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ABSTRACT

Objective: Hypercholesterolaemia transforms macrophages into lipid-laden foam cells 
in circulation, which can activate the immune response. Compromised autophagy and 
inflammatory cytokines are involved in the pathogenesis and progression of metabolic diseases. 
The aim of this study was to identify the role of autophagy as a modulator of the inflammatory 
response and cytotoxicity in macrophages under hypercholesterolaemic conditions.
Methods: High cholesterol-induced cytokine secretion and alteration of autophagy-
associated molecules were confirmed by cytokine array and western blot analysis, 
respectively. To confirm whether autophagic regulation affects high cholesterol-induced 
cytokine release and cytotoxicity, protein levels of autophagic molecules, cell viability, and 
cytotoxicity were measured in cultured macrophages treated autophagy enhancers.
Results: Cholesterol treatment increased cytokine secretion, cellular toxicity, and lactate 
dehydrogenase release in lipopolysaccharide (LPS)-primed macrophages. Concomitantly, 
altered levels of autophagy-related molecules were detected in LPS-primed macrophages 
under hypercholesterolaemic conditions. Treatment with autophagy enhancers reversed 
the secretion of cytokines, abnormally expressed autophagy-associated molecules, and 
cytotoxicity of LPS-primed macrophages.
Conclusion: Autophagy enhancers inhibit inflammatory cytokine secretion and reduce 
cytotoxicity under metabolic disturbances, such as hypercholesterolaemia. Modulation 
of autophagy may be a novel approach to control the inflammatory response observed in 
metabolic diseases.
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INTRODUCTION

Metabolic syndrome is common and highly prevalent worldwide and can lead to metabolic 
diseases, such as cardiovascular disease, stroke, and type 2 diabetes.1 It is characterised by 
visceral obesity, hypertension, dyslipidaemia, hypertriglyceridaemia, and hyperglycaemia,2 
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and defective macrophage cholesterol metabolism causes atherosclerosis.3 In particular, 
hypercholesterolaemia causes transforming circulating monocytes/macrophage into 
cholesterol-laden macrophages, which trigger an inflammatory immune response under a 
complex cytokine milieu,4 by promoting and secretion of inflammatory mediators including 
interleukin (IL)-1β, IL-6, and IL-18.5-7 The interplay between inflammation and foam cell 
formation is closely related to both inflammatory and metabolic diseases.8 Therefore, the 
modulation of this relationship may be important for metabolic disturbances, such as 
hypercholesterolaemia.

Autophagy is an intracellular degradation system that removes and recycles damaged 
organelles or cytoplasmic accumulation.9 Intracellular lipid droplets or lipid accumulations are 
metabolised by autophagy and cytoplasmic neutral hydrolases to generate energy and supply 
structural components to cell membranes.10 Autophagy is involved in immune responses, 
and compromised autophagy can lead to inflammatory diseases.11 Previous studies have 
demonstrated that increasing autophagy by rapamycin inhibits macrophage activation,12 and 
that rapamycin and torin decrease inflammatory cytokine levels in macrophages.13

Therefore, the aim of this study was to identify autophagy as a modulator of cytokine 
secretion in macrophages in metabolic disorders such as high cholesterol. To do this, we 
examined the relationship between cholesterol loading and inflammatory cytokine in 
macrophages. We also confirmed the role of autophagy on inflammatory cytokine secretion 
in macrophages during high cholesterol conditions.

MATERIALS AND METHODS

1. Cell culture
The murine macrophage cell line, RAW 264.7, was used in this study. RAW 264.7 cells were 
cultured in Dulbecco’s Modified Eagle’s Medium (high glucose) (WELGENE Inc., Gyeongsan, 
Korea), supplemented 10% fetal bovine serum (FBS) (Gibco, Grand Island, NY, USA) and 
1% antibiotic-antimycotic containing streptomycin, amphotericin B, and penicillin (Gibco). 
RAW 264.7 cells were incubated at 37°C in a 5% CO2 incubator under humid conditions.

2. Lipopolysaccharide (LPS) and cholesterol treatment
RAW 264.7 cells were treated with LPS (Escherichia coli serotype 055:B5) and cholesterol from 
Sigma-Aldrich (St. Louis, MO, USA). We treated cells with 100 ng/mL LPS diluted in cell culture 
media with 1% FBS and 1% antibiotic-antimycotic for 2 hours and washed with phosphate-
buffered saline (PBS). The cells were then treated with 25 and 50 μg/mL cholesterol, diluted 
in cell culture media with 1% FBS and 1% antibiotic-antimycotic, for 22 hours, respectively. At 
the end of incubation, the cultured cells and cell-conditioned media were collected for further 
experiments. To enhance autophagy, rapamycin (4 µM, 1 hour; LC Laboratories, Woburn, MA, 
USA) and torin-1 (1 µM, 2 hours; Tocris Bioscience, Bristol, UK) were used in this study.

