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Of late, lorlatinib has played an increasingly pivotal role in the treatment of brain metastasis
from non-small cell lung cancer. However, its pharmacokinetics in the brain and the
mechanism of entry are still controversial. The purpose of this study was to explore the
mechanisms of brain penetration by lorlatinib and identify potential biomarkers for the
prediction of lorlatinib concentration in the brain. Detection of lorlatinib in lorlatinib-
administered mice and control mice was performed using liquid chromatography and
mass spectrometry. Metabolomics and transcriptomics were combined to investigate the
pathway and relationships between metabolites and genes. Multilayer perceptron was
applied to construct an artificial neural network model for prediction of the distribution of
lorlatinib in the brain. Nine biomarkers related to lorlatinib concentration in the brain were
identified. A metabolite-reaction-enzyme-gene interaction network was built to reveal the
mechanism of lorlatinib. A multilayer perceptron model based on the identified biomarkers
provides a prediction accuracy rate of greater than 85%. The identified biomarkers and the
neural network constructed with these metabolites will be valuable for predicting the
concentration of drugs in the brain. The model provides a lorlatinib to treat tumor brain
metastases in the clinic.
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INTRODUCTION

Lung cancer is the leading cause of cancer death in china and worldwide, and was responsible for an
estimated 1.76 million deaths in 2018 (World Health Organization, 2018; Cao and Chen, 2019).
Non-small cell lung cancer (NSCLC) accounts for up to 85% of all lung cancers (Majem et al., 2019).
Brain metastasis, as a known complication of NSCLC, arises in about 10% of patients at the initial
diagnosis of NSCLC and in approximately 30% patients with advanced NSCLC adenocarcinoma
(Barnholtz-Sloan et al., 2004; Singh et al., 2020). For patients with anaplastic lymphoma kinase
(ALK)-positive NSCLC, this frequent complication occurs in roughly 30% of patients even at the
time of initial diagnosis, and in about 60% of patients over the course of first-line therapy (Guérin
et al., 2015; Johung et al., 2016). As a consequence of the impermeability of the blood-brain barrier to
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many drugs in addition to effective systemic therapy, CNS
metastases are emerging as a sanctuary site for tumor cell
growth. Metastasis to the CNS can lead to poor prognosis and
result in shortening of overall survival. At the same time,
progressive deterioration of neurological and cognitive
functioning caused by brain metastasis will also reduce the
patient’s quality of life (Wanleenuwat and Iwanowski, 2020).

Anaplastic lymphoma kinase inhibitors are commonly
employed for an oncogene-driven subset of NSCLC patients,
targeting ALK rearrangement specifically, which produces in turn
leads to generation of the ALK protein before causing tumor cells
to grow and spread (Straughan D et al., 2016). Currently, the first
generation ALK TKI (crizotinib) and the second-generation ALK
TKIs (alectinib, brigatinib, ceritinib) are both recommended after
updates to the NCCN Clinical Practice Guidelines in Oncology
(NCCN Guidelines®) and NCCN Drugs and Biologics
Compendium (NCCN Compendium®) for Non-Small Cell
Lung Cancer for the treatment of ALK + NSCLC patients
(Pinto et al., 2020; National Comprehensive Cacncer Network
and NCCN eBulletin Newsletter). However, first generation ALK
TKIs are not ideal for controlling the progression of central
nervous system metastasis (Costa et al., 2015). Although the
blood-brain barrier penetration of the second-generation ALK
TKI has been enhanced compared with the first-generation ALK
TKI, there is still an intense demand to improve control of CNS
metastasis in NSCLC.

Lorlatinib, a third-generation inhibitor of anaplastic lymphoma
kinase (ALK), can achieve higher exposures in the CNS when
compared with previous generations of inhibitors (Shaw et al.,
2017; Nagasaka et al., 2020). Due to high CNS permeability, which
had been confirmed by PET imaging (Collier et al., 2017a; Collier
et al., 2017b), lorlatinib possesses an impressive confirmed
intracranial objective response rate ranging from 41.7 to 87.0%
in ALK-positive patients with CNS metastasis (Shaw et al., 2017;
Solomon et al., 2018; Shaw et al., 2019). Lorlatinib has an active role
in the treatment and prevention of CNSmetastasis in ALK-positive
NSCLC patients (Bauer et al., 2020). In addition to the possible
mechanism of minimizing p-glycoprotein-mediated efflux of
relatively large (>400 Da) hydrophobic drugs (Schinkel, 1999;
Seelig, 2020), our previous research showed that downregulating
SPP1 and inhibiting VEGF, TGF-β may also be potential
mechanisms for lorlatinib’s characteristics of effective brain
penetration (Chen et al., 2020).

