing highly abundant unique sequences
during clustering, as these highly abundant sequences are less likely to be sequencing
errors.

At the same time, OTU clustering has limits, as the 97% threshold erases significant
differences within closely related taxa and can overestimate similarity between taxa (32,
33). To overcome these limits, a number of methods have been introduced to deter-
mine exact sequences without clustering (34–37). DADA2 (36) is a reference-free
sequence-based algorithm that separates sequence errors from biological variation
based on an Poisson error model, which partitions reads into unique sequences by
grouping together sequences with a high likelihood of sequencing error. In contrast,
minimum entropy decomposition (MED) (35) is an unsupervised version of oligotyping
(34), a method that iteratively partitions sequences based on Shannon entropy. A
sequence alignment is generated, and nucleotide sites with high nucleotide variation
are used to partition groups of sequences, which then proceeds iteratively within each
partition until no sites contain sufficient variation to merit further decomposition.
Oligotyping has been used to explore variation in host-associated bacteria (38, 39) and
uncover bacterial ecotypes (40, 41). The increased ability to discriminate between
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closely related taxa, such as in Blautia found in sewage systems (42), allows for the
identification of their hosts.

To explore the divide between public and private, we sampled 37 participants and
their rooms from floors five through eight of the University of Chicago’s eight floor
South Campus residence hall, with four time points over 3 months. Participants were
drawn from one “house” in the dormitory, which serves a subset of the dormitory floor
plan with shared common space and bathrooms. From participants, we swabbed both
the skin of their dominant hand, and their personal effects, such as bed sheets and
shoes. Additionally, common surfaces on each floor, including tables and bathrooms,
were also sampled. Dorm rooms and common spaces had openable windows, along
with forced air heating and cooling. Together, this collection of surfaces encompasses
the divide between private and public space in the dormitory. Further, to determine the
most effective 16S rRNA sequence processing method to enable individual identifica-
tion, we employed UPARSE at 97% identity, DADA2, and MED on these collected data.

RESULTS
Clustering methodology impacts the success of forensic inference. Each of the

sequence processing methods produced a different picture of the microbial diversity of
the dormitory. UPARSE recovered the largest number of distinct sequences (6,011)
along with the greatest number of phyla (25 phyla). DADA2 recovered nearly the same
phylum level diversity as UPARSE (23 versus 25) but fewer sequences (4,307). MED
recovered fewer sequences (3,353) and fewer phyla (9 phyla) but recovered more
members within each phylum (see Table S1 in the supplemental material). MED also
had a significantly smaller phylogenetic distance between taxa (Wilcoxon rank sum test,
P � 2.2e�16) than both DADA2 and UPARSE (Fig. 1A), indicating that MED recovered
much more closely related sequences.

Since we were most interested in classifying individuals, we compared each method
using a random forest model trained on surfaces that closely associate with the hands
of only one individual in order to test their forensic inference. There is a major divide
between floor- and hand-associated samples (Fig. 2). Floor-associated samples, includ-
ing shoes and floors, inhabit a different space compared to hand-associated samples,
and this division significantly structures these communities (analysis of similarities
[ANOSIM] on Bray-Curtis distance, R � 0.2821, P � 0.001). Thus, to predict which indi-
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FIG 1 (A) Distribution of phylogenetic distance, based on the pairwise phylogenetic branch length between all taxa by each sequence
processing method. MED recovers more highly related taxa than DADA2 or UPARSE. (B) Distribution of importance scores over all taxa,
grouped by sequence processing method. The y axis is log transformed to aid visualization.
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vidual’s hands a surface had interacted with, bed sheets, desks, and door handles of the
participant rooms are the most useful.

These models were implemented using a random forest model (43), which allows for
the interrogation of similarity between samples. The model was then tested on hand
samples from the same individuals, with the resulting accuracy summarized in Table 1.
The standardized method of interpreting the success of classifiers is the error ratio,
which quantifies how well the random forest model does at predicting the correct
individual relative to the success expected by chance (44). An error ratio above two is
commonly used as a significance threshold, and a higher ratio indicates better perfor-
mance. All methods performed significantly better than random, but MED clearly
outperformed UPARSE and DADA2 in our data set. Figure S1 in the supplemental
material presents the confusion matrix generated by MED. Samples that fall on the
diagonal are correctly classified by the random forest model. Most samples (79.57%) fall
on the diagonal of the plot. However, for certain individuals, their hand samples are
misclassified in every instance.