3. Mouse cytokine array
The mouse cytokine array kit was purchased from R&D Systems, Inc. (Minneapolis, MN, 
USA). LPS-primed RAW 264.7 conditioned media were collected after treatment with/
without cholesterol. The mixtures containing media and antibody were added to a multi-
dish containing membranes and incubated overnight at 4°C on a rocker. The next day, each 
membrane was incubated with streptavidin-horseradish peroxidase (HRP) for 30 minutes at 
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room temperature (RT). After washing, signals on the membranes were visualised by exposing 
the membrane to an X-ray film. Negative control spots were used as the background values.

4. Filipin III
Filipin III was purchased from Tocris Bioscience and dissolved in dimethyl sulfoxide to 
obtain stock solution (25 mg/mL). The stock solution was diluted in PBS to obtain a working 
solution (50 µg/mL). After fixation in 4% paraformaldehyde, cells were treated with Filipin III 
working solution for 2 hours at RT. The cells were then washed with PBS and positive signals 
were observed using a ZEISS LSM 980 confocal laser scanning microscope (Carl Zeiss NTS 
Ltd., Oberkochen, Germany).

5. Total cholesterol assay (cholesterol influx or uptake)
The total cholesterol assay (DoGenBio Co., Ltd., Seoul, Korea) was performed after treatment 
with LPS with or without cholesterol. According to the manufacturer’s protocol, cells were 
homogenised in 200 µL of solution of chloroform, isopropanol, and NP-40 on ice. After 
centrifugation at 15,000 × g for 10 minutes, the samples were dried at 50°C. Cholesterol assay 
buffer was added to each dried sample and the reaction mixture was then added to each well. 
Samples were incubated at 37°C for 30 minutes, and absorbance was measured at 570 nm 
using a VERSA max microplate reader (Molecular Devices, Sunnyvale, CA, USA).

6. Western blot analysis
Cells were lysed with lysis buffer containing protease and phosphatase single-use inhibitor 
cocktail (1:100; Thermo Fisher Scientific, Waltham, MA, USA), and incubated for 20 minutes 
on ice. After incubation, the lysates were centrifuged at 8,000 rpm at 4°C for 10 minutes. 
The protein concentration was determined using a BCA protein assay kit (Thermo Fisher 
Scientific), and the samples were denatured at 97°C for 5 minutes. The samples were then 
loaded, separated on precast 12-well gradient (4%–15%) polyacrylamide gels (SMOBIO 
Technology, Inc., Hsinchu, Taiwan), and transferred onto an Immobilon-P PVDF membrane 
(Millipore, Burlington, MA, USA). The membranes were blocked with 5% skim milk and 
incubated overnight on a rocker with a primary antibody at 4°C. The primary antibodies used 
were mouse anti-autophagy-related gene (ATG)5 (B-9), mouse anti-ATG16 (E-10), mouse anti-
ATG7 (B-9), and mouse anti-cathepsin B from Santa Cruz Biotechnology (Dallas, TX, USA), 
and rabbit anti-LC3B, rabbit anti-p62, rabbit anti-cathepsin D, and rabbit anti-lysosomal-
associated membrane protein 1 (LAMP-1) (C54H11) from Cell Signaling Technology (Danvers, 
MA, USA). After washing with tris-buffered saline with Tween20, the membranes were 
incubated with HRP conjugated secondary anti-mouse and anti-rabbit IgG antibodies from 
Santa Cruz Biotechnology for 1 hour at RT. HRP-conjugated β-actin antibody was used as 
an internal control. Membranes were incubated with western blotting detection reagent 
(Cytiva, Marborough, MA, USA), and signals were visualised using ImgeQuant LAS 4000 (GE 
Healthcare, Chicago, IL, USA), and measured using ImageJ software (National Institutes of 
Health, Bethesda, MD, USA).

