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Bioinformatics analysis
identifies potential diagnostic
signatures for coronary artery
disease
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Abstract

Background: Coronary artery disease (CAD) is the leading cause of mortality worldwide. We

aimed to screen out potential gene signatures and construct a diagnostic model for CAD.

Method: We downloaded two mRNA profiles, GSE66360 and GSE60993, and performed anal-

yses of differential expression, gene ontology terms, and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways. The STRING database was used to identify protein–protein inter-

actions (PPI). PPI network visualization and screening out of key genes were performed using

Cytoscape software. Finally, a diagnostic model was constructed.

Results: A total of 2127 differentially expressed genes (DEGs) were identified in GSE66360, and

527 DEGs in GSE60993. Of the 153 DEGs from both datasets that showed differential expression

between CAD patients and controls, 471 biological process terms, 35 cellular component terms,

17 molecular function terms, and 49 KEGG pathways were significantly enriched. The top 20 key

genes in the PPI network were identified, and a diagnostic model constructed from five optimal

genes that could efficiently separate CAD patients from controls.

Conclusion: We identified several potential biomarkers for CAD and built a logistic regression

model that will provide a valuable reference for future clinical diagnoses and guide therapeutic

strategies.
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Introduction

Cardiovascular disease (CVD) is the leading
cause of death worldwide, and coronary
artery disease (CAD) is considered one of
the most serious CVDs.1,2 CAD is the pre-
dominant cause of ischemic heart disease,
which often leads to myocardial infarction
and death.3 Coronary heart disease is
always caused by reduced blood flow in
the heart muscle and the accumulation of
fat and plaques in the heart’s arteries.4

Globally, the total number of deaths
from CAD increased by 4.1% to 55.8 mil-
lion between 2005 and 2015, although age-
standardized mortality rates fell by 17.0%
through prevention and treatment strategies
established from growing knowledge of
basic CAD pathophysiology.5 Treatment
strategies for patients with complex CAD
often include percutaneous coronary inter-
vention or coronary artery bypass grafting.6

However, mortality and rehospitalization
rates for CAD patients remain high,7 so
the identification and development of spe-
cific gene signatures in the early diagnosis
of CAD is crucial to improve treatment.

A number of noninvasive diagnostic
approaches have been applied to the early
diagnosis of CAD, of which exercise elec-
trocardiography is the most studied and
least accurate for female patients.
However, electrocardiography combined
with imaging techniques such as echocardi-
ography or nuclear single photon emission
computed tomography can improve the
accuracy of diagnosis.8 Additionally, a
series of key genes has been identified to

aid CAD diagnosis through the analysis of

expression profiles. For instance, circulat-

ing miR-765 and miR-149 were identified

as potential noninvasive diagnostic bio-

markers for geriatric CAD patients.9

Zhang et al.10 showed that several

microRNAs and long non-coding RNAs

influence the progression of CAD by regu-

lating the function of vascular endothelial

cells, smooth muscle cells, and macro-

phages, as well as vascular inflammation

and metabolism. These studies suggested

that noninvasive diagnostic approaches

have important diagnostic value in CAD.
In this study, we downloaded the mRNA

profiles of blood samples from CAD

patients and healthy controls, then ana-

lyzed differential gene expression between

the two groups to explore the diagnostic

signatures of potential key genes. A pro-

tein–protein interaction (PPI) network was

constructed based on 153 differentially

expressed genes (DEGs) that showed signif-

icant expression differences. Twenty key

genes were screened out, and five genes

closely associated with CAD progression

were further optimized and used to build a

logistic regression model with good diag-

nostic value for CAD.

Materials and methods

Data collection

mRNA profiles GSE6636011 and

GSE6099312 were downloaded from the

Gene Expression Omnibus (GEO, https://
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www.ncbi.nlm.nih.gov/geo/). GSE66360
included blood samples from 49 CAD
patients and 50 healthy controls, and
mRNA profiles were detected using the
Affymetrix Human Genome U133 Plus 2.0
Array (Thermo Fisher Scientific, Santa
Clara, CA, USA). GSE60993 included
blood samples from 26 CAD patients and
seven healthy controls, and mRNA profiles
were examined by a HumanWG-6 v3.0 gene
expression beadchip (Illumina, San Diego,
CA, USA).