Interestingly, the largest source of classification error was the presence of room-
mates in the room. In fact, the classification error of an individual was linearly related
to the number of roommates that individual had (R2 � 0.3143, P � 0.0001), with
classification error increasing by 18 percentage points for each additional roommate.
The relationship is shown in Fig. S2. The random forest model attempts to use
differences in taxon abundance between individuals to classify individuals. If two
individuals interact and exchange bacteria, differences in abundance decrease, which in

FIG 2 A principal component analysis (PCoA) plot based upon the Bray-Curtis distance. Statistically significant environmental vectors
(P � 0.01) by envfit are plotted over the data. Common surface (R2 � 0.0654, P � 10�6) and hand-associated (R2 � 0.38, P � 10�6) vectors
are shown.

TABLE 1 Random forest model accuracy and error ratios

Method Accuracy (CV-10) (%) Error ratio

UPARSE 60.96 2.49
DADA2 71.06 3.36
MED 79.57 4.76

Richardson et al. ®

July/August 2019 Volume 10 Issue 4 e01054-19 mbio.asm.org 4

https://mbio.asm.org


turn increases model error. Roommates had a significantly smaller weighted UniFrac
distance between them than individuals residing in different rooms (Wilcoxon rank sum
test, W � 409660000, P � 2.2 � 10�16).

Classification of individuals is driven by specific taxa. The random forest model
is able to rank individual sequences or OTUs by their importance to successful classi-
fication. During the random forest generation process, only two thirds of variables are
used to generate each forest. The accuracy of forests containing a given bacterial
sequence can be compared to those without the sequence, and this is used to calculate
the importance score. MED recovers significantly higher important scores than DADA2
or UPARSE and has a distinct distribution as seen in Fig. 1B. Furthermore, MED has a
significantly higher average importance score (Wilcoxon rank sum test, false-discovery
rate [FDR] P � 0.05) (Fig. S3) across all phyla that overlap between all three methods
except for Cyanobacteria, Fusobacteria, and Deinococcus-Thermus.

It has been noted that there are taxa indicative of different sexes (45). To see
whether there were enriched taxa between men and women from room samples, we
looked for differentially enriched taxa using DESeq2. The most significantly enriched
taxon was Lactobacillus iners, an inhabitant of the female reproductive tract. Certain
corynebacteria were also noted to be more abundant in men, as seen in Fig. S4. Using
these enriched taxa, we used the random forest model to predict whether a subject is
a man or woman, with an error ratio of about 2.5, and accuracy of around 80% on the
test set.

Metacommunity structure. In addition to classifying individuals, we sought to
recapitulate the geographical structure of the dorm using graphical models. To do this,
we constructed a threshold graph of the weighted UniFrac distance between samples,
with edges preserved if they were less than a threshold of 0.12. As seen in Fig. 3, the
dorm has two large subgraphs, along with a number of orphaned graphs. These two
groups consist of floor-associated (shoes and floors) and hand-associated (hand, door-
knob, bed, and desk) samples. The orphaned graphs are mostly samples from one
individual. As expected, common surfaces in the hand-associated realm serve as an
anchor for their subgraph, connecting a number of different people, while hallway
floors serve the same role for individual shoes. In contrast, orphaned graphs appear to
indicate the stability of an individual’s microbial signature over time and a lack of
interaction with other samples.

