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A B S T R A C T   

Insulin-like growth factor-1 (IGF-1) plays critical roles in the development of the central nervous system (CNS), 
including the retina, regulating cell proliferation, differentiation, and survival. Here, we investigated the role of 
IGF-1 on retinal cell proliferation using primary cultures from rat neural retina. Our data show that IGF-1 
stimulates retinal cell proliferation and regulates the expression of neurotrophic factors, such as interleukin-4 
and brain-derived neurotrophic factor. In addition, our results indicates that IGF-1-induced retinal cell prolif
eration requires activation of multiple signaling pathways, including phosphatidylinositol 3-kinase, protein ki
nase Src, phospholipase-C, protein kinase C delta, and mitogen-activated protein kinase pathways. We further 
show that activation of matrix metalloproteinases and epidermal growth factor receptor is also necessary for IGF- 
1 enhancing retinal cell proliferation. Overall, these results unveil potential mechanisms by which IGF-1 ensures 
retinal cell proliferation and support the notion that manipulation of IGF-1 signaling may be beneficial in CNS 
disorders associated with abnormal cell proliferation.   

1. Introduction 

Insulin-like growth factor-1 (IGF-1) and its receptor 1 (IGF-1R) play 
critical roles in the development of the central nervous system (CNS) 
(Fernandez and Torres-Alemán, 2012; O’Kusky and Ye, 2012). In 
humans, deficiency in Igf1 or Igf1r genes is related with severe body 
growth failure and abnormal CNS development such as microcephaly, 
mental retardation and cognitive impairments, which is consistent with 
findings from rodent studies using mutant mice with disrupted expres
sion of Igf1 or Igf1r (O’Kusky and Ye, 2012). Recent studies using human 
retinal organoids have indicated that IGF-1 is also critical for proper 
retinal growth and maturation (Mellough et al., 2015; Zerti et al., 2021). 
Corroborating these findings, previous reports indicate that IGF-1 is 
essential for adequate teleost retinal growth and development by pro
moting retinal cell proliferation and neuronal differentiation (Becker 
et al., 2021; Otteson et al., 2002; Zygar et al., 2005). 

In the rat retina, IGF-1 can induce retinal ganglion cell (RGC) 

survival and axon growth by activating phosphatidylinositol 3-kinase 
(PI3K) and mitogen-activated protein kinase (MAPK)/extracellular- 
signal regulated kinase (ERK) pathways (Dupraz et al., 2013; Granja 
et al., 2019; Homma et al., 2007; Liao et al., 2017; Seigel et al., 2006; 
Yang et al., 2013). Although extensive literature indicates that PI3K and 
MAPK/ERK pathways also mediate the proliferative effect of IGF-1 in 
different cell lines, little is known about signaling mechanisms under
lying IGF-1-induced cell proliferation in the retina. In the current study, 
using primary cultures from rat neural retina, we showed for the first 
time that IGF-1 transiently stimulates retinal cell proliferation through a 
complex cellular mechanism that require activation of epidermal growth 
factor (EGF) receptor and multiple signaling cascades, including (but not 
limited to) PI3K and MAPK/ERK pathways. 
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2. Materials and methods 

2.1. Materials 

Fetal calf serum (FCS) and medium 199 were purchased from GIBCO 
(Maryland,USA). AG-1478, glutamine, penicillin, poly-L-ornithine, 
streptomycin, rottlerin, and Petri dishes were purchased from Sigma- 
Aldrich (St Louis, USA). Brefeldin A, chelerythrine chloride, 
LY294002, PD98059, PP1, and U73122 were purchased from Biomol 
International (Pennsylvania, USA). c-Jun N-terminal kinase (JNK) in
hibitor (JNKi), matrix metalloproteinase (MMP) 9 inhibitor (MMP9i), 
and SB202190 were purchased from Calbiochem (San Diego, USA). 
Rabbit polyclonal anti-interleukin-4 (IL-4) antibody, rabbit polyclonal 
anti-brain-derived neurotrophic factor (BDNF) antibody, recombinant 
rat IGF-1, and recombinant rat EGF were purchased from PeproTech 
(New Jersey, USA). Goat anti-rabbit IgG-HRP antibody, Luminata re
agent, and PVDF membrane were purchased from GE Healthcare Life 
Sciences (Massachusetts, USA). [metil-3H]-thymidine was purchased 
from Amersham (Buckinghamshire, UK) Bovine serum albumin (BSA) 
and rabbit polyclonal anti-β-actin antibody were purchased from Santa 
Cruz Biotechnology. Monodansylcadaverine (MDC) from Sigma-Aldrich 
(St Louis, USA) was kindly gifted by Dr. Ana L. Ventura (Fluminense 
Federal University, Brazil). 