Differential expression analysis

The probes of mRNA profiles were stripped
when expression values were 0 in more than
50% of the samples, and remaining data
were standardized using the robust multi-
array method. Differential expression anal-
ysis was performed based on the limma
function package of R language,13 with
|log 2 (fold change [FC])| > 1 and false
discovery rate (FDR) � 0.05 as significant
thresholds to screen differentially expressed
probes.

Functional enrichment analysis

Gene ontology (GO) analysis (including
biological process [BP], molecular function
[MF], and cellular component [CC]) and
Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment
analysis were carried out based on the
clusterProfiler function package of R lan-
guage.14 P< 0.05 was used as the threshold
to screen significantly enriched GO terms
and KEGG pathways.

Protein–protein interaction (PPI) networks

The STRING database (https://string-db.
org/, version 11.0) analyzes and predicts
functional connections and interactions of
proteins.15 PPI interactions with a confi-
dence score of � 0.4 were retained after
identification by the STRING database.

The PPI network was visualized using
Cytoscape software (https://cytoscape.org/,
version 3.7.2),16 and key genes of the PPI
network were screened by the cytoHubba
plug-in of Cytoscape software based on
the Maximal Clique Centrality (MCC)
algorithm.

Construction of the logistic regression
model

The glm function in R language17 was used
to construct a multivariate logistic regres-
sion model with the expression value of
target genes as the continuous prediction
variable and the sample type as the categor-
ical response value (disease or not).
Variables were then further screened using
the stepwise regression method, and used to
reconstruct the model. The model calculat-
ed the P value of each variable, and varia-
bles with P< 0.05 were used to construct
the final model. Generally, points with a
COOK distance> 0.5 affect the accuracy
of the model. The area under the curve
(AUC) value represents the quality of the
model, with a larger AUC value represent-
ing a better model.

Results

Identification of DEGs

The mRNA profiles from GSE66360 and
GSE60993 databases were standardized,
and no obvious change was seen in the
data deviation of each sample (Fig. S1). A
total of 2127 DEGs (925 upregulated and
1202 downregulated) were identified in
CAD patients compared with controls
from the GSE66360 dataset (Figure 1a).
DEG expression differed between patients
and controls (Figure 1b). A total of 527
DEGs (333 upregulated and 194 downregu-
lated) were identified in CAD patients com-
pared with controls from the GSE60993
dataset (Figure 1c). DEG expression again
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differed between patients and controls

(Figure 1d). Moreover, 153 DEGs from

the two datasets simultaneously exhibited

notable differences between CAD patients

and controls (Figure 1e).

Functional and pathway enrichment

analysis

GO and KEGG pathway analyses were per-

formed on the 153 DEGs from the two

Figure 1. Identification of DEGs. (a) Volcano plot of DEGs between CAD patients and healthy controls
from the GSE66360 dataset. The horizontal axis shows Log2(FC) and the vertical axis shows –Log10(FDR).
Red points represent up-regulated genes, blue points represent down-regulated genes, and black points
indicate no significant difference. (b) Heatmap of DEGs between CAD patients and healthy controls from
the GSE66360 dataset. The horizontal axis shows genes and the vertical axis shows samples. Red indicates
high expression and blue indicates low expression. (c) Volcano plot of DEGs between CAD patients and
healthy controls from the GSE60993 data set. The horizontal axis shows Log2 FC and the vertical axis shows
–Log10 (FDR). Red points represent up-regulated genes and blue points represent down-regulated genes.
(d) Heatmap of DEGs between CAD patients and healthy controls from the GSE60993 dataset. The hor-
izontal axis shows genes and the vertical axis shows samples. Red indicates high expression and blue
indicates low expression. (e) Venn diagram of DEGs.
DEGs, differentially expressed genes; CAD, coronary artery disease.
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datasets showing significant differences

between CAD patients and controls. We

identified 471 significantly enriched BP

terms including neutrophil-mediated immu-

nity, T cell activation, and leukocyte differ-

entiation and migration (P< 0.05); 35

significantly enriched CC terms including

specific granule, tertiary granule, and secre-

tory granule (P< 0.05); and 17 significantly

enriched MF terms including protein heter-

odimerization activity, carbohydrate bind-

ing, and signaling pattern recognition

receptor activity. We also detected 49 sig-

nificantly enriched KEGG pathways

including tuberculosis, hematopoietic cell

lineage, phagosome, and human immuno-

deficiency virus 1 infection. The full list of

significantly enriched GO terms and

KEGG pathways is shown in Table S1.