7. Enzyme-linked immunosorbent assay (ELISA)
Secreted IL-1β and IL-27 (Invitrogen, Carlsbad, CA, USA), IL-1α and IL-6 (Abbkine Scientific 
Co., Ltd., Wuhan, China), and RANTES (R&D Systems, Inc.) levels in conditioned media 
were evaluated using ELISA. All procedures were performed according to the manufacturer’s 
instructions. Briefly, each sample and standard were loaded onto each well and incubated 
overnight at 4°C for maximum sensitivity. After all reactions, the plates were read at 450 nm 
using a VERSA max microplate reader (Molecular Devices).
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8. Lysotracker
Lysotracker probes (Invitrogen) were used to track acidic organelles in the RAW 264.7. Probe 
stock solution (1 mM) was diluted in conditioned media to prepare a working solution (75 
nM), and cells were treated with this working solution for 30 minutes. Subsequently, the cells 
were observed under ZEISS LSM 980 confocal laser scanning (Carl Zeiss NTS Ltd.).

9. Lactate dehydrogenase (LDH) assay
Cell conditioned media were transferred to a multi-well plate to detect released LDH levels 
due to cell membrane damage and cytotoxicity using an LDH assay kit (Invitrogen). The 
reaction mixture was added to each sample well, mixed well by tapping, and incubated at RT 
for 30 minutes. The stop solution was then added to each well, and the plates were read at 
490/680 nm using a VERSA max microplate reader (Molecular Devices).

10. Statistical analysis
Statistical analyses were performed using GraphPad Prism 7.0 software (GraphPad Software, 
San Diego, CA, USA). Statistical data were obtained by performing 2-way analysis of variances 
followed by a Tukey’s post hoc tests. Results are presented as the mean ± standard error of 
the mean (SEM) of at least 3 independent experiments. A p-value <0.05 was considered as 
statistically significant in this study.

RESULTS

1.  High cholesterol triggers cell cytotoxicity and secretion of cytokines in 
LPS-primed macrophages

By using Filipin III, which binds cholesterol, we confirmed the increased cholesterol uptake 
in cholesterol treated LPS-primed RAW 264.7 cells, which showed increased expression 
of Filipin III fluorescence, compared to the untreated control (Fig. 1A). Treatment with 
cholesterol (25 and 50 μg/mL) showed efficient cholesterol influx in LPS-primed RAW 264.7 
cells (Fig. 1B). To detect cell cytotoxicity, we conducted a cell viability assay and an LDH assay 
in LPS-primed macrophages after treatment with cholesterol (Fig. 1C and D). The graphs 
show that treatment with cholesterol (50 μg/mL) significantly decreased cell viability and 
increased LDH release compared to the control or LPS-primed macrophage. A cytokine array 
was performed to determine whether cholesterol affected cytokine secretion in immune cells. 
Blots from the cytokine array kit were incubated with LPS-primed RAW 264.7 conditioned 
medium after treatment with cholesterol (50 μg/mL). Seven cytokines with strong immuno-
positive spots were detected after cholesterol treatment (Fig. 1E). Cytokines including 
granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating 
factor (GM-CSF), IL-1α, IL-1β, IL-6, IL-27, and RANTES were upregulated in LPS-primed RAW 
264.7 conditioned medium after treatment with cholesterol compared to the control (Fig. 1E).

2. High cholesterol loading impairs autophagy in LPS-primed macrophages
To confirm whether cholesterol could impair the autophagy system in macrophages, we 
measured the protein levels of autophagy components in LPS-primed RAW 264.7 cells after 
treatment with cholesterol using western blot analysis (Fig. 2A and B). The levels of LC3-II, a 
marker of autophagosomes, and p62, a marker of autophagic cargo receptors, were increased 
after treatment with cholesterol, compared to the untreated control. In addition, the protein 
levels of ATG16 and ATG5, which are essential factors for autophagosome formation, were 
decreased in both LPS-primed and non-primed macrophages after cholesterol treatment. 
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Defective lysosomes are the major cause of impaired autophagy flux as a result of the abnormal 
fusion of autophagosomes and lysosomes.14 Lysotracker probes were used to label lysosomes 
in RAW 264.7 macrophages (Fig. 2C). Strong fluorescence of lysotracker probes was observed 
under untreated conditions. This fluorescence was decreased in LPS-primed macrophages 
after treatment with cholesterol, suggesting impairment of lysosomes. Lysosome-related 
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*p<0.05, **p<0.01, ***p<0.001 vs. untreated RAW 264.7 macrophages (without both treatments with LPS and cholesterol); ###p<0.001 vs. LPS-primed macrophages.



markers, including LAMP-1, cathepsin B, and cathepsin D, were determined using western blot 
analysis (Fig. 2D and E). Treatment with 50 μg/mL cholesterol considerably reduced LAMP-1 
protein levels. Although no significant difference was found in the levels of cathepsin B, the 
protein levels of pro-cathepsin D and cathepsin D heavy chain were altered in both LPS-
primed macrophages and LPS-primed macrophages with cholesterol.

