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Abstract

The JAK2V617F mutation commonly found in myeloproliferative neoplasms (MPNs) induces 

constitutive phosphorylation/activation of the signal transducer and activator of transcription 3 

(Stat3). However, the contribution of Stat3 in MPN evoked by JAK2V617F remains unknown. To 

determine the role of Stat3 in JAK2V617F-induced MPN, we generated Stat3-deficient 

Jak2V617F-expressing mice. Whereas expression of Jak2V617F resulted in a PV-like disease 

characterized by increased red blood cells (RBC), hematocrit, neutrophils and platelets in the 

peripheral blood of Jak2V617F knock-in mice, deletion of Stat3 slightly reduced RBC, and 

hematocrit parameters and modestly increased platelet numbers in Jak2V617F knock-in mice. 

Moreover, deletion of Stat3 significantly increased the neutrophil counts/percentages and 

markedly reduced the survival of mice expressing Jak2V617F. These phenotypic manifestations 

were reproduced upon bone marrow transplantation into wild-type animals. Flow cytometric 

analysis showed increased hematopoietic stem cell and granulocyte-macrophage progenitor 

populations in the bone marrow and spleens of Stat3-deficient Jak2V617F mice. Stat3 deficiency 

also caused a marked expansion of Gr-1+/Mac-1+ myeloid cells in Jak2V617F knock-in mice. 

Histopathologic analysis revealed marked increase in granulocytes in the bone marrow, spleens 

and livers of Stat3-deficient Jak2V617F-expressing mice. Together, these results suggest that 

deletion of Stat3 increases the severity of MPN induced by Jak2V617F.
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INTRODUCTION

The JAK2V617F mutation has been found in most patients with Philadelphia chromosome-

negative myeloproliferative neoplasms (MPNs) including polycythemia vera (PV), essential 

thrombocythemia (ET) and primary myelofibrosis (PMF).1–5 Expression of JAK2V617F 

results in constitutive activation of the JAK2 tyrosine kinase and its downstream signaling 

pathways,1,2,6 and confers cytokine hypersensitivity to hematopoietic cells and 

progenitors.1,2

Several studies using bone marrow transplantation, transgenic and knock-in mouse models 

of Jak2V617F have confirmed a pathogenic role for JAK2V617F mutation in MPNs,6–13 but 

how JAK2V617F mediates hematopoietic transformation/MPNs remains poorly understood. 

Unraveling the contribution of signaling pathways downstream of JAK2V617F in MPNs 

will improve our understanding of the pathogenesis of MPNs and lead to new therapeutic 

strategies for MPNs. Several members of the signal transducer and activator of transcription 

(Stat) family proteins including Stat1, Stat3 and Stat5 are constitutively phosphorylated/

activated in MPN cells expressing JAK2V617F.1,2,14,15 We and other groups have shown 

previously that Stat5 is critical for JAK2V617F-evoked PV disease in mice.16,17 Recently, it 

has been shown that Stat1 promotes megakaryopoiesis and plays a role in induction of ET-

like phenotype in a mouse model of JAK2V617F.18 However, the role of Stat3 in MPN 

mediated by JAK2V617F remains unknown.

Stat3 is an important signaling molecule that is phosphorylated/activated in response to a 

variety of cytokines including interleukin-6 (IL-6), IL-11, and granulocyte-colony 

stimulating factor (G-CSF).19 It has been suggested that Stat3 serves as a negative regulator 

of granulopoiesis and positive regulator of B lymphopoiesis.20,21 It also has been reported 

that Stat3-deficient mice exhibit mitochondrial dysfunction and defects in hematopoietic 

stem cell (HSC) and progenitor function.22 Constitutive activation of Stat3 has been 

observed in various human malignancies.23 Although Stat3 plays a tumor-promoting role in 

some malignancies, such as in pancreatic tumorigenesis and myeloid neoplasms induced by 

KrasG12D24,25 and in gastric cancer caused by the Helicobacter pylori infection,26 other 

studies also have found a tumor suppressive function of Stat3 in certain malignancies. For 

instance, Stat3 negatively regulates BRAFV600E-induced thyroid tumorigenesis27 or 

suppresses PTEN loss-induced glioblastoma.28 Thus, Stat3 can positively or negatively 

regulate cell growth and tumor progression. Here, we sought to determine the role of Stat3 

in JAK2V617F-evoked MPN using conditional Stat3 knock-out (Stat3 floxed) and 

Jak2V617F knock-in mice. Our results show that deletion of Stat3 increases neutrophil 

counts in the peripheral blood and enhances expansion of hematopoietic progenitors and 

myeloid precursor cells in the bone marrow (BM) and spleens of Jak2V617F knock-in mice. 

Furthermore, deletion of Stat3 markedly reduces the survival in a Jak2V617F knock-in 

mouse model of MPN. Taken together, these results suggest a negative role for Stat3 in 

Jak2V617F-induced MPN.
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MATERIALS AND METHODS

Mice

Conditional Jak2V617F knock-in6 and floxed Stat3 (Stat3fl/fl) mice29 have been described 

previously. MxCre mice30 (purchased from the Jackson Laboratory, Bar Harbor, ME, USA) 

were crossed with Jak2V617F and Stat3fl/fl mice to generate Jak2V617F-expressing 

(MxCre;V617F/+), Stat3-deficient (MxCre;Stat3fl/fl) and Stat3-deficient Jak2V617F-

expressing (MxCre;V617F/+;Stat3fl/fl) mice. Mice were administrated 2 doses of 200μg 

polyinosine-polycytosine (pI-pC, GE Healthcare, Piscataway, NJ, USA) by intraperitoneal 

injection to induce Cre expression. All animal studies were approved by the Institutional 

Animal Care and Use Committee of SUNY Upstate Medical University.