To further clarify the mechanisms of brain penetration by
lorlatinib, ultra-performance liquid chromatography and
quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-
MS) was applied for investigation of the dynamic changes in
serum metabolites in mice in physiological conditions and after
treatment with lorlatinib. Furthermore, potential biomarkers for
prediction of lorlatinib concentration in the brain were identified.

MATERIALS AND METHODS

Chemicals and Reagents
Lorlatinib (>99.9%) was obtained from MedChem Express
(United States). Methanol, HPLC-grade, was purchased

obtained from Fisher Chemicals (Pittsburgh, PA,
United States). Acetonitrile, HPLC-grade, was obtained from
Merck (Darmstadt, Germany). Purified water was produced by
Millipore’s ultrapure water system (Millipore, Bedford, MA,
United States). All other chemicals and reagents were of
analytical grade unless otherwise indicated.

Animals
All the animal-related experiments were conducted in
accordance with guidelines of Institutional Experimental
Animal Ethical Committee. SPF grade KM and ICR mice
(weight: 18–20 g, age: 8 weeks) were obtained from the
Beijing HFK Bioscience Co., Ltd. (License No.
11401300092657). All mice were given free access to normal
diet and water during the experiment with an exception that
mice were fasted for 12 h prior to drug administration. The
experiment was conducted under standard breeding conditions
with a temperature regime of 26°C day/18°C night, a relative
humidity level of between 50 and 70 percent and a 12-h light/12-
h dark photocycle. Mice weighing more than 21 g or less than
18 g were excluded from the analysis. Additionally, mice that
suffered accidental injury and/or bleeding during the study were
excluded from the analysis and finally, mice that died
unexpectedly during the study were excluded from the analysis.

Experimental Design for Metabolomics
After 3 days of acclimatization, KM mice (weight: 18–20 g, age:
8 weeks) acquired for this study were weighed and randomly
distributed into 2 groups: a lorlatinib group and a non-lorlatinib
group. The mice in the non-lorlatinib group were orally
administrated with physiological saline solution and the mice
in the lorlatinib group were orally administered with 10 mg/kg
lorlatinib (the concentration of lorlatinib solution: 1 mg/ml).
Blood was collected from mice in both groups at 0.5, 1, 2, 4,
8, and 24 h after administration. Serum was exacted from the
collected blood and stored at −80°C for further pretreatment and
analysis.

Sample Collection
Blood samples were collected from eachmouse via orbital sinus at
0.5, 1, 2, 4, 8, and 24 h after lorlatinib administration and
transferred to a non-heparinized tube. The blood was allowed
to clot at room temperature before being centrifuged to separate
serum, which was then stored at −80°C until further sample
preparation.

Sample Handling for Metabolomics
Methanol (150 μL) with an internal standard, 2-
chlorophenylalanine (20 mg/ml), was added to 50 μL serum
samples in 1.5 ml centrifuge tubes followed by vortexing for
more than 30 s. The mixture was centrifuged at 14,000 rpm
for 10 min at 4°C. 120 μL of supernatant was collected from
the centrifuged mixture and spin-dried in a centrifuge tube. Sixty
μL of 75% methanol was used to re-dissolve the sample, which
was then centrifugated at 12,000 rpm for 10 min to separate 15 μL
of supernatant as the final sample that was analysed using mass
spectrometry.
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Lorlatinib Concentration Analysis
We have previously developed a rapid liquid chromatography-
tandem mass spectrometry (LC-MS/MS) method for analysis of
the concentration of lorlatinib in mouse serum (Chen et al.,
2019). Methanol was used to precipitate protein in samples and
lorlatinib was separated on a C18 column by gradient elution
(0.1% of formic acid and methanol) and detected in the positive-
ion mode with m/z 407.28 [M + H]+.