FIG 3 A weighted UniFrac graph of all samples, thresholded to be below 0.12 weighted UniFrac distance between individuals. They are
sized based on their degree centrality, a measure of the number of connections they have to other samples. Samples are colored by
sample type, with desks, bed sheets, and door handles grouped together as personal hand-associated samples. Common hand-associated
surfaces act as a scaffold, connecting between themselves, along with connecting many distinct individuals.
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While a graph can be constructed using a beta-diversity metric (in our case
weighted UniFrac distance) as above, the distance metric may not be sensitive to the
microbial community of an individual. Since there is information to be gained from
aggregating samples into a larger individual signature, we also constructed a graph
using random forest model proximity. The proximity values from the random forest
model are akin to distance and take into account the same signature used to classify
individuals. It is also much sparser, as the random forest model tries to minimize
distances between samples from the same individual, while keeping samples between
individuals distinct. The resulting graph can be seen in Fig. S5a and S5b, where samples
are colored by individual and surface type, respectively. While these graphs show rough
clustering by individual, and less clustering by surface, it is unclear at what level to
delineate spheres of interaction. To compare how metadata related to both the
weighted UniFrac and random forest graphs, we calculated the assortativity of various
metadata.

Assortativity is a metric used to quantify how often nodes in a graph attach to other
similar nodes, ranging from �1 to 1. Positive assortativity reflects high connectivity
between similar nodes, while negative assortativity indicates connections between
dissimilar nodes, with zero indicating no relationship. As seen in Table 2, all metadata
factors had positive assortativity, with small positive assortativity values across the
weighted UniFrac graph. The highest values belonged to the identity of a given surface
and its personal or common nature, which implied that similar surfaces may share
similar bacteria. Time point had low assortativity across graphs, indicating that the
dorm has stable signatures over time. By contrast, the random forest graph had higher
assortativity measures for floor, sex, and subject identity than the weighted UniFrac
graph. The random forest is trained to distinguish individuals and their signatures, and
the higher subject ID assortativity showed that it was better able to connect samples
from unique individuals to each other. The increased assortativity of floor and sex may
be related to this, as samples from one individual were also from the same floor and the
same sex. At the same time, the assortativity of floor and sex were higher than subject
ID, which may indicate that their association is more than just a result of grouping by
subject. In addition to metadata, we wished to understand the spheres of interaction
in the dormitory.

Graph-based clustering analysis methods are often used in describing interactions in
social networks. Using the Infomap clustering algorithm (46), which uses flow within a
network to generate groupings, we looked at how samples clustered into spheres of
interaction. The relevant scale of interactions is not always clear, and the Infomap
algorithm is also hierarchical (47), allowing for clustering of samples at many scales. This
allows for samples to be first classified into large clusters, known as “top modules,” and
then into smaller clusters within each top module, known as submodules, which are
smaller groupings of fewer samples. Using this algorithm, we identified eight top
modules (Fig. 4A), with module 1 encompassing almost all shoe and floor samples. We
also wished to understand how these clusters related to the samples themselves and
what factors associate with this structuring. As seen in Fig. 4B, a number of factors were
significantly correlated with each cluster. Cluster 1, composed mostly of shoe samples,
was associated with floor samples, and negatively associated with hand samples. In
contrast, modules 2 through 4 all showed association with hand samples, while module
2 was more male and more related to common spaces than other modules. Further, we
wished to examine which surfaces most commonly connect these spheres of interac-
tion, and we found that hands were significantly enriched in connections between
modules compared to the larger data set (binomial test, P � 8.69 � 10�8). Other

TABLE 2 Assortativity of metadata factors

Graph Floor Personal vs common Sex Surface Time point Subject ID

Weighted UniFrac 0.0496 0.2062 0.0583 0.1734 0.0705 0.0687
Random forest 0.3941 0.1446 0.3932 0.1985 0.0587 0.3245
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hand-associated surfaces showed enrichment, including common tables, doors, and
bathroom doors (Fig. S6).