Blood and tissue analyses

Blood was collected from tail vein and complete blood counts were measured on Hemavet 

950FS (Drew Scientific, Dallas, TX, USA). Mouse tissue specimens (femurs, spleens and 

livers) were fixed in 10% neutral buffered formalin and embedded in paraffin. Tissue 

sections (4 μm) were then stained with hematoxylin and eosin (H&E).

Flow cytometry

Single-cell suspensions from BM and spleens were prepared and stained for 20 min on ice 

with either allophycocyanin (APC)- or phycoerythrin (PE)-conjugated monoclonal 

antibodies against Ter119, CD71, CD41, CD61, Mac-1, Gr-1, B220 or Thy-1. For stem cell/

progenitor analysis, BM or spleen cells were stained with antibodies against lineage (Lin) 

markers (CD3, CD4, CD8α, CD19, B220, Gr-1, Ter119 and IL-7R (CD127), and c-Kit, 

Sca-1, Flk2 (CD135), CD34, CD16/32 (FcγRII/III) for 60 min on ice. All flow cytometry 

antibodies were purchased from eBioscience or BioLegend (San Diego, CA, USA). For cell 

cycle analysis, lineage-negative cells were first enriched by magnetic activated cell sorting 

(MACS; Miltenyi) and then stained with monoclonal antibodies against lineage (Lin) 

markers, c-Kit and Sca-1 along with Hoechst 33342 (Sigma-Aldrich, St. Louis, MO, USA) 

and Pyronin Y (Sigma-Aldrich, St. Louis, MO, USA). Flow cytometry was performed with 

an LSRII flow cytometer (BD Biosciences, San Diego, CA, USA) and analyzed using 

FlowJo software (TreeStar, Ashland, OR, USA).

Colony-forming assays

BM (2 × 104) or spleen (1 × 105) cells were plated in duplicate in methylcellulose medium 

M3434 (Stem Cell Technologies, Vancouver, BC, Canada) containing cytokines. Burst-

forming units-erythroid (BFU-E), colony-forming units-granulocyte-macrophage (CFU-

GM), and colony-forming units-granulocyte, erythrocyte, macrophage, and megakaryocyte 

(CFU-GEMM) colonies were scored on day 7. To detect Erythropoietin (Epo)-dependent/

independent colony-forming unit-erythroid (CFU-E) colonies, BM or spleen cells (1 × 105) 

were seeded in duplicate in methylcellulose medium M3234 (Stem Cell Technologies, 

Vancouver, BC, Canada) in the presence or absence of Epo (3 U/ml). CFU-E colonies were 

counted after 2 days by staining with benzidine solution (Sigma-Aldrich, St. Louis, MO, 

USA).
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Bone marrow transplantation assay

Total BM cells from control, MxCre;V617F/+, or MxCre;V617F/+;Stat3fl/fl mice were 

harvested two weeks after pI-pC induction. BM cells (1 × 106) were transplanted by retro-

orbital injection into lethally irradiated (2 × 550 cGy) C57BL/6 recipient mice. Mice were 

maintained on acidified water.

Quantitative real-time PCR

Total RNA was extracted from multi-potent progenitors (MPP) from control, 

MxCre;V617F/+, and MxCre;V617F/+;Stat3fl/fl mice using RNeasy Mini Kit (Qiagen, 

Valencia, CA, USA) and reverse transcribed by using QuantiTect Reverse Transcription kit 

(Qiagen). Quantitative real-time PCR was carried out with SYBR Green PCR master mix 

(Roche Diagnostics) on a LightCycler 480 (Roche Applied Science, Indianapolis, IN, USA) 

using the following primers: AACGACCTGCAGCAATACCA and 

AAGGTGATCAGGTGCAGCTC for Stat3, AGCTCCAAAAGCGAGTACCA and 

TGACGCTCAACGTGAAGAAG for SOCS3, CCTGTGCCAGTATGATGTGG and 

CAGGGTCACACTCGTCAATG for Notch1, ATCGCTGCAGCTTCCTATGT and 

AGTCATGCTTTCCCGTGTTC for C/EBP-β, CGCCGCTAGAGGTGAAATTC and 

TTGGCAAATGCTTTCGCTC for 18S. The data were normalized to 18S and fold-change 

in gene expression was determined by the ΔΔCt method.

Statistical analysis

Results are presented as mean ± SEM, and statistical significance was determined by one-

way analysis of variance (ANOVA) or student t-test using Prism Version 5 software 

(GraphPad, San Diego, CA). P <0.05 was considered statistically significant.