2.2. Animal ethics statement 

This study was conducted on male and female Lister Hooded rats 
maintained as outbred colonies in the Animal Facility of Fluminense 
Federal University, under 12h light/dark cycle, at constant temperature 
(22–25 ◦C), with water and chow available ad libitum. All animal pro
cedures were approved by Ethical Committee of Fluminense Federal 
University (protocol #00124/09) and performed following the National 
Institutes of Health’s Guide for the Care and Use of Laboratory Animal. 

2.3. Primary retinal cell cultures 

Primary cultures from neural retinas of male and female Lister 
Hooded rats at postnatal day 1–2 were prepared according to established 
procedures (Colares et al., 2021; Mázala-de-Oliveira et al., 2022), and 
maintained in medium 199 supplemented with 5% FCS, 2 mM gluta
mine, and 100 U/mL penicillin/streptomycin. Retinal cells were seeded 
into poly-L-ornithine (50 μg/mL)-coated plastic Petri dishes (35 mm) at 
a density of 1.25 × 105 cells/cm2, incubated in 2 mL of complete me
dium (control cultures) or 2 mL of complete medium containing IGF-1 at 
different concentrations (0.1–100 ng/mL). For some experiments, 
retinal cultures were also exposed to the following drugs: 30 ng/mL 
brefeldin A, 0.75 nM MDC, 37.5 μM PD98059, 0.5 μM JNKi, 20 μM 
SB202190, 1 μM PP1, 25 μM LY294002 1.25 μM chelerythrine chloride, 
2 μM rottlerin, 4 μM U73122, 2.5μ M AG-1478, 20 μM MMP9i, or 0.1 
ng/mL EGF. All cultures were maintained in a humidified atmosphere of 
5% CO2/95% air at 37 ◦C for the time intervals indicated in each 
experiment. 

2.4. [3H]-thymidine incorporation assay 

[3H]-thymidine incorporation assay is based on cell uptake of radi
olabeled thymidine into nascent DNA during S-phase of the cell cycle 
(Romar et al., 2016). This assay was performed according to established 
procedures (dos Santos et al., 2003; Guilarducci-Ferraz et al., 2008). 
Briefly, after treatment with the drugs, primary retinal cultures were 
incubated with 0.5 μCi/mL [metil-3H]-thymidine for 1h at 37 ◦C. After 
washing with medium 199, the content of each dish was transferred to 
glass tubes containing 10% (v/v) trichloroacetic acid for 30min, filtered 
in glass microfiber filters Whatman GF/B under negative pressure, and 
placed to dry overnight at room temperature. The radioactivity was 
determined in a liquid phase scintillator (Packard, USA). Data were 

expressed as percentage of [3H]-thymidine uptake by control cultures. 

2.5. Immunoblotting 

Immunoblotting procedures were performed according to previously 
described (Colares et al., 2021; Mázala-de-Oliveira et al., 2022). Briefly, 
retinal cell lysates (60 μg total protein/lane) were resolved in 15% 
SDS-PAGE gels, and proteins were then blotted onto PVDF membranes 
using a semi-dry blotting system (Bio-Rad Laboratories, USA). Mem
branes were blocked with 3% (w/v) BSA in TBS-T (20 mM Tris-HCl, 160 
nM NaCl, 0.1% Tween-20) for 1h at room temperature. Primary anti
bodies against IL-4 (1:1000), BDNF (1:1000) and β-actin (1:5000) were 
diluted in blocking solution and incubated with the membranes over
night at 4 ◦C. After incubation with anti-rabbit HRP-conjugated sec
ondary antibody (1:15,000) for 1h at room temperature, membranes 
were imaged in a ChemiDoc-Pix System (Loccus Biotecnologia®, Brazil) 
using the Luminata reagent. Optical density determination for quanti
fication was performed using ImageJ software, and β-actin was used as 
loading control. 

2.6. Statistical analyses 

Statistical analyses were performed using GraphPad Prism 8 software 
(San Diego, USA). Comparisons between multiple experimental groups 
were analyzed using one-way analysis of variance (ANOVA), followed 
by post hoc Holm-Sidak’s test. Comparisons between two groups were 
analyzed by two-tailed paired Student’s t-test. p value < 0.05 was 
considered statistically significant. All data are expressed as mean ±
standard error of the mean (SEM). 