3.  Autophagy inducers enhance high cholesterol-induced reduction of ATGs 
in LPS-primed macrophages

To examine whether autophagy inducers, such as rapamycin and torin, modulate cholesterol-
induced alterations in ATGs, we performed western blot analysis (Fig. 3). After pretreatment 
with rapamycin or torin, LPS was treated to RAW 264.7 macrophages and cholesterol 
was incubated for 22 hours. Upon pretreatment with rapamycin, ATG7 levels increased 
significantly compared to those present in a vehicle-treated normal condition. In addition, 
LAMP-1, ATG7, and LC3-II protein levels increased in LPS-primed macrophages that were pre-
treated with rapamycin compared to levels in macrophages lacking rapamycin pretreatment 
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under high cholesterol conditions (Fig. 3A and B). The p62 protein levels only decreased in 
LPS-primed macrophages, when compared to the levels in LPS-primed macrophages with 
rapamycin pretreatment (Fig. 3A and B), indicating restoration of autophagy activity. Torin 
pretreatment produced an effect similar to that observed with rapamycin pretreatment (Fig. 
3C and D). Upon pretreatment with torin LAMP-1 levels increased significantly compared 
to those in vehicle-treated normal condition. The LAMP-1, ATG7, and LC3-II protein 
levels increased significantly in LPS-primed macrophages that were pre-treated with torin 
compared to levels without pretreatment with torin under high cholesterol conditions 
(Fig. 3C and D). The p62 protein levels decreased in LPS-primed macrophages with torin 
pretreatment, compared to those without pretreatment with torin (Fig. 3C and D).

4.  Autophagy inducers regulate high cholesterol-induced cytokine secretion 
and cytotoxicity in LPS-primed macrophages

We assessed whether autophagy inducers modulate the high cholesterol-induced secretion 
of cytokines and cellular damage by performing ELISA and LDH assays (Fig. 4). Rapamycin 
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Fig. 2. (Continued) High cholesterol induces alterations of autophagy-related molecules in LPS-primed macrophages. (A, B) By using western blotting, the 
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macrophages.



pretreatment significantly reversed the high cholesterol-induced release of IL-1β and IL-27 in 
LPS-primed macrophages, compared to that without pretreatment with rapamycin (Fig. 4B 
and D). Torin pretreatment reduced high cholesterol-induced secreted concentrations of IL-1α, 
IL-6, and IL-27 in LPS-primed macrophages (Fig. 4A, C, and D). Unexpectedly, the RANTES 
concentration was independent of treatment with autophagy inducers (Fig. 4E). Cell cytotoxicity 
assessed by the LDH assay revealed that rapamycin and torin pretreatment efficiently reversed 
high cholesterol-induced cellular toxicity in LPS-primed macrophages (Fig. 4F).
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DISCUSSION

In this study, cholesterol-laden macrophages showed an increased release of cytokines, 
including IL-1β, IL-1α, IL-6, IL-27, and RANTES, in the cytokine array. High cholesterol 
levels were toxic to macrophages. High cholesterol levels facilitate the impairment of 
autophagy machinery with abnormal levels of autophagosomal and lysosomal molecules. 
The autophagy inducers rapamycin and torin, improved autophagy dysfunction, and cytokine 
secretion from macrophages was influenced by rapamycin or torin treatment. Consequently, 
autophagy inducers alleviate cellular toxicity in macrophages under high cholesterol 
conditions. These results suggest that autophagy modulation may have cytokine secretory 
and cytotoxin regulatory effects in macrophages under metabolic disturbances, such as 
hypercholesterolaemia.