RESULTS

To determine the role of Stat3 in Jak2V617F-induced MPNs, we crossed our conditional 

Jak2V617F knock-in mice6 with Stat3 floxed (Stat3fl/fl) mice29 and MxCre transgenic 

mice,30 and generated the MxCre;Stat3fl/fl, MxCre;V617F/+ and MxCre;V617F/+;Stat3fl/fl 

mice. The expression of Jak2V617F and the deletion of Stat3 were simultaneously induced 

in hematopoietic progenitors of these mice at 4 weeks after birth by intraperitoneal injection 

of two doses of 200μg polyinosine-polycytosine (pI-pC). Four groups of mice were 

analyzed: control (Stat3fl/fl); Stat3-deleted (MxCre;Stat3fl/fl), Jak2V617F-expressing 

(MxCre;V617F/+) and Stat3-deleted Jak2V617F-expressing (MxCre;V617F/+;Stat3fl/fl) 

mice. Immunoblot analysis showed that Stat3 was almost completely deleted in 

MxCre;Stat3fl/fl and MxCre;V617F/+;Stat3fl/fl mice upon induction with pI-pC (Figure 

1a). Interestingly, all MxCre;V617F/+;Stat3fl/fl mice died within 4 weeks after pI-pC 

injection with a median survival of 18 days, while no death was observed in control and 

MxCre;V617F/+ groups during this time period (Figure 1b). Due to early deaths in Stat3-

deleted Jak2V617F-expressing (MxCre;V617F/+;Stat3fl/fl) mice, they were assessed at 2–3 

weeks after pI-pC injection unless otherwise specified. MxCre;Stat3fl/fl mice died within 6 

weeks after pI-pC injection with a median survival of 21 days (Figure 1b). MxCre;Stat3fl/fl 

mice were analyzed at 3–4 weeks after pI-pC injection.
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All induced MxCre;V617F/+ mice displayed a PV-like MPN characterized by increased red 

blood cells (RBC), hematocrit, platelets, and neutrophils in their peripheral blood (Figures 

1c-f). Deletion of Stat3 significantly increased neutrophil counts and percentage in 

Jak2V617F knock-in mice (Figures 1f and g). Correspondingly, lymphocyte counts and 

percentage were proportionally reduced in MxCre;V617F/+;Stat3fl/fl mice compared to 

control and MxCre;V617F/+ mice (Figures 1h and i). RBC and hematocrit parameters were 

slightly decreased whereas platelet counts were modestly increased in MxCre;V617F/

+;Stat3fl/fl mice compared with MxCre;V617F/+ mice (Figures 1c-e). MxCre;Stat3fl/fl 

mice showed significant increase in neutrophil counts but decrease in RBC, hematocrit, and 

platelet counts in their peripheral blood compared with control animals (Figure 1c-f). 

Splenomegaly was observed in both MxCre;V617F/+ and MxCre;V617F/+;Stat3fl/fl mice 

(Figure 1j). Spleen size/weight in MxCre;V617F/+;Stat3fl/fl mice was smaller than in 

MxCre;V617F/+ mice but was significantly larger than in control animals (Figure 1j).

Histopathologic analyses of the BM sections from MxCre;Stat3fl/fl mice showed increased, 

predominantly mature, granulocytic cells (Figure 2a). BM of MxCre;V617F/+ mice showed 

trilineage hyperplasia with increased immature erythroid and myeloid precursors and 

increased megakaryocytes (Figure 2a). BM of MxCre;V617F/+;Stat3fl/fl mice showed 

markedly increased immature myeloid (granulocytic) precursors and megakaryocytes but 

less erythroid precursors (Figure 2a). Spleen sections from MxCre;Stat3fl/fl mice showed 

red pulp with increased immature and mature granulocytes and also maturing erythroid 

precursors (Figure 2b). Spleen sections from MxCre;V617F/+ mice showed attenuation of 

white pulp and expansion of red pulp with clusters of immature erythroid precursors and 

dysplastic megakaryocytes (Figure 2b). Spleen sections from of MxCre;V617F/+;Stat3fl/fl 

mice exhibited diminished white pulp and expanded red pulp with immature and mature 

granulocytic myeloid cells and megakaryocytes (Figure 2b). Liver sections from 

MxCre;Stat3fl/fl mice showed histology similar to the control animals (Figure 2c). Livers 

from MxCre;V617F/+ mice showed relatively normal architecture with some vacuolar 

degeneration, whereas livers from MxCre;V617F/+;Stat3fl/fl mice exhibited significant 

infiltration of granulocytes (Figure 2c).

Flow cytometric analysis revealed significant increase in myeloid (Gr-1+/Mac-1+) 

precursors in both BM and spleens of Stat3-deficient (MxCre;Stat3fl/fl) mice compared with 

control animals (Figures 3a and b). The frequency of erythroid precursors (Ter119+CD71+) 

was reduced in the BM but increased in the spleens of Stat3-deficient (MxCre;Stat3fl/fl) 

mice compared with control animals (Figures 3a and b). Mice expressing Jak2V617F 

(MxCre;V617F/+) exhibited significant increase in early (CD71+) and late (CD71+Ter119+) 

erythroid precursors in the BM and spleens but no significant change in Gr-1+/Mac-1+ 

populations compared with control animals at 2–3 weeks after pI-pC induction (Figures 3a 

and b). Deletion of Stat3 in the context of Jak2V617F led to a dramatic expansion of the 

Gr-1+/Mac-1+ population in the BM and spleens of MxCre;V617F/+;Stat3fl/fl mice (Figures 

3a and b). Deletion of Stat3, however, resulted in significant decrease in late erythroid 

precursors (CD71+Ter119+) in the BM of Jak2V617F mice as myeloid precursors (Gr-1+/

Mac-1+) were dramatically expanded in the BM of MxCre;V617F/+;Stat3fl/fl mice (Figures 

3a and b). Although the frequency of late erythroid precursors (CD71+Ter119+) in the 

spleens of MxCre;V617F/+;Stat3fl/fl mice was reduced compared with MxCre;V617F/+ 
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mice, the CD71+Ter119+ population was still significantly greater (~15 fold) in the spleens 

of MxCre;V617F/+;Stat3fl/fl mice compared to control animals (Figures 3a and b). 