3. Results 

3.1. IGF-1 transiently stimulates retinal cell proliferation and regulates 
the levels of neurotrophic molecules 

The effect of IGF-1 on retinal cell proliferation was evaluated using 
the [3H]-thymidine incorporation assay by directly measuring DNA 
synthesis during cell division, an indicative of cell proliferation. First, we 
found that exposure to IGF-1 for 48h increased [3H]-thymidine incor
poration at all concentrations tested (0.1–100 ng/mL; Fig. 1A), with an 
EC50 = 6.92 ng/mL (Fig. 1B). A time course analysis indicated that 
treatment with IGF-1 (10 ng/mL) resulted in a transient increase in 
retinal cell proliferation after 12h (Fig. 1C), with no alteration after 72h 
(Fig. 1D). Exposure to IGF-1 (10 ng/mL) for 24h was sufficient to lead to 
a ~50% increase in retinal cell proliferation similar to that observed at 
48h (IGF-1 24h: 149.8 ± 6.21%; IGF-1 48h: 155.9 ± 5.65%; Fig. 1A,C, 
E). Hence, exposure to IGF-1 (10 ng/mL) for 24h was chosen for further 
study. 

We also found that inhibition of vesicular protein transport, using 
brefeldin A (30 ng/mL), prevented the mitogenic effect induced by IGF-1 
on retinal cells (Fig. 2A), suggesting that IGF-1 can also induce the 
secretion of some neurotrophic molecule important for cell prolifera
tion. Previously, we have shown that exposure to IGF-1 (10 ng/mL) for 
24h stimulates secretion of IL-4 by retinal cells, while IL-4 increases IGF- 
1R levels/activation for ensuring RGC survival (Granja et al., 2019). 
Here, we showed that exposure to IGF-1 cyclically regulates protein 
levels of IL-4 over time, increasing IL-4 levels in retinal cells after 24h 
(Fig. 2B and C). Taken together, these findings suggest that IL-4 may 
play an important role on retinal cell proliferation induced by IGF-1. In 
addition, IGF-1 regulates protein levels of BDNF over time, decreasing 
BDNF levels after 24h (Fig. 2B,D), a neurotrophin that inhibits retinal 
cell proliferation (dos Santos et al., 2003). 
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Fig. 1. IGF-1 stimulates transient cell proliferation in 
retinal cell cultures. (A,B) Primary cultures from rat 
neural retinas were treated with IGF-1 (0.1–100 ng/ 
mL) for 48h, or (C,D) IGF-1 (10 ng/mL) for the 
indicated time intervals. Plots represent mean 
(±SEM) [3H]-thymidine uptake expressed as per
centage of control group (set on 100%; white bars), 
with sample size provided within each bar. Data were 
analyzed by one-way ANOVA followed by Holm- 
Sidak’s test (**p < 0.01, ***p < 0.001). EC50 value 
was calculated in GraphPad Prism 8 using a nonlinear 
curve fit ([IGF-1] vs. normalized response - method of 
least squares with variable slope). (E) Representative 
images (bright-field) of retinal cells treated with IGF- 
1 (10 ng/mL) for 24h, 48h or 144h (scale bar = 20 
μm).   

Fig. 2. IGF-1 regulates expression of neurotrophic 
molecules in retinal cell cultures. (A) Primary retinal 
cultures were treated with an inhibitor of vesicular 
protein transport (brefeldin A; 30 ng/mL) or IGF-1 
(10 ng/mL) for 24h, and cell proliferation was 
assessed by [3H]-thymidine incorporation assay. Plots 
represent mean (±SEM) [3H]-thymidine uptake 
expressed as percentage of control group (set on 
100%; white bars), with sample size provided within 
each bar. Additionally, (B-D) cultured retinal cells 
were exposed to IGF-1 (10 ng/mL) for the indicated 
time periods for assessing IL-4 and BDNF levels by 
immunoblotting. Plots represent mean (±SEM) pro
tein optical density (normalized to β-actin) expressed 
as fold change relative to control cultures (repre
sented as a dashed line), with N = 3–5 experiments 
using independent retinal cultures. Data were 
analyzed by (A) one-way ANOVA followed by Holm- 
Sidak’s test or (C,D) two-tailed paired Student’s t-test 
(*p < 0.05, **p < 0.01, ***p < 0.001).   
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3.2. Multiple intracellular signaling pathways underlie IGF-1-induced 
retinal cell proliferation 