Metabolic overloads due to cholesterol uptake affect macrophage structure and functions, 
including their morphological extension, macrophage polarization (M1-like or M2-like), and 
efferocytosis.15,16 Hypercholesterolaemia is responsible for cholesterol-laden macrophages, 
with cholesterol promoting the pro-inflammatory M1 phenotype in a glycolysis-dependent 
manner.15,16 Autophagy plays an important role in regulating intracellular lipid droplets 
and lipid metabolism,17 and controlling immune responses.18 Autophagic abnormalities, 
including defects in autophagosome formation, also lead to lipid accumulation and cause 
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excessive inflammation.17,18 Structurally, autophagosomes by extension of phagophores fuse 
with lysosomes to degrade autophagic contents.19 The lysosomal pathway of autophagy 
also plays an important role in the degradation of lipid droplet-stored triglycerides and 
cholesterol.17 Lysosomal dysfunction or impairment results in foam cell formation.20,21 
Therefore, intact activated autophagy is essential for lipid metabolism and immune reactions 
in macrophages.17,18 To generate autophagosomes, autophagic molecules, including ATGs, are 
required.19 Compromised autophagy results in p62 accumulation.22 In our study, under high 
cholesterol conditions, abnormally expressed autophagy-associated molecules, such as ATGs 
and LC3-II, increased in response to treatment with autophagy enhancers in macrophages. In 
addition, the increased p62 level was reduced upon treatment with autophagy enhancer torin. 
LAMP-1, a lysosomal marker and an indicator of lipophagy activation, was reduced in LPS-
primed macrophages under high cholesterol conditions, indicating lysosomal dysfunction. 
In addition, cathepsin D levels were aberrantly altered, indicating abnormal changes in 
lysosomal hydrolases. These changes may contribute to the activation of inflammatory 
cytokines and cellular toxicity. When autophagy enhancers were used, abnormal LAMP-1 
levels were reversed despite cholesterol loading, indicating that they ameliorated lysosomal 
impairment due to high cholesterol.

Under high cholesterol conditions, multiple cytokines, including G-CSF, GM-CSF, IL-1α, IL-1β, 
IL-6, IL-27, and RANTES, are secreted from macrophages. Previous studies have shown that 
macrophage foam cells in splenocytes exhibit elevated expression of G-CSF, which is involved 
in the production of neutrophils and bone-marrow monocytes.3 Also, in atherosclerosis, GM-
CSF plays an important role in differentiating blood-derived monocyte into macrophages, and 
furthermore, in forming cholesterol-laden foam cells.23 The IL-1 family, which include IL-1α and 
IL-1β, is involved in the inflammatory response observed in obesity.24 In addition, IL-1α and IL-
1β production contributes to atherosclerotic plaque formation.25 IL-6-mediated inflammatory 
responses are closely associated with cholesterol synthesis and metabolic diseases, such as 
atherosclerosis, dementia, and type 2 diabetes.26 In the early atherosclerotic stages, RANTES 
is required for monocyte recruitment and lesion development.27 Consistent with previous 
studies, our cytokine array results indicate that high cholesterol promotes the secretion of 
these cytokines in cholesterol-laden foam cells, and autophagy enhancers mostly reversed the 
upregulated secretion of these cytokines. Although RANTES was upregulated in LPS-primed 
macrophages under high cholesterol conditions, this upregulation was caused by LPS treatment 
rather than high cholesterol. RANTES levels were independent of pretreatment with rapamycin 
or torin. Since G-CSF and GM-CSF are involved in the differentiation of monocytes into 
macrophages, these experiments were excluded in this study.

This study has several limitations. First, we used only the RAW 264.7 cell line. Analyses 
utilising additional models incorporating different macrophage types, such as bone-marrow 
derived or peritoneal macrophages, would have provided more conclusive support to our 
findings. Second, we only performed in vitro experimentation on the RAW 264.7 cell line. 
The modulation of cytokine secretion and cytotoxicity via autophagy enhancer is yet to 
be validated with an in vivo model of hypercholesterolaemia, Third, we chose a high-dose 
cholesterol treatment regime to determine the detrimental effects of cholesterol. Cholesterol 
plays an important role in host homeostasis, and lower doses tend to have a protective effect; 
therefore, a higher dose (50 μg/mL cholesterol) was chosen for the purpose of our study.

In conclusion, high cholesterol-laden macrophages impaired autophagy. Autophagy 
enhancers regulate cytokine secretion in cholesterol-laden macrophages. In particular, 
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hypercholesterolaemia causes cholesterol-laden macrophages, which trigger an inflammatory 
immune response and cellular toxicity. Although autophagy is known to regulate inflammatory 
cytokines, this study suggests additional cytokines involving hypercholesterolaemia by cytokine 
array. The findings demonstrate the cytokine-regulating properties of autophagy enhancers 
under hypercholesterolaemic conditions. Targeting autophagy may be a novel approach to 
control metabolic disturbances, such as hypercholesterolaemia.
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