Interestingly, CD71+ early erythroid precursors were slightly increased in the BM and 

spleens of Stat3-deleted Jak2V617F-expressing mice (Figures 3a and b). Megakaryocytic 

populations (CD41+CD61+) were significantly expanded in the spleens of MxCre;V617F/

+;Stat3fl/fl mice (Figures 3a and b). B-cell (B220+) population was proportionately reduced 

in the BM and spleens of MxCre;Stat3fl/fl, MxCre;V617F/+ and MxCre;V617F/+;Stat3fl/fl 

mice (Figures 3a and b). Together, these results suggest that deletion of Stat3 enhances 

granulocytic/megakaryocytic cell expansion, decreases erythropoiesis to some extent and 

shortens the survival of Jak2V617F mice.

We further determined the effects of Stat3 ablation on hematopoietic stem cells (HSC) and 

progenitor compartments in mice expressing Jak2V617F by flow cytometric analysis. 

Deletion of Stat3 in Jak2V617F knock-in mice significantly increased the HSC-enriched 

LSK compartment (Lin−Sca1+c-kit+) and its subsets including long-term HSC (LT-HSC; 

Lin−Sca1+c-kit+CD34−CD135−), short-term HSC (ST-HSC; Lin-Sca1+c-

kit+CD34+CD135−), and multi-potent progenitors (MPP; Lin−Sca1+c-kit+CD34+CD135+) in 

the BM and spleens. Specifically, the increases in LSK, LT-HSC, ST-HSC and MPP 

populations were much greater in the spleens than in the BM of Stat3-deleted Jak2V617F 

mice (Figures 4a and b). Flow cytometric analysis also revealed marked expansion of 

granulocyte/macrophage progenitors (GMP; Lin−Sca1−c-kit+CD34+FcγRII/IIIhigh) in both 

BM and spleens upon concomitant deletion of Stat3 in mice expressing Jak2V617F (Figures 

4c and d). The megakaryocyte/erythroid progenitor compartment (MEP; Lin−Sca1−c-

kit+CD34−FcγRII/III−) was reduced in the BM of MxCre;V617F/+;Stat3fl/fl mice compared 

with MxCre;V617F/+ mice. However, no significant difference in MEP was observed in the 

spleens between MxCre;V617F/+ and MxCre;V617F/+;Stat3fl/fl mice, both of which had a 

significantly higher (4 to 5 fold) MEP population than in control mice (Figures 4c and d). 

LSK, LT-HSC, ST-HSC, and MPP populations in the BM of Stat3-deficient 

(MxCre;Stat3fl/fl) mice were comparable to those in control animals (Supplementary Figure 

1a). However, there was a trend of increased LSK, LT-HSC, ST-HSC and MPP populations 

in the spleens of MxCre;Stat3fl/fl mice (supplementary Figure 1a). GMP and MEP 

populations were also significantly increased in the spleens of MxCre;Stat3fl/fl mice 

compared with control animals (Supplementary Figure 1b).

Next, we preformed progenitor colony assays to evaluate the effects of Stat3 deletion on 

hematopoietic progenitor compartments of Jak2V617F mice. Although there was no 

significant difference in BFU-E and CFU-GM colonies in the BM among control, 

MxCre;V617F/+ and MxCre;V617F/+;Stat3fl/fl mice at 2–3 weeks after pI-pC induction 

(Figure 4e), spleens of MxCre;V617F/+ and MxCre;V617F/+;Stat3fl/fl mice exhibited 

significantly larger numbers of BFU-E and CFU-GM colonies compared with control 

animals (Figure 4f). Noticeably, deletion of Stat3 further increased BFU-E and CFU-GM 

colonies in the spleens of mice expressing Jak2V617F (Figure 4f). BM and spleens of 

MxCre;V617F/+ mice exhibited significant increase in CFU-E colonies in the presence of 

erythropoietin (Epo) (Figures 4g and h). Deletion of Stat3 resulted in marked decrease in 

CFU-E colonies in the BM of MxCre;V617F/+;Stat3fl/fl mice (Figure 4g). However, the 
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numbers of CFU-E colonies in the presence of Epo in the spleens of MxCre;V617F/

+;Stat3fl/fl mice were comparable to that observed in the spleens of MxCre;V617F/+ mice 

(Figure 4h). Epo-independent CFU-E colonies, a hallmark feature of PV31, was also 

observed in the spleens of both MxCre;V617F/+ and MxCre;V617F/+;Stat3fl/fl mice 

(Figure 4i). However, there was a modest (not statistically significant) decrease in Epo-

independent CFU-E colony formation in the spleens of MxCre;V617F/+;Stat3fl/fl mice 

compared with MxCre;V617F/+ mice (Figure 4i). Overall, the deletion of Stat3 in 

Jak2V617F expressing mice was associated with an expansion of HSC and granulocyte/

macrophage (GMP) progenitor compartments and a trend towards decreased erythroid 

progenitors/precursors.