Previous studies have indicated that IGF-1R endocytosis is required 
for stimulation of MAPK/ERK pathway and cell proliferation induced by 
IGF-1 (Chow et al., 1998; Girnita et al., 2007; Solomon-Zemler et al., 
2017). MDC, an endocytosis inhibitor, was proven to inhibit 
clathrin-mediated IGF-1R endocytosis and consequent MAPK/ERK 
activation and cell proliferation triggered by IGF-1 (Chow et al., 1998; 
Solomon-Zemler et al., 2017). To assess the impact of receptor inter
nalization on IGF-1-induced proliferative effect, we treated retinal cells 
with MDC and IGF-1. Accordingly, treatment with MDC inhibited the 
IGF-1-induced retinal cell proliferation (Fig. 3A), suggesting that re
ceptor endocytosis is a critical step for retinal cell proliferation triggered 
by IGF-1. 

MAPK signaling cascades are key modulators of cell proliferation 
(Zhang and Liu, 2002). Here, we assessed the involvement of three 
MAPK cascades on IGF-1-induced retinal cell proliferation by treating 
retinal cells with inhibitors of MEK/ERK (PD98059), JNK (JNKi), or 
p38-MAPK (SB202190) pathways. Our results indicated that activation 
of MAPK/ERK and JNK pathways (but not p38-MAPK) underlie the 
proliferative effect of IGF-1 on retinal cells (Fig. 3B–D). In addition, 
treatment with pharmacological inhibitors of Src (PP1, Fig. 3E), PI3K 
(LY294002, Fig. 3F), PKC (chelerythrine chloride and rottlerin, Fig. 3G 
and H), or phospholipase-C (U73122, Fig. 3I) prevented increased 

[3H]-thymidine uptake by retinal cells exposed to IGF-1, suggesting that 
IGF-1 stimulates retinal cell proliferation also by activation of Src, PI3K, 
PKCδ and phospholipase-C (PLC). 

3.3. IGF-1-induced retinal cell proliferation requires activation of EGFR 

IGF-1 has been reported to transactivate EGFR to activate the MAPK/ 
ERK pathway and promote cell cycle progression in different cell lines 
(Ahmad et al., 2004; Meng et al., 2007; Roudabush et al., 2000; Saxena 
et al., 2008; Zhou et al., 2006). In these cells, IGF-1 can transactivate 
EGFR through MMP-mediated shedding of heparin-binding EGF, while 
inhibition of MMP can prevent IGF-1-induced ERK activation and cell 
proliferation (Roudabush et al., 2000; Saxena et al., 2008; Zhou et al., 
2006). So, we next assessed the involvement of EGFR and MMP on 
IGF-1-induced retinal cell proliferation. Retinal cells were treated with 
an EGFR inhibitor (AG-1478) or MMP9 inhibitor (MMPi). Both AG-1478 
and MMP9i inhibited IGF-1-induced cell proliferation (Fig. 4A and B). 
Although co-exposure to EGF (0.1 ng/mL) and IGF-1 for 24h did not 
increase mitogenic responsiveness to IGF-1 (Fig. 4C), treatment with 
EGF for 24h after initial exposure to IGF-1 potentiated IGF-1-induced 
retinal cell proliferation (Fig. 4D). Taken together, these results sug
gest that activation of EGFR plays a critical role on IGF-1-induced retinal 
cell proliferation. 

Fig. 3. IGF-1 requires receptor endocytosis and activity of multiple kinases to enhance retinal cell proliferation. Primary retinal cultures were treated with IGF-1 (10 
ng/mL) or following drugs for 24h: (A) MDC (endocytosis inhibitor; 0.75 nM), (B) PD98059 (MAPK/ERK inhibitor; 37.5 μM), (C) JNKi (JNK inhibitor; 0.5 μM), (D) 
SB202190 (p38-MAPK inhibitor; 20 μM), (E) PP1 (Src inhibitor; 1 μM), (F) LY294002 (PI3K inhibitor; 25 μM), (G) chelerythrine chloride (pan-PKC inhibitor; 1.25 
μM), (H) rottlerin (PKCδ inhibitor; 2 μM), or (I) U73122 (phospholipase-C inhibitor; 4 μM). Plots represent mean (±SEM) [3H]-thymidine uptake expressed as 
percentage of control group (set on 100%; white bars), with sample size provided within each bar. Data were analyzed by one-way ANOVA followed by Holm-Sidak’s 
test (**p < 0.01, ***p < 0.001). 
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4. Discussion 