Liquid Chromatography and Mass
Spectrometry Conditions
Waters Xevo G2-XS QTOF/MS (Waters, Manchester,
United Kingdom) was utilised for chromatographic analysis. A
reverse phase column, UPLC HSS T3 C18 (100 mm × 2.1 mm,
1.8 μm), was used for chromatographic separation with the
column temperature set to 40°C. The detection wavelength was
set at 275 nm. The optimal mobile phase consisted of ultrapure
water with 0.1% formic acid as solvent A and acetonitrile with
0.1% formic acid as solvent B. The gradient conditions were as
follows: 0–1 min, 95 to 95% A; 1–9 min, 95 to 60% A; 9–19 min,
60 to 10% A; 19–21 min, 10 to 0% A; 21–25 min, 100 to 100% B.
The sample injection volume was 4 µL. To verify the accuracy and
reproducibility, the sample run sequence was randomized and
quality control (QC) samples were prepared and analyzed every
10 samples. All samples were maintained at 4°C during the
experimental period.

For mass spectrometry profiling, Waters Xevo G2-XS QTOF/
MS equipped with an electrospray ionization sources (ESI)
(Waters Corporation, Manchester, United Kingdom), in which
both positive and negative ESI was produced and detected. All
mass scans were acquired under MSE mode (specifically, ESI
Continuum mode). Mass detection was operated using the
following setting parameters: drying gas (N2); flow rate, 800 L/
h; gas temperature, 350°C; capillary voltage, 2.2 kV (ESI-) and
2.5 kV (ESI+); skimmer, 40 V; collision energy, 10–40 EV.
Leucine enkephalin (m/z 556.2771 in ES+ and 554.2615 in ES-)
was used as the external standard substance to perform online
mass calibration for all the detection runs. Masslynk 4.1
software was used to collect data, with detected molecular
weights ranging from 50 to 1,200 Da.

Data Processing of Metabolomics
The mass data were preprocessed by MetaboAnalyst 3.0 (www.
metaboanalyst.ca/) to generate a normalized data matrix. For
multivariate analysis, the data matrix was introduced into
SIMCA-P 14.1 software (Umetrics, Umea, Sweden).
Unsupervised Principal Component Analysis (PCA) was
employed to describe and identify the differences and
relationships between samples. The supervised Orthogonal
Partial Least Squares Discriminant Analysis (OPLS-DA) model
was constructed to mine for different metabolites. S-plots were
created to confirm the result, as such, to avoid false positives:
according to whether the variables were distributed in the neutral
position, it could be determined whether there were significant
alterations. OPLS-VIP parameter was applied to the
metabolomics profiles of the experimental animal groups to

achieve an improved certainty of the variables with the most
significant contribution. Variables representing metabolites with
a vip of more than 1, if the |p (corr)| ≥ 0.5, p value < 0.05 and
folder change>2 or<0.5 at the same time, were considered as
potential biomarkers. Molecules representing the potential
biomarkers were identified by the online Human Metabolome
database (https://hmdb.ca/) search engines based on the accurate
mass data. The list of compound labels was uploaded to
MetaboAnalyst 5.0 (http://www.metaboanalyst.ca/) and the
pathway enrichment analyses were performed by the Pathway
Analysis module to identify the most relevant pathways involved
in the conditions of the study.

RNA-Seq and Data Analysis
In our previous study, SD rats were randomly divided into groups
(Chen et al., 2020). After cardiac perfusion with saline, the brain
tissue of rats in the control group and in the lorlatinib
administration group were taken for sequencing, which was
completed at the BGI-Shenzhen. The library preparation
included the following steps: mRNA isolation, RNA
fragmentation, cDNA strand synthesis, ends reparation,
A-tailing, adapter ligation, linker addition, PCR reaction and
purification of products. The data obtained from sequencing,
namely raw reads, was subjected to quality control (QC) to
determine whether the sequencing data was suitable for
subsequent analysis. After passing the quality control, the
filtered clean reads were compared to the reference genome. On
this basis, according to the statistical comparison rate and the
distribution of reads on the reference sequence, it was judged
whether the comparison result passed the second quality control
(QC of alignment). Finally, gene quantitative analysis and various
analyses of gene expression levels were carried out, these included:
principal component, correlation, differential gene screening, etc.,
and the differentially expressed genes were subjected to GO
function enrichment analysis and pathway enrichment analysis.