To address why deletion of Stat3 causes expansion of HSC compartment in mice expressing 

Jak2V617F, we performed cell cycle analysis on BM LSK cells from control, 

MxCre;V617F/+, and MxCre;V617F/+;Stat3fl/fl mice using Pyronin Y/Hoechst 33342 

staining. Compared with control LSK cells, significantly fewer numbers of Jak2V617F-

expressing LSK cells were in the quiescent G0 phase, with a higher proportion in the G1 and 

S/G2/M phases (Figures 5a and 5b). Concurrent deletion of Stat3 further enhanced 

Jak2V617F-evoked cell cycle entry of LSK cells (Figures 5a and 5b). These results suggest 

that deletion of Stat3 leads to increased proliferation of HSC pool in mice expressing 

Jak2V617F.

To assess whether the observed effects of Stat3 deficiency on Jak2V617F-induced MPN 

were cell-autonomous, we transplanted BM cells from pI-pC induced control, 

MxCre;V617F/+, and MxCre;V617F/+;Stat3fl/fl mice into lethally irradiated C57BL/6 wild 

type recipients as outlined in Figure 6a. Recipient animals were maintained for 8 weeks after 

transplantation. Similar to the primary Stat3-deficient Jak2V617F mice, recipients of the 

BM cells from MxCre;V617F/+;Stat3fl/fl mice exhibited significantly increased percentage 

of neutrophils and decreased percentage of lymphocytes in the peripheral blood (Figure 6b) 

and markedly elevated Gr-1+/Mac-1+ populations in both BM and spleens (Figures 6c and 

6d). Compared with control BM recipients, transplanted animals receiving BM cells from 

either MxCre;V617F/+ or MxCre;V617F/+;Stat3fl/fl mice exhibited increased numbers of 

RBC in their peripheral blood and increased percentage of erythroid precursors 

(CD71+Ter119+ , CD71+) in their BM and/or spleens (Figures 6b-d), indicating the presence 

of PV-like MPN in mice reconstituted with MxCre;V617F/+ or MxCre;V617F/+;Stat3fl/fl 

BM cells. However, the RBC counts were slightly lower and the platelet counts were 

slightly higher in the recipients of MxCre;V617F/+;Stat3fl/fl BM cells compared with the 

transplanted animals receiving MxCre;V617F/+ BM cells (Figure 6b). Recipients of 

MxCre;V617F/+;Stat3fl/fl mice BM cells also exhibited a significantly increased GMP 

population and a trend of increased LSK cells in the BM (Figure 6e). Together, these results 

suggest that the effects of Stat3 deficiency on Jak2V617F-induced MPN are cell-

autonomous.

Since homozygous Stat3 deletion led to early deaths in mice expressing Jak2V617F, we also 

assessed the effects of heterozygous Stat3 deletion on Jak2V617F-induced MPN. As 

expected, the expression of Stat3 in the BM of MxCre;V617F/+;Stat3fl/+ mice was almost 

half of those in control or MxCre;V617F/+ mice after pI-pC induction (Supplementary 
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Figure 2a). No early death was found in induced MxCre;V617F/+;Stat3fl/+ mice, which had 

a similar lifespan as Jak2V617F knock-in mice (data not shown). All MxCre;V617F/

+;Stat3fl/+ mice developed a PV-like MPN wih comparable blood parameters and 

splenomegaly to those observed in Jak2V617F knock-in mice after pI-pC injection 

(Supplementary Figures 2b-g). There was also no significant difference in splenic Epo-

independent CFU-E formation between MxCre;V617F/+;Stat3fl/+ and MxCre;V617F/+ 

mice (Supplementary Figure 2h). Furthermore, flow cytometric analysis showed no 

significant differences in myeloid, erythroid, and megakaryocytic precursors, as well as B- 

cell and T-cell populations between MxCre;V617F/+;Stat3fl/+ and MxCre;V617F/+ mice 

(Supplementary Figures 3a and b). Altogether, these data indicate that heterozygous deletion 

of Stat3 has no significant effect on Jak2V617F-induced MPN.

To determine whether the deficiency of Stat3 had any effect on signaling by other Stat 

proteins, we assessed the phosphorylation and expression of Stat5 and Stat1 proteins in the 

BM of control, MxCre;V617F/+ and MxCre;V617F/+;Stat3fl/fl mice by immunoblotting. 

Deletion of Stat3 did not cause any significant change in phosphorylation or expression of 

Stat5 in Jak2V617F knock-in mice BM (Figure 7a). However, phosphorylation and 

expression of Stat1 protein was significantly increased upon deletion of Stat3 in Jak2V617F 

knock-in mice BM (Figure 7a). We also assessed the expression levels of suppressor of 

cytokine signaling 3 (SOCS3) by immunoblotting since SOCS3 was found upregulated in 

JAK2V617F-positive MPN patient cells32 and SOCS3 was shown to inversely regulate the 

activation of Stat1 and Stat3 in response to G-CSF, INFγ and IL-6.20,33,34 We observed 

increased SOCS3 protein expression in the BM of MxCre;V617F/+ mice (Figure 7a). 

Deletion of Stat3 significantly inhibited the SOCS3 protein expression in the BM of 

Jak2V617F mice (Figure 7a).