Of particular interest was how samples grouped over time, as samples that stably
group together may indicate association. As we sampled the dorm over multiple
discrete time points, we have a number of separate interaction graphs at each time
point. This can be expressed as a multilayer graph (48, 49), where each time point is its
own graph, representing interactions at a single point in time. These separate graphs
are also connected by interactions which occurred between samplings, which we can
estimate using the distances between these samples. To account for this structure, we
employed a multilayer implementation of the Infomap algorithm to look at the stability
of interactions over time (50). Here, we used samples from time points 2 to 4, as time
point 1 consisted of only samples from participant hands and was not directly com-
parable to the other three time points. This is presented in Fig. 5, where samples are
clustered at each time point and their membership in clusters in tracked over time.
Shoe and floor samples showed high stability over time, where most samples cocluster over

FIG 4 (A) A graph generated using random forest model proximity scores, trained to distinguish individuals. It is thresholded by proximity
less than 0.076. It is colored by Top Module, the highest-level clustering produced by Infomap. Module 1 is mostly composed of shoe and
floor samples, similarly to that shown in Fig. 3. (B) Significant Spearman correlations (P � 0.05) between each module and various
metadata categories.

A B C

FIG 5 Alluvial diagrams depicting the clustering of samples over time. (A) All samples that were associated with the floor (hallway floors, bedroom floors, and
shoes) were colored red. Ind., individual. (B) All common surfaces desks, bathroom doors, elevator buttons, and hallway floors. (C) Individual 1 (red) and
individual 29 (blue) are indicated in color.
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time in the same clusters (Fig. 5A). Common surfaces had a similar pattern, where common
floor samples clustered consistently, while common hand-associated samples could be
affiliated with different samples from many individuals (Fig. 5B). To demonstrate how two
individuals freely cluster over time, we colored all the samples from two participants
(individuals 1 and 29) (Fig. 5C). The samples from individual 1 show that all samples from
an individual do not always cluster together, indeed, despite clustering during time points
2 and 4, they cluster separately at time point 2. In contrast, there are two sets of samples
from individual 29 that cluster consistently and independently, which reflects the division
of samples by type (shoe versus floor) rather than by unique individual.

DISCUSSION

The use of human microbial signatures as trace evidence remains a young and
inexact science. In order for this developing field to become a useful forensic tool,
methods will need to be optimized and the myriad factors that influence our microbial
interaction with built environments will need to be disentangled. Here, we compared
classification methods to link residents to their rooms and personal effects in a
common dormitory environment. For classifying individuals, minimum entropy decom-
position (MED) was determined to be the best choice based on its high error ratio and
ability to recover higher importance scores for all taxa. Further, it appears that the exact
sequence variants produced by DADA2 and MED in general are better at identifying
individuals than OTU-clustering methods such as UPARSE. This is unsurprising, as exact
sequence variants avoid grouping closely related sequences together that could be
indicative of individuals. MED is able to recover more diversity within the main
skin-associated taxa from the phyla Proteobacteria, Fusobacteria, Bacteroidetes, and
Actinobacteria, and those sequences are more closely related phylogenetically.

This diversity translates directly into increased utility in classification, as the se-
quences generated by MED have higher importance scores, and thus discriminative
ability, than DADA2 or UPARSE. This is true even at the genus level, indicating that it
is able to produce more individual-specific sequences within common skin-associated
taxa. At the same time, MED did not recover nearly as many phyla as UPARSE or DADA2
did, and thus underestimated the full diversity of the data set. In this case, fine-scale
diversity in highly abundant phyla was what we sought, but it could pose an issue
for classification using highly divergent and low-abundance organisms. Further, the
increased diversity that MED produces should be interpreted in light of observa-
tions that MED can produce false-positive sequence variants in data from mock
communities (36, 51).

Here we show that skin-associated samples are useful in linking individuals to rooms
that they have inhabited. These microbial signatures appear largely stable, as samples
across all time points, spanning a period of 4 weeks, are useful in classification.
Temporal stability has been observed in the skin microbiome (15, 17), and this stability
in our case extends to the personal samples of each individual. Since individuals
contribute their microbial signature to their environment, the presence of a roommate
can interfere with classification. There is potential for interaction both between the
skin of individuals, which has been seen in couples (20), and a mixing of signatures
in the room itself, as seen in examples of cohabitating individuals (3, 19). Room-
mates were a confounding factor, and classification error linearly correlated with
the number of roommates and accounted for 30% of the variance. The increase in
classification error should provoke caution in those who seek to discern the
signatures of cohabitating individuals, as a mixing of signatures can obscure the
true inhabitant of a room.