Preliminary Verification of Expression
Levels of Key Proteins at the Blood-Brain
Barrier of Mice After Lorlatinib
Administration
ICR mice were randomly divided into three groups, with 3 mice
in each group. The animals were fasted overnight without water
before administration, and lorlatinib was given at a dose of
10 mg/kg (0.1 ml/10 g) after fasting. Brain tissue samples were
taken at 30 min, 2 h, and 4 h after administration. Finally, the
expression levels of OPN and related key proteins was detected by
Western blotting.

Western Blotting
The brain tissue of mice was lysed with lysis buffer (Solarbio,
whole protein extraction kit, cat. no. BC3710) to extract total
protein. The protein concentration was determined by using a
BCA assay (NCM biotech, BCA protein assay kit, cat. no.
WB6501). After treatment with protein loading buffer, a 10%
PAGE precast gel was used for protein electrophoresis.
Subsequently, the protein was transferred to a PVDF
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membrane (Millipore, IPVH00010). After blocking with 7% fat-
free milk at room temperature for 1 h, the membrane was
incubated with primary antibody overnight at 4°C. The
primary antibodies used in this study were OPN (1:1,000,
abcam, cat. no. ab8448) and β-actin (1:1,000, Bioss, cat. no.
bs-0061R). After washing 5 times with TBST containing 0.01%
Tween-20 at room temperature (3 times for 5 min, 2 times for
10 min), the blot was incubated with goat anti-rabbit IgG
horseradish peroxidase (1:10,000, ZSGB-BIO, cat. no. ZB-
2301) at room temperature for 1 h. After washing again with
TBST, the immunoblots was visualized with a
chemiluminescence reagent (APPLYGEN, Super ECL Plus, cat.
no. P1050), and the gray value of the immunoblots was semi-
quantified using ImageJ software.

Artificial Neural Network Model for
Prediction
In previous studies, the blood and brain concentrations of
lorlatinib in 48 mice were measured by Liquid
Chromatography-Mass Spectrometry after administration
(Chen et al., 2019). Based on this data, we further calculated
the drug brain/blood distribution coefficient for each mouse.
After determining the median, the mice were divided into high-
coefficient level and low-coefficient level groups based on the
comparison of cerebral blood distribution coefficient and the
calculated median; these groups were represented by 1 and 0
respectively. Taking the abundance of metabolic markers as the
independent variable, a neural network was constructed to
predict the size of the blood-brain distribution coefficient. 70%
of the data was selected randomly to be part of the training set and
the remaining 30% data was used in the test data set.

RESULT

Metabolomics Analysis of Serum
The untargeted mass data collected by LC-IT-TOF/MS in positive
and negative ion modes were analyzed using PCA to investigate

the differences between the principal components of the control
group and the lorlatinib group. PCA score scatter plots were
illustrated in Figure 1A (ESI + mode) and Figure 1B (ESI-
mode). The tightly grouped distribution characteristics of the
quality control samples shown in both two figures indicated that
the instrument was stable throughout the analytical process. Data
generated on analysis of serum samples from the control group
and the lorlatinib group gathered in distinct areas of the PCA
score scatter plots, indicating substantial differences at the
metabolite level between two groups.

To further investigate the potential differential metabolites
between the two groups, the supervised Orthogonal Partial Least
Squares Discriminant Analysis (OPLS-DA) model was
established in order to identify the relationship between
metabolite expression level and sample group and to make
predictions regarding the sample category. As shown in the
OPLS-DA scores plot for data generated in the ESI + mode
(Figure 2A) and the ESI- mode (Figure 2B), the two sample
groups clustered in different areas of the figure, indicating that the
model could predict the classification of the two samples groups.
The evaluation parameters R̂2Y and Q2 of the OPLS-DA model
were 0.997 and 0.984, respectively, in the ESI + mode and 0.989
and 0.935, respectively, in the ESI- mode. With the R̂2Y and Q2
being greater than 0.5, this suggested that not only did the model
have a satisfactory interpretation rate of thematrices, but also that
the model could fit and predict accurately.

An S-plot (Figure 2C and Figure 2D), as an implement for
visualization and interpretation of OPLS discriminate analysis, was
carried out to identify statistically significant metabolites based on
their reliability and contributions to the model. The variables
appearing at the top or bottom of the S-plot had a significant
contribution to modeled class designation, while those appearing
in the middle were considered to contribute less. Variables were
classified according to their explanatory power. Predictors with aVIP
of larger than 1 were the most relevant for explaining classification
andweremarked in red in the S-plot if, at the same time, the absolute
values of their p (corr) were greater than or equal to 0.5.