To gain further insights into the mechanism by which Stat3 deficiency increases the myeloid 

cell expansion and severity of MPN phenotype in Jak2V617F knock-in mice, we analyzed 

the expression levels of specific genes in multi-potent progenitors (MPP) from control, 
MxCre;V617F/+ and MxCre;V617F/+;Stat3fl/fl mice using quantitative real-time PCR. The 

expression of Stat3 mRNA was almost undetectable in the MPP populations of 

MxCre;V617F/+;Stat3fl/fl mice, suggesting efficient deletion of Stat3 in the hematopoietic 

progenitors of these mice (Figure 7b). The expression of Notch1 was significantly 

downregulated in MPP populations from MxCre;V617F/+;Stat3fl/fl mice compared to those 

in control and MxCre;V617F/+ mice (Figure 7b). Similar to SOCS3 protein expression, 

SOCS3 mRNA expression was also significantly reduced in MxCre;V617F/+;Stat3fl/fl mice 

MPP compared to those in MxCre;V617F/+ mice (Figure 7b). In contrast, expression of C/

EBP-β was found significantly elevated in MPP populations from MxCre;V617F/+;Stat3fl/fl 

mice compared to those in control and MxCre;V617F/+ mice (Figure 7b). There was also a 

modest increase in C/EBP-α expression in MPP from MxCre;V617F/+;Stat3fl/fl mice (data 

not shown). These results suggest that decreased expression of Notch-1 and SOCS3 and 

increased expression of C/EBP-β induced by Stat3 deletion may contribute to the myeloid 

cell expansion in Stat3-deficient Jak2V617F knock-in mice.
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DISCUSSION

Constitutive phosphorylation/activation of Stat3 has been frequently observed in MPNs.15,35 

However, the precise role of Stat3 in the pathogenesis of MPNs remains unclear. In this 

study, we examined the role of Stat3 in the development of MPN using conditional 

Jak2V617F knock-in and Stat3-deficient mice. We found that ablation of Stat3 does not 

prevent the development of MPN, rather augments the myeloid cell expansion and decreases 

the survival in a Jak2V617F knock-in mouse model of MPN.

Stat3 can be activated by oncogenic tyrosine kinases (such as, JAK2V617F),15,35,36 by 

autocrine production of IL-637 or through activating somatic Stat3 mutations.38 Persistent 

activation of Stat3 has been observed in a variety of human malignancies. In some cases, 

such as in KrasG12D-induced pancreatic and myeloid malignancies, Stat3 promotes 

tumorigenesis.24,25 In other malignancies, such as BRAFV600E-induced thyroid 

tumorigenesis and PTEN loss-induced glioblastomas, Stat3 functions as a tumor 

suppressor.27,28 In this study, we have found that Stat3 is not essential for development of 

PV-like MPN in mice induced by Jak2V617F. We have observed that deletion of Stat3 

rather enhances the severity of MPN induced by Jak2V617F, suggesting a negative role of 

Stat3 in Jak2V617F-induced PV. Stat3 is also found to be constitutively phosphorylated/

activated in myelofibrosis (MF).15,35 Since all Stat3-deleted Jak2V617F (MxCre;V617F/

+;Stat3fl/fl) mice died within 4 weeks after pI-pC induction (Figure 1b), we were unable to 

assess the contribution of Stat3 in the development of MF evoked by Jak2V617F. Future 

studies will determine if Stat3 is required for the pathogenesis of MF and whether targeting 

of Stat3 could be beneficial for treatment of MF.

Previous reports have shown that Stat3 positively regulates B-cell development,21 and 

negatively regulates granulopoiesis.20 Indeed, we observed significantly increased numbers 

of neutrophils in the peripheral blood and increased percentages of Gr-1+/Mac-1+ myeloid 

precursors in the BM and spleens of Stat3-deficient Jak2V617F knock-in mice (Figures 1f, 

3a and 3b). We also observed significantly increased percentages of GMP populations in the 

BM and spleens of Stat3-deficient Jak2V617F mice compared with control or Jak2V617F 

mice (Figures 4c and d). Furthermore, the HSC compartment was significantly expanded in 

the BM and spleens of Stat3-deficient Jak2V617F mice (Figures 4a and b). Deficiency of 

Stat3 alone did not cause a significant expansion of HSC and GMP in the BM but splenic 

HSC and GMP populations were expanded upon Stat3 deletion (Supplementary Figures 1a 

and b). However, the expansion of HSC and GMP in the BM and spleens of Stat3-deficient 

Jak2V617F mice was significantly greater than that observed in mice with Jak2V617F 

expression or Stat3 deletion alone (Figures 4b and d, and Supplementary Figures 1a and b). 

Cell cycle analysis revealed that Jak2V617F expression increased the cycling of LSK cells 

(Figures 5a and b). Deletion of Stat3 further enhanced the cycling of Jak2V617F-expressing 

LSK cells (Figures 5a and b). Thus, increased number of HSC/progenitors in Stat3-deficient 

Jak2V617F mice could be due to increased proliferation of HSCs induced by Stat3 

deficiency. The phenotypic changes observed in primary Stat3-deficient Jak2V617F mice 

were reproduced in recipient animals that were transplanted with BM from Stat3-deficient 

Jak2V617F mice (Figure 6). This indicates that the observed effects of Stat3 deficiency in 

Jak2V617F knock-in mice were cell autonomous.
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We observed a compensatory increase in phosphorylation of Stat1 but not Stat5 in Stat3-

deficient Jak2V617F mice BM (Figure 7a), consistent with the previous reports that Stat1 

and Stat3 oppose each other’s activation in response to G-CSF, INFγ and IL-6.20,33,34 

Increased activation of Stat1 might be due to decreased expression of SOCS3, which is a 

negative regulator of cytokine signaling,39 and/or increased levels of cytokines, such as G-

CSF, INFγ and IL-6, which can induce phosphorylation of Stat1.19 Increased levels of 