We have previously reported that IGF-1 can activate PI3K/AKT 
pathway in the rat retina and that expression of IGF-1 and p-IGF-1R 
declines during postnatal retinal development (Maturana-Teixeira et al., 
2015) in parallel with a remarkable decrease in retinal cell proliferation 
(Braga et al., 2013). Here, we showed that IGF-1 induces retinal cell 
proliferation through activation of the PI3K pathway. In addition, in
hibition of vesicular protein transport blocked the mitogenic effect of 
IGF-1, suggesting that IGF-1 can induce the secretion of some neuro
trophic molecule important for cell proliferation. A possible neuro
trophic molecule is IL-4, since IGF-1 stimulates IL-4 secretion by retinal 
cells, and IL-4 promotes activation of IGF-1R/PI3K/AKT pathway in 
primary retinal cultures (Granja et al., 2019). Consistent with this, our 
present findings indicated that IGF-1 transiently upregulated levels of 
IL-4 in parallel with increased retinal cell proliferation. It is also possible 
that IGF-1 regulates the secretion of other molecules important for cell 
proliferation, such as vascular endothelial growth factor (VEGF), since 
IGF-1 can enhance VEGF expression and signaling in the retina (Ruberte 
et al., 2004; Smith et al., 1999), and VEGF also stimulates retinal pro
genitor cell proliferation (Hashimoto et al., 2006; Nishiguchi et al., 
2007). 

We also showed that IGF-1 requires activation of MAPK/ERK and 
JNK pathways for enhancing retinal cell proliferation. Furthermore, 
blocking activation of EGFR prevented retinal cell proliferation trig
gered by IGF-1, suggesting that activation of EGFR mediates IGF-1- 
induced retinal cell proliferation. Accordingly, previous studies have 
indicated that transactivation of EGFR is required for IGF-1 to activate 
MAPK/ERK pathway and induce cell proliferation in different cell lines 
(Ahmad et al., 2004; Meng et al., 2007; Roudabush et al., 2000; Saxena 
et al., 2008; Zhou et al., 2006). In these cells, IGF-1 can transactivate 
EGFR via MMP-mediated proteolytic release of EGF-like ligands from 
the cell surface (Roudabush et al., 2000; Saxena et al., 2008; Zhou et al., 
2006) or via Src activation (Meng et al., 2007). It has been reported that 
IGF-1 can activate MMPs in Müller glial cells (MGCs) (Lorenc et al., 
2015, 2018), the main type of glia in the vertebrate retina. In MGCs, 
activation of different receptors has been reported to activate ERK 
through a mechanism that requires both MMP- and Src-mediated 
transactivation of EGFR (Harun-Or-Rashid et al., 2014, 2016). In the 
current study, we indicated that activity of both MMP9 and Src is 

necessary for IGF-1-induced retinal cell proliferation. However, whether 
IGF-1 induces transactivation of EGFR in retinal cells by MMP9 or Src 
remains to be investigated. 

Intracellular activation of PKCδ exerts a central role for IGF-1 
ensuring cell proliferation in different cell types (Czifra et al., 2006; Li 
et al., 1998; Takahashi et al., 2015). Interestingly, a recent study iden
tified that PKCδ can also be secreted from liver cancer cells and behave 
as a growth factor, inducing cell proliferation through IGF-1R and 
subsequently ERK activation (Yamada et al., 2021). Previously, we have 
shown that activation of PKCδ stimulates releasing of neurotrophic 
factors by retinal cells and promotes RGC survival (Braga et al., 2018; de 
Rezende Corrêa et al., 2010). Here, we identified that PKCδ is also 
required for IGF-1-induced retinal cell proliferation. Furthermore, we 
showed that PLC is another central protein for IGF-1-stimulated retinal 
cell proliferation, similarly to that reported in other cell types (Faenza 
et al., 2005; Xu et al., 2001). 

In summary, the current study indicates that IGF-1 stimulates cell 
proliferation in rat retinal cells, which is according to previous findings 
in fish (Becker et al., 2021; Otteson et al., 2002; Zygar et al., 2005), mice 
(Wang et al., 2018) and human (Mellough et al., 2015; Zerti et al., 2021) 
models. Furthermore, we unveil potential mechanisms by which IGF-1 
ensures retinal cell proliferation (Fig. 5), including secretion of neuro
trophic factors, activation of EGFR, and activation of multiple kinases 
associated with mitogenesis. A better understanding of these mecha
nisms could help establish new therapeutic strategies, since homeostatic 
proliferation is crucial for proper retinal development, and its disruption 
is associated with retinal abnormalities such as dysplasia, retinal 
degeneration and retinal tumors. 
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