Four-hundred and ninety-one (491) potential biomarkers were
obtained for further analysis by refining the above result based on

FIGURE 1 | Principal component analysis (PCA) score plots obtained from the lorlatinib and control groups in positive (A) and negative (B) electrospray ionization
source (ESI) mode.
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the additional filtering by the criteria of p < 0.05 and fold change
(FC) > 2 or < 0.5. The accurate mass charge ratio of all potential
biomarkers were entered into a search of the online Human
Metabolome database (https://hmdb.ca/) for putative
identification of biomarkers. After converting the biomarker
from HMDB ID to KEGG ID, 360 biomarkers were enriched in
the KEGG pathway and mapped to the metabolic pathways in the
metabolomics data analysis platform, MetaboAnalyst 3.0. As
shown in Figure 3, we identified 56 biomarkers related to
metabolic pathways, of which the most relevant pathways were
selected after comprehensive consideration of impact factors and
raw_p; these were Sphingolipid metabolism, Glycerophospholipid
metabolism, Thiamine metabolism and Synthesis and degradation
of ketone bodies. These metabolic pathways hit 9 significant
metabolites, namely: Acetoacetyl-CoA (S)-3-Hydroxy-3-
methylglutaryl-CoA, Dihydroceramide, Sphingosine, L-Cysteine,
Thiamin diphosphate, CDP-ethanolamine, Phosphatidylcholine
and Choline, as depicted by the schematic diagram of the
metabolic pathways related to lorlatinib (Figure 4).

Gene Ontology Enrichment Analyses and
Kyoto Encyclopedia of Genes and Genomes
Pathway Analysis of Differential Genes
In the preliminary experiment, we sequenced the RNA of the
control group and the lorlatinib group mice (Chen et al., 2020). By

using DEGseq algorithm, |log2Fold Change| ≥1 and Adjusted p
value ≤0.001 as the screening criteria, 126 differentially expressed
genes were obtained. Among them, there were 70 genes that were
significantly up-regulated and 50 genes that were down-regulated
(p < 0.01). Volcano plots (Figure 5A) were created to quickly
identify meaningful changes from within a very large set of genes.
According to the GO and KEGG annotation results and the official
classifications, we classified the differential genes by function
before using the phyper function in the R software package for
enrichment analysis. These differentially expressed genes are
involved in 23 biological processes, which mainly affect cellular
processes, biological regulation, and multicellular organismal
processes. The molecular functions of the identified genes
mainly involve binding, catalytic activity, and signal transducer
activity. The remaining 12 pathways were those of cellular
components. Twenty-four pathways were significantly enriched,
20 of which are shown in Figure 5B, these included Neuroactive
ligand-receptor interaction, RNA polymerase, Herpes simplex
infection, Pyrimidine metabolism and Epstein-Barr virus infection.

Expression of Key Proteins Within the
Blood-Brain Barrier of Mice After Lorlatinib
Administration
The expression of OPN protein in the brain tissue of mice
gradually decreased with increasing time after administration

FIGURE 2 | The results of OPLS-DA modelling using the data from the lorlatinib and non-lorlatinib groups in positive (A) and negative (B) electrospray ionization
source (ESI) mode and the S-score plots constructed from the results in positive (C) and negative (D) mode.
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of lorlatinib. Claudin-5 protein levels did not change significantly
within 4 h after lorlatinib administration, and vegf protein was
up-regulated within 4 h after administration. Finally, TGF-b was
significantly down-regulated after drug administration
(Figure 6).

Metabolite-Reaction-Enzyme-Gene
Interaction Network Construction and
Analysis
Combining metabolomics with transcriptomics, a previously
undescribed Metabolite-Reaction-Enzyme-Gene interaction
network was constructed by searching for correlations between
genetic expression profiles and metabolite accumulation profiles.
As shown in Figure 7, the Metabolite-To-Gene interaction
network consisted of 13 metabolites which were identified in
this study and 5 genes which had been revealed to be important in

previous research (Chen et al., 2020). These networks also served
to identify and validate a select number of genes and metabolites
likely to contribute to combatting drug-resistant tumors and
promoting blood-brain barrier permeability.