SOCS3 expression was observed in granulocytes from JAK2V617F-positive MPN 

patients.32 Moreover, SOCS3 protein was found to be hyperphosphorylated and stabilized 

by JAK2V617F.40 We observed increased expression of SOCS3 mRNA and protein in 

Jak2V617F knock-in (MxCre;V617F/+) mice, and deletion of Stat3 significantly reduced the 

SOCS3 levels in Stat3-deficient Jak2V617F mice (MxCre;V617F/+;Stat3fl/fl) (Figures 7a 

and b). These data suggest that Stat3 is required for induction of SOCS3 in response to 

Jak2V617F. SOCS3 was shown to negatively regulate G-CSF receptor signaling and mice 

deficient in SOCS3 exhibited increased granulopoiesis.41,42 Thus, it is plausible that 

decreased expression of SOCS3 in the absence of Stat3 may partially contribute to the 

increased granulopoiesis and compensatory increase in Stat1 phosphorylation in Stat3-

deficient Jak2V617F mice. The loss of Stat1 was shown to reduce megakaryopoiesis and 

increase erythropoiesis in a transgenic Jak2V617F mouse model of MPN although Stat1 was 

not essential for ET phenotype in this model.18 Thus, the trend towards decreased 

erythropoiesis observed in Stat3-deleted Jak2V617F mice could also be partly due to a 

compensatory increase in Stat1 activation in these mice. In contrast, Stat5 ablation 

completely inhibited the PV phenotype in Jak2V617F knock-in and retroviral transduction/

transplantation mouse models.16,17 Therefore, the roles and requirements for Stat1, Stat3 

and Stat5 in MPNs are distinct.

We also found that Stat3 deficiency in Jak2V617F knock-in mice MPP resulted in 

significant reduction in Notch1 expression (Figure 7b). Notch signaling can play both 

oncogenic and tumor-suppressor functions.43 A recent study has suggested a tumor-

suppressor function of Notch1 in myeloid leukemia.44 Deletion of Notch1 resulted in 

significant expansion of GMP population in mice.44 The increase in myeloid cells and GMP 

populations observed in Stat3-deficient Jak2V617F mice could be in part due to reduced 

Notch1 expression. We also observed marked increase in C/EBP-β and modest increase in 

C/EBP-α expression in the MPP from Stat3-deficient Jak2V617F mice (Figure 7b and data 

not shown). C/EBPs play an important role in granulopoiesis.45 Mice deficient in C/EBP-

αexhibit defects in granulopoieis46 whereas ectopic expression of C/EBP-β induces 

granulocytic differentiation.47 Increased C/EBP-β and C/EBP-α expression induced by Stat3 

deficiency may also contribute to the myeloid cell expansion observed in Stat3-deficient 

Jak2V617F-expresssing mice.

In conclusion, our data show that Stat3 acts as a suppressor of Jak2V617F-induced MPN in 

mice. Several Stat3 inhibitors have been developed and currently undergoing pre-clinical 

and clinical testing for various human malignancies. Since Stat3 can positively or negatively 

regulate tumorigenesis, its role in different cancer settings should be carefully examined 

before utilizing the Stat3 inhibitors. Further studies will determine if Stat3 plays a 

pathogenic role in human MPNs (PV, ET and MF) and whether inhibition of Stat3 has 

beneficial or adverse effects in human MPNs.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Deletion of Stat3 leads to neutrophilia and early deaths in mice expressing Jak2V617F
(a) Immunoblot analysis of Stat3 protein expression in the BM of control (Stat3fl/fl), Stat3-

deleted (MxCre;Stat3fl/fl), Jak2V617F (MxCre;V617F/+) and Stat3-deleted Jak2V617F-

expressing (MxCre;V617F/+;Stat3fl/fl) mice. β-actin was used as a loading control. (b) 

Kaplan-Meier survival analysis of control, MxCre;Stat3fl/fl, MxCre;V617F/+ and 

MxCre;V617F/+;Stat3fl/fl mice (n=19) after pI-pC induction. Both MxCre;Stat3fl/fl and 

MxCre;V617F/+;Stat3fl/fl mice exhibited significantly decreased survival compared to 

control and MxCre;V617F/+ mice; ** indicates p<0.005, log-rank test. Peripheral blood red 

blood cells (c), hematocrit (d), platelets (e), neutrophils (f), neutrophil percentage (g), 

lymphocytes (h), lymphocyte percentage (i) were analyzed at 2–3 weeks (for control, 

MxCre;V617F/+ and MxCre;V617F/+;Stat3fl/fl mice) or 3–4 weeks (for MxCre;Stat3fl/fl 

mice) after induction with pI-pC (n=10 to 12). Spleen weight (j) was significantly increased 

in MxCre;V617F/+ and MxCre;V617F/+;Stat3fl/fl mice compared to controls; however, 

compared to MxCre;V617F/+ mice, spleen weight was significantly decreased in 

MxCre;V617F/+;Stat3fl/fl mice (at 2–3 weeks after pI:pC injection) (n=10). Data are 

presented as mean ± SEM. One-way ANOVA was used for comparisons of all four groups 

of mice, and student t-test was used to compare between two groups of mice (* indicates 

p<0.05; ** indicates p<0.005).
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Figure 2. Histopathologic analysis
(a) Hematoxylin and eosin (H&E) staining of the BM sections (500X) from 