As in most prior work with microbial forensics (9, 21), our analyses are based on 16S
rRNA sequencing methods (52). In contrast, other methods rely on metagenomic
markers, which are determined from the sample (22, 24) or known a priori (23).
Metagenomic methods require shotgun metagenomic sequencing and may be difficult
to implement in low-biomass samples or situations where host DNA overwhelms
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bacterial DNA (53, 54). However, these methods are often significantly more accurate
and represent an important direction for future research.

In addition to classification, we were able to examine the larger interaction structure of
the college dormitory. The dormitory has two large spheres of interaction, structured by
their association with either floors or hands. Floor samples are highly connected to each
other and form a dense subgraph in both weighted UniFrac and random forest-based
graphs. Close interactions among floor-associated samples may be due to the homoge-
nizing effect of walking, and this has been observed in prior studies (9). In contrast,
hand-associated samples appear to be structured both by the individual from which the
sample originates and by the common surfaces they interact with. As seen in the weighted
UniFrac network analysis, common surfaces form a backbone connecting many separate
individuals, which identifies them as potential points of interaction. When looking at the
random forest-based analysis, top modules of samples form clusters of interaction that are
associated with a number of factors, including whether the samples are hand associated,
which floor they originated from, and the sex of the individuals who contributed them. In
addition, connections between these top modules are enriched for hands, indicating that
hands may be points of interactions between individuals.

When looking at interaction networks, we found that sample clustering over time was
highly dependent on sample type, with floor-associated samples showing long, persistent
interactions, while common surfaces were more freely interacting. Individual signatures do
not always cluster together over time and can form associations over time. While other
sources of data, including sexual partners (55) and coauthorship (56), have been used to
analyze networks of human interaction (57), this is the first study of which the authors are
aware to identify networks of interaction using microbial signatures.

Through individual and common space sampling of a college dormitory, we dis-
covered that MED and other sequence-based methods are superior to those that rely
upon OTU clustering. We have also found that common surfaces form a scaffold
connecting many individuals, and further, that spheres of interaction are dispropor-
tionately connected by hands, indicating them as a means of transmission of microbes.
Finally, we have characterized the persistence of interaction and found differences in
persistence based on the sample type.

MATERIALS AND METHODS
Study design and sample collection. We collected personal samples from 37 participants in 28

distinct dorm rooms (see Table S1 and S2 in the supplemental material). Samples were collected by
swabbing a sterile cotton BD-Swube applicator against the dry surface of interest. Sampling kits were
given to study participants for self-sampling with instructions. For the first time point, only the hands of
individuals were sampled. The desk, floor, fitted bed sheet, and interior doorknobs of each participant’s
room, along with the dominant hand and shoe of the participant, were sampled at three time points after
the first time point. The first time point occurred before occupants left for a scheduled school break (end
of a quarter) and then immediately upon return. The third and fourth time points were taken 2 and
4 weeks after spring break.

Participants also completed a questionnaire which collected basic information on the subject, the
conditions specific to their dorm room, and who they interacted with in their dorm room during the
sampling period. This questionnaire was completed each time a set of samples was collected.

Common surfaces were also sampled similarly. Common surfaces specific to the 5th floor included
tables in the dormitory lounge, and the handle of the entry door to the lounge. On each floor of the
dormitory, the door handles of bathrooms, the floors of each hallway, and the elevator buttons were
sampled. Each floor had its own unique combination, and these were swabbed at the same time as
personal surfaces.

Sample processing. DNA was extracted from each sample using a low biomass variation of the MO
BIO Powersoil DNA extraction protocol. 16S rRNA was amplified with the Earth Microbiome Project 16S
Illumina Amplicon Protocol (http://www.earthmicrobiome.org/protocols-and-standards/16s/). The V4 re-
gion of the 16S rRNA gene was targeted with the 515F-806RB primer pair. Sequencing was performed
using an Illumina Miseq sequencer with the protocol described by Caporaso et al. (52).

Sequence processing. Each method was processed using the default workflows provided in
reference papers given below.