The top 15 most significantly enriched BP

terms are shown in Figure 2a, the top 15

most significantly enriched CC terms in

Figure 2b, the top 15 most significantly

enriched MF terms in Figure 2c, and the

top 15 most significantly enriched KEGG

pathways in Figure 2d.

Key genes in PPI networks

Functional connections and interactions of

proteins were predicted by the STRING

database, and interactions between protein

pairs with a confidence score of � 0.4 were

selected. The PPI network was visualized

using Cytoscape software (Figure 3a) and

shown to contain 125 nodes, with a maxi-

mum node degree of 47 and minimum node

degree of 1. The integrin alpha M gene had

Figure 2. Enrichment of GO terms and KEGG pathways based on 153 DEGs. (a) The 15 most significantly
enriched BP terms. (b) The 15 most significantly enriched CC terms. (c) The 15 most significantly enriched
MF terms. (d) The 15 most significantly enriched KEGG pathways. The horizontal axis shows the number of
enriched genes and the vertical axis shows the corresponding biological process or KEGG pathway. Longer
bars represent more enriched genes. Colors represent the P value.
GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular
component; MF, molecular function.
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the maximum node degree. CytoHubba

plug-in was used to screen key genes in

the PPI network according to the MCC

algorithm, and the top 20 key genes by

score are shown in Table S2. The subnet-

work composed of these 20 genes is shown

in Figure 3b.

The logistic regression diagnostic model

We combined the expression value of 20

key genes from GSE66360 and GSE60993

datasets, and removed the batch effect

using the sva package18 of R language.

We randomly selected two-thirds of the

samples as the training set, and the remain-

ing samples as the testing set (Table S3).

Logistic regression model 1 was constructed

with the expression value of all 20 key genes

as the continuous type prediction variable

and the sample type (disease or not) as the

categorical response variable. Eight genes

including CLEC4D, CLEC5A, HP, LCN2,

MMP9, SLC2A3, SLPI, and TIMP2 were

screened out from the 20 predicted to be

closely related to CAD progression.
Logistic regression model 2 was then

constructed with these eight genes as a var-

iable; the detailed parameters of this model

are shown in Table 1. An odds ratio (OR)

value> 1 indicated that genes with high

expression promoted the occurrence of

CAD, whereas an OR value< 1 indicated

that genes with high expression inhibited

the occurrence of CAD. P values of

CLEC4D, HP, LCN2, MMP9, and

TIMP2 were less than 0.05, suggesting

that these genes contributed markedly to

the model. Finally, logistic regression

model 3 was constructed from these five

genes. Sample GSM1620895 (with a

COOK distance> 0.5) was found to have

little impact on the accuracy of the model

(Figure 4a). The accuracy of the model was

evaluated by the receiver operating charac-

teristic (ROC) curve; AUC values in the

Figure 3. Construction of the PPI network. (a) PPI network of shared genes. Each dot represents a node.
importance of the gene in the network is reflected by the degree of the node which is represented by the
number of lines connected to the dot (node). A thicker line reflects a stronger interaction between two
nodes. Red points represent up-regulated genes and blue points represent down-regulated genes. (b) The
network of key genes selected using the Maximal Clique Centrality algorithm. Important genes are shown in
darker colors.
PPI, protein–protein interaction.
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training set and testing set were 0.9295 and

0.8674, respectively (Figure 4b), suggesting

that the model constructed by these five

genes had a good diagnostic value in CAD.

Discussion

While CVD has traditionally been consid-

ered a disease of western society, its global

incidence is on the rise and it is currently

more prevalent in low and middle income

countries in Asia and Africa.19 CAD is a

multifactorial inherited disorder associated

with at least three major risk factors:

hypertension, diabetes mellitus, and obesi-

ty.20 Although gene expression analysis has

had a great impact on the identification and

development of biomarkers in the cardio-

vascular field, current risk prediction

models only provide a rough estimation of

individual risk.21 Therefore, the identifica-

tion and development of new biomarkers

for CVD risk prediction is still an urgent

need.
In recent decades, several genes have

been identified or predicted to closely par-

ticipate in the occurrence and development

of CAD. For instance, the intercellular

Table 1. Model interpretation of the logistic regression model 2.