Lorlatinib Concentration in Blood and Brain
Mean serum concentration-time curves, upon which the
pharmacokinetic parameters and the tissue distribution
calculations were based, have been published previously (Chen
et al., 2019). The plasma concentration curve shows two-
compartment pharmacokinetic characteristics. The ratio of
brain lorlatinib concentration to blood concentration in 48
samples was calculated, giving an average of 0.70 (standard
deviation of 0.20) and a 90th and 10th percentile of 0.90 and
0.39, respectively. These findings indicated that there was
significant individual variation in the distribution of lorlatinib
in brain.

FIGURE 3 | Schematic diagram of the altered metabolic pathways.

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 7226276

Chen et al. Lorlatinib Exposures in CNS

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FIGURE 4 | Schematic diagram of the metabolic pathways related to lorlatinib and the trends of biomarkers enriched in these metabolic pathways. The notations
are as follows: (↑) in green, metabolite higher in the lorlatinib group than in control group; (↓) in red, metabolite lower in the lorlatinib group than in control group. The related
metabolic pathways are graphed in blue boxes.
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Artificial Neural Network Construction
An artificial neural network (Figure 8A) was created with 9
inputs, one hidden layer, and one output layer. The hidden layer
had 6 nodes. The output layer had 2 nodes since we needed to
implement a binary classification of the blood-brain distribution
coefficient, where there could only be a high-coefficient level or
low-coefficient level. The hyperbolic tangent function, a
nonlinear activation function that outputs values between −1.0
and 1.0, was used for connection between the input layer and the
hidden layer. The sigmoid function, which can transform the

range of combined inputs to a range between 0 and 1, was used as
the Output layer activation function. This neural network
architecture is more suitable for the nonlinear boundaries
formed by complex metabolic processes. The classification
table (Table 1) shows the practical results of using the neural
network. In Figure 8B, we provide the importance of
independent metabolic biomarkers as different measures of the
extent to which the network’s model-predicted classification of
brain-blood distribution coefficient is altered for different values
of the independent metabolic biomarker. Normalized importance

FIGURE 5 | Volcano plot analysis of differently expressed miRNA (A) and differential gene KEGG Pathway enrichment histogram (B).

FIGURE 6 | Expression of key proteins in blood-brain barrier after lorlatinib administration.
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is simply the importance value divided by the importance values
of (S)-3-Hydroxy-3-methylglutaryl-CoA, which had the largest
importance value among all metabolic biomarker variables.

DISCUSSION

Using structure-based drug design, along with the overcoming of
synthetic challenges, the highly potent macrocyclic ALK
inhibitor, lorlatinib, was discovered. Lorlatinib is characterized
by a high degree of kinase selectivity, good passive permeability

and a low propensity for p-glycoprotein 1-mediated efflux
(Johnson et al., 2014). The above characteristics have been
further confirmed in clinical trials: lorlatinib had a mean
cerebrospinal fluid to plasma concentration ratio of 0.75
confirming significant CNS penetration, had an IC response
rate of 63% in brain metastasis patients previously
administered with at least one ALK inhibitor, confirming
superior CNS activity compared to first-generation TKIs
(Serritella and Bestvina, 2020; Xia et al., 2020).

To further clarify the explicit effect and underlying
mechanism of lorlatinib, especially regarding its intracranial

FIGURE 7 | Metabolite-To-Gene interaction network.
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activity, metabolomic profiles were investigated and combined
with previous transcriptomics research (Chen et al., 2020),
rendering a panoramic view of the interaction between
lorlatinib and the body. In this research project, 9 noteworthy
differential metabolites contributing to the altered metabolic
profiles of experimental groups were identified, and they were
enriched in 4 major metabolic pathways, namely, Sphingolipid
metabolism, Glycerophospholipid metabolism, Thiamine
metabolism and Synthesis and degradation of ketone bodies.

Several groups of lipids, such as sphingosines (Yanagida et al.,
2017), alkylglucosides, oxidized lipids and ether lipids have been
identified as non-toxic and reversible tight junction (TJ)
modulators (Johnson et al., 2008). Lorlatinib is linked closely
with regulating sphingolipid, which has a notable role in
membrane integrity, vasculogenesis, and immune cell
infiltration into the brain (Gu et al., 2020).

Ceramide, the precursor of all sphingolipids and the central
molecule of sphingolipid metabolism, can be synthesized by four
different pathways involving reactions during which DES
introduces a double bond to the dihydroceramide molecule.