(i) UPARSE. Demultiplexed sequences were merged using vsearch v2.3.0 (58) with 10,040,708
successful paired-end reads merged together. Sequences were quality filtered with a maximum expected
error of 0.5, with 9,057,613 remaining sequences. Sequences were then dereplicated for 1,276,202 unique
sequences. Sequences were then clustered at 97% identity, with 11,658 OTUs and 42,539 chimeras.
Sequences were then matched to OTUs with 93.28% of sequences matched to OTUs. A total of 6,011
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OTUs passed sequence processing. Chloroplast and mitochondrial DNA was removed, and samples were
rarefied to 4,000 counts per sample.

(ii) MED. Sequences were processed according to the methods described by Eren et al. (35).
Demultiplexed paired-end reads were merged using illumina-utils (59), with Q30 check imposed on
sequences, leading to 10,023,266 successfully merged out of 10,023,266 reads. Gaps between sequences
were padded with blanks, and samples were decomposed using a -M of 100. A total of 1,732,615 outliers
were removed by quality control, and remaining sequences were sorted into 3,748 nodes after refine-
ment. A total of 3,352 passed quality control. Chloroplast and mitochondrial DNA was removed, and
samples were rarefied to 4,000 counts per sample.

(iii) DADA2. The filtering step of DADA2 version 1.03 was run with no ambiguous base (maxN of 0),
maximum expected errors of 2, and quality of truncation of 2. All other commands were run on default
settings. Sequences were merged after performing quality filtering. After merging, 34,043 sequences
were observed, and 18,329 sequences were not chimeras. A total of 4,307 unique sequences passed final
quality filtering. Chloroplast and mitochondrial DNA was removed, and samples were rarefied to 4,000
counts per sample.

Taxonomic identification. All sequences were taxonomically identified using the same implemen-
tation of RDP (60) implemented in DADA2 to enable comparison between the sequencing methods.
Taxonomy was assigned using the SILVA (61) training set version 123.

Phylogenetic trees. Sequences were aligned with the R package MSA (62) version 1.4.5, using the
Muscle (63, 64) algorithm. Phylogenetic trees were then generated using the R package Phangorn (65)
version 2.1.1. The tree was first created by neighbor joining and fitted with GTR clock model.

Data analysis and visualization. Data cleaning and shaping were performed using R 3.3.2-R3.5.2
and the packages dplyr 0.7.8 (66) and reshape2 1.4.3 (67). Visualization and analysis were performed
using phyloseq 1.26 (68), igraph v1.2.4.1 (69), ggnetwork (70), and ggplot2 v3.1.1 (71). Boxplots with
significance were generated using ggpubr v0.2 (72). Phylogenetic distance was calculated using the
“cophenetic.phylo” function from ape v5.3 (73). Differential abundance calculations were performed using
DESeq2 v1.12.4 (74). Diversity measures were calculated using vegan v2.5-4 (75). Ideas for analysis, along
with basic code snippets were taken from Callahan et al. (76). Community clustering was performed
using the Infomap (77, 78) and alluvial diagrams were generated using the “Map & Alluvial Generator”
(http://www.mapequation.org/apps/MapGenerator.html).

Random forests. Random forest models were generated using randomForest 4.6-13 (79) and ranger
v0.10 (80). For classification of individuals, all room samples for individuals were used to predict the
hands of individuals. This was repeated 10 times for cross validation (CV-10), and proximities/importance
scores were averaged across runs. For comparisons of men versus women, all personal samples were
subdivided into testing/training sets, with two thirds of samples in the training set and one third in the
testing set. This was run thrice (CV-3).

Ethics. This study (institutional review board [IRB] number IRB15-0373) was approved by Biological
Sciences Division (BSD) IRB Committee A of The University of Chicago Biological Sciences Division/
University of Chicago Medical Center.

Data availability. Sequencing data and sample data are available from Qiita, study ID 12470, and
from EBI, project number PRJEB33050/ERP115809. Phyloseq object files from each of the three sequenc-
ing methods, along with sequence tables, taxonomy tables, anonymized sample data, and phylogenetic
trees are available on Github at https://github.com/MiPZR/Dorm-Microbiome.
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