GENE b SE OR 95% CI P-value

CLEC4D 1.9146 0.4868 6.7842 0.4868–6.7842 0.0001

CLEC5A –0.5006 0.3714 0.6062 0.3714–0.6062 0.1777

HP –1.1738 0.5409 0.3092 0.5409–0.3092 0.0300

LCN2 –1.1003 0.46 0.3328 0.46–0.3328 0.0167

MMP9 2.0203 0.5648 7.5404 0.5648–7.5404 0.0003

SLC2A3 –0.4833 0.3006 0.6167 0.3006–0.6167 0.1079

SLPI 0.5277 0.3287 1.695 0.3287–1.695 0.1084

TIMP2 –1.0497 0.4608 0.35 0.4608–0.35 0.0227

SE, standard error; OR, odds ratio; CI, confidence interval.

Figure 4. Construction of the logistic regression diagnostic model. (a) The logistic regression diagnostic
model. Red dashed line indicates the COOK distance. (b) The ROC curve. The horizontal axis represents
the false positive rate and the vertical axis represents the true positive rate.
ROC, receiver operating characteristic.
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adhesion molecule 1 gene polymorphism
rs5498 was correlated with a decreased
risk of myocardial infarction and may
reduce the risk of CAD.22 Additionally,
gene knockout of transforming growth
factor-b, its receptors, and downstream sig-
naling proteins demonstrated the impor-
tance of this pleiotropic cytokine during
vasculogenesis and the maintenance of vas-
cular homeostasis.23 A meta-analysis sug-
gested that receptor for advanced
glycation end products gene polymorphism
Gly82Ser was associated with an increased
risk of CAD, especially in Chinese
populations,24 while another meta-analysis
indicated that the T allele of the 5,10-meth-
ylenetetrahydrofolate reductase gene
rs1801133 polymorphism was a risk factor
for CAD and that this was partly mediated
by abnormal lipid levels.25 Moreover, Hou
et al.26 reported that the interleukin-6 gene
–174G/C polymorphism C allele was asso-
ciated with increased CAD risk in
Caucasians. Nevertheless, early diagnosis
and treatment of CAD is still difficult, so
the use of informatics approaches may help
prioritize molecules that are biologically
and functionally related to CAD, which
will aid diagnosis and treatment.

Herein, a network based on the PPI was
constructed with 153 DEGs that showed
significant expression differences between
CAD patients and controls in the two
GEO datasets. Twenty key genes were
selected (Table S2), of which five optimal
genes (CLEC4D, HP, LCN2, MMP9, and
TIMP2) were predicted to be closely related
to the development of CAD. Although the
role of CLEC4D in CAD remains unclear,
necrotic cell sensor CLEC4E was identified
to promote a proatherogenic macrophage
phenotype through activation of the
unfolded protein response.27 Graves
et al.28 reported that HP was not only an
important antioxidant in vascular inflam-
mation and atherosclerosis, but also an
enhancer of inflammation in cardiac

transplants. LCN2 plays a pivotal role in
processes involved in atherogenesis by pro-
moting the polarization and migration of
monocytic cells and the development of
macrophages towards foam cells.29 Wang
et al.30 found that the expression of
MMP9 was significantly upregulated in
CAD samples compared with controls,
and participated in the progression of
CAD. These reports confirm that the bio-
markers we predicted are functionally sim-
ilar to known CAD risk factors, providing a
theoretical basis for the subsequent logistic
regression diagnostic model. The accuracy
of this model was evaluated by the ROC
curve, identifying AUC values of 0.9295 in
the training set and 0.8674 in the testing set.

Conclusion

Our logistic regression model was shown to
have a good diagnostic value in CAD. Our
study therefore provides new insights into
the discovery of diagnostic biomarkers in
CAD which could aid early clinical diagno-
sis and guide therapeutic strategies. Our
results should be verified using a larger
sample size.

Data availability

The mRNA profiles GSE66360 and GSE60993

were downloaded from Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/

geo/).
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