Sphingosine is directly phosphorylated by sphingosine kinases
(SphK1 and SphK2) to generate sphingosine-1-phosphate (S1P)
(Gomez-Muñoz et al., 2016). It is worth noting that the role of
SphK1 and S1P was confirmed to be critical in the maintenance of
endothelial barriers. Sphingosine kinase-1 modulates vascular
endothelial permeability at the surface of the blood brain
barrier (BBB) (Gu et al., 2020). S1P, produced by SphK1
catalysis, has been shown to bring a rapid and drastic
reduction in the focal adhesion strength and barrier tightness
of brain endothelial cells (Wiltshire et al., 2016). In the
comparison between the lorlatinib group and the control
group in the present study, sphingosine levels in the lorlatinib
group decreased significantly, while dihydroceramide increased
considerably. These data led us to infer that the remarkable
lorlatinib characteristic of good intracranial activity was
contributed to by regulation of S1P in sphingolipid
metabolism. While sphingosine and S1P can mutually
transform, lorlatinib blocks the conversion of S1P to
sphingosine, which in this case has manifested as a decrease in
sphingosine levels. The described phenomenon is very likely to be
accompanied by an increase in S1P levels, thereby rapidly and
acutely reducing endothelial barrier resistance and enhancing the
intracranial activity of lorlatinib. Considering the degree of
correlation between the above two compounds and BBp.

P-glycoprotein, an ATP-binding cassette (ABC) transporter,
which is a major pump that transports promiscuous xenobiotics
out of cells, associates with multidrug resistance (MDR) due to
overexpression (Cannon et al., 2012; Mollazadeh et al., 2018; Ren
and Gray, 2019). In a previous study, through RNA sequencing,
we confirmed that lorlatinib did not exhibit a significant
regulatory effect on the p-glycoprotein via mRNA
transcription (Chen et al., 2020). However, sphingolipid,
signaling via S1P and acting via S1PR1, appears to induce a

FIGURE 8 | Artificial neural network for predicting brain-blood distribution coefficient (A) and the importance of metabolics in the neural network (B).

TABLE 1 | The classification table of the practical results.

Sample Observed Predicted Percent correct (%)

0 1

Training 0 14 2 87.5
1 2 15 88.2
Overall Percent 48.5% 51.5% 87.9

Holdout 0 6 1 85.7
1 0 7 100.0
Overall Percent 42.9% 57.1% 92.9
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fast and reversible regulatory effect resulting in low
p-glycoprotein pump activity level and an improvement in the
delivery of small-molecule compounds to the brain (Cannon
et al., 2012). Sphingolipids are signaling molecules involved in
inflammatory responses (Mesev et al., 2017). A S1P analogue
could alter BBB efflux transport by inhibiting the S1P receptor 1-
mediated inflammation and alleviating P-gp overexpression in rat
hippocampus (Gao et al., 2018). In the present study, the
enrichment of sphingolipid metabolism pathways suggested
that lorlatinib inhibited the function of P-glycoprotein, which
could be one of the reasons why lorlatinib is still effective in
ceritinib-resistant patients with P-gp over-expression (Katayama
et al., 2016). In combination medication therapies, it was also
possible that lorlatinib had a strong reversal effect on multidrug
resistance, because P-gp efflux of drugs is the main cause of
multidrug resistance. However, it has been identified that
P-glycoprotein/ABCB1 in the BBB remained the major
obstacle to brain accumulation of lorlatinib (Li et al., 2018);
simultaneous administration of P-gp inhibitors could greatly
boost absolute brain levels of lorlatinib (Li et al., 2019a).

Tight junctions play a crucial role in regulating blood-brain
barrier permeability. The main modulators acting directly on
tight junction components include occludin (Yuan et al., 2020),
claudin-5 (Greene et al., 2019), zonulin and E-cadherin (Deli
Mária, 2009; Hashimoto and Campbell, 2020), the expression
levels of which are closely related to cerebral microvascular
permeability. In preliminary studies, we used a PCR method
to confirm that SPP1, VEGF, TGF-β and claudin are down-
regulated 1 day and 7 days after lorlatinib administration. In
order to present the correlation of lorlatinib with tight
junction proteins in a panoramic view, in this study, western
blotting was applied to explore the changes in tight junction
protein levels within the first few hours after administration.

The results demonstrated that levels of OPN and TGF-β had
a gradual downward trend within 30 min to 4 h after lorlatinib
dosing, whereas VEGF had a clear upward trend, and no
significant changes were shown in Claudin-5 levels. Only
OPN and TGF-β levels decreased within a short time after
lorlatinib administration, indicating that OPN and TGF-β are
directly and potently affected by lorlatinib. OPN plays an
essential role in tight junctions by affecting occluding via a
well-defined pathway (Woo et al., 2019). There are also elusive
underlying mechanisms regarding OPN’s regulation of ZO-1,
claudin-5 (Zhang et al., 2018) and of TGF-βmodulating
claudin (Wang et al., 2020). The variation in response of
claudin-5 at different time periods is probably due to the
influence of requiring multiple signal pathway
transmissions, which maybe also be the major reason for a
feedback increase of VEGF at the initial time period after
lorlatinib administration.

To obtain a more comprehensive understanding of the
regulatory mechanisms of lorlatinib, a Gene-To-Metabolite
interaction network (Figure 7) was constructed through
Cytoscape. The complex network contained five genes, which
were CYP4B1, GALNT3, DAO, NDST4, EYA2, and 13
metabolites, which were Sphingomyelin, Dihydroceramide,
Sphingosine, Thiamin diphosphate, 1-Acyl-sn-glycero-3-

phosphocholine, Phosphatidylcholine, Choline, Phosphatidate,
Phosphatidylserine, Phosphatidylethanolamine, L-Cysteine,
beta-D-Galactosyl-1,4-beta-D-Glucosylceramide and Sulfatide.
Related genes encode enzymes belonging to different
superfamilies, catalyzing many reactions involved in:
metabolism of certain xenobiotics (Lim et al., 2020; Baer and
Rettie, 2006), posttranslational modification of protein (Takashi
and Fukumoto, 2020), N-methyl-d-aspartate receptor regulation,
glutamate metabolism (Yang et al., 2013), modification in the
heparan sulfate biosynthetic pathway (Li et al., 2018) and
transcriptional activation (Devi Maharjan et al., 2019). The
results of the presented integrated metabolomics and
transcriptomics analysis prove that the pathway is
concentrated on Sphingolipid metabolism and
Glycerophospholipid metabolism, which is consistent with the
enrichment results. In addition to the four highly enriched
pathways described in item 3.1, the differential metabolites in
the Gene-To-Metabolite interaction network also involve
multiple pathways such as Metabolism of xenobiotics by
cytochrome P450, D-Arginine and D-ornithine metabolism,
Arachidonic acid metabolism, and Glycine, serine and
threonine metabolism. A variety of substances related to nodes
in the Gene-To-Metabolite interaction network such as Eyes
Absents (EYA) (Tadjuidje et al., 2012), polypeptide
N-acetylgalactosaminyl transferase 3 (GalNAc-T3) (Guo et al.,
2016), amino acids and fatty acid oxidation (Li et al., 2019b) and
phosphatidylcholine hydroperoxide (Nakagawa et al., 2011)
were all essential requirements for or regulators of
endothelial cells, suggesting their inextricable linkage to the
permeability of the blood-brain barrier. The network
pharmacology results indicated that lorlatinib could hit
multiple targets in multiple ways, which lead more brain
distribution and higher intracranial effectiveness.

CONCLUSION

The percentage scores of correct predictions in training and
testing of the artificial neural network were both over 85%,
which indicate that the deep learning provides an effective
pathway by which to solve the nonlinear problem of
prediction. At the same time, it also exhibits that the
metabolic biomarkers screened play a key role in
predicting the brain-blood distribution coefficient of
lorlatinib and revealing the concentration of the drug in
the brain. The identification of markers and models also
provide a reference for lorlatinib to treat tumor brain
metastases in the clinic. However, due to the limited
number of samples, this model requires further verification
on a large scale.
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GLOSSARY

NSCLC non-small-cell lung cancer

ALK anaplastic lymphoma kinase

UPLC-Q/TOF-MS ultra-performance liquid chromatography and
quadrupole/time-of-flight mass spectrometry

QC quality control

ESI electrospray ionization

PCA Principal Component Analysis

OPLS-DA Orthogonal Partial Least Squares Discriminant Analysis

FC fold change

GO Gene ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

TJ tight junction

S1P sphingosine-1-phosphate

BBB blood brain barrier

ABC ATP-binding cassette

MDR multidrug resistance

EYA Eyes Absents
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