MxCre;Stat3fl/fl mice show increased, predominantly mature, granulocytic cells. BM 

sections from MxCre;V617F/+ mice display hypercellularity with trilineage 

(megakaryocyte/erythrocyte/granulocyte) hyperplasia. BM sections from MxCre;V617F/

+;Stat3fl/fl mice show markedly increased immature granulocytic precursors and 

megakaryocytes but less erythroid precursors. (b) Spleen sections (H&E staining; 500X) 

from MxCre;Stat3fl/fl mice show expanded red pulp with increased immature and mature 

granulocytes and also maturing erythroid precursors. Spleen sections from MxCre;V617F/+ 

mice show attenuation of white pulp and expansion of red pulp with clusters of immature 

erythroid precursors and dysplastic megakaryocytes. Spleen sections from MxCre;V617F/

+;Stat3fl/fl mice exhibit diminished white pulp and expanded red pulp with immature and 

mature granulocytic myeloid cells and megakaryocytes. (c) Liver sections (H&E staining; 

500X) from MxCre;Stat3fl/fl mice show histology similar to the control animals. Liver 

sections from MxCre;V617F/+ mice show relatively normal architecture with little 

infiltration of myeloid cells, whereas livers from MxCre;V617F/+;Stat3fl/fl mice exhibit 

significant foci of infiltration by granulocytes.
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Figure 3. Flow cytometric analysis
(a) Dot plots demonstrate significant increase in myeloid (Gr-1+/Mac-1+) precursors in the 

BM and spleens of MxCre;Stat3fl/fl and MxCre;V617F/+;Stat3fl/fl mice compared with 

control and MxCre;V617F/+ mice. (b) Percentages of myeloid (Gr-1+/Mac-1+), erythroid 

(Ter119+/CD71+) and megakaryocytic (CD61+/CD41+) precursors as well as B-cells 

(B220+) and T-cells (Thy-1+) are shown in bar graphs as mean ± SEM (for control, 

MxCre;Stat3fl/fl and MxCre;V617F/+ mice, n=5, for MxCre;V617F/+;Stat3fl/fl mice , n=6). 

One-way ANOVA was used for comparisons of all four groups of mice, and student t-test 

was used to compare between two groups of mice (* indicates p<0.05; ** indicates 

p<0.005). Note that deletion of Stat3 leads to marked expansion of myeloid (Gr-1+/Mac-1+) 

precursors in the BM and spleens of mice expressing Jak2V617F.
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Figure 4. Deletion of Stat3 increases hematopoietic stem cell compartment and granulocyte-
macrophage progenitors (GMP) in Jak2V617F mice
(a) Flow cytometric analysis of LSK (Lin-Sca1+c-kit+), LT-HSC (Lin-Sca1+c-

kit+CD34−CD135−), ST-HSC (Lin−Sca1+c-kit+CD34+CD135−), and MPP (Lin−Sca1+c-

kit+CD34+CD135+), in the BM and spleens from control, MxCre;V617F/+, and 

MxCre;V617F/+;Stat3fl/fl mice at 2–3 weeks after pI-pC induction. Representative contour 

plots from four independent experiments are shown. (b) Percentages of LSK, LT-HSC, ST-

HSC, and MPP are shown in bar graphs as mean ± SEM (n=4). Data are presented as 

percentage of live cells. (c) Flow cytometric analysis of myeloid progenitors including CMP 

(Lin−Sca1−c-kit+CD34+FcγRII/IIIlo), GMP (Lin−Sca1−c-kit+CD34+FcγRII/IIIhi), and MEP 

(Lin−Sca1−c-kit+CD34−FcγRII/III−) in the BM and spleens from control, MxCre;V617F/+, 

and MxCre;V617F/+;Stat3fl/fl mice at 2–3 weeks after pI-pC induction. Representative 

contour plots from four independent experiments are shown. (d) Percentages of CMP, GMP 

and MEP are shown in bar graphs as mean ± SEM (n=4). (e-f) Hematopoietic progenitor 

colony assays. BM (2 × 104) (e) or spleen cells (1 × 105) (f) from control (n=4), 

MxCre;V617F/+ (n=4), and MxCre;V617F/+;Stat3fl/fl mice (n=5) were plated in complete 
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methylcellulose medium (Methocult M3434) containing cytokines. BFU-E, CFU-GM and 

CFU-GEMM colonies were scored 7–8 days after plating. (g-i) CFU-E colony assays. BM 

(g) or Spleen cells (h) (1 × 105) from control, MxCre;V617F/+, and MxCre;V617F/

+;Stat3fl/fl mice (n=4) were plated in methylcellulose medium (Methocult M3234) in the 

presence of erythropoietin (Epo; 3 U/ml). (i) Spleen cells (1 × 105) from control, 

MxCre;V617F/+, and MxCre;V617F/+;Stat3fl/fl mice (n=4) were plated in methylcellulose 

medium (Methocult M3234) in the absence of Epo. CFU-E colonies in the presence or 

absence of Epo were scored after 2 days. All data are shown as mean ± SEM (* indicates 

p<0.05 and ** indicates p<0.005).
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Figure 5. Deletion of Stat3 increases cell cycle entry of LSK cells in mice expressing Jak2V617F
(a) Flow cytometric analysis of Hoechst 33342 and Pyronin Y staining on LSK cells from 

control, MxCre;V617F/+, and MxCre;V617F/+;Stat3fl/fl mice BM. Representative contour 

plots from three independent experiments are shown. (b) The percentages of LSK cells in 

G0, G1 and S/G2/M phases of the cell cycle are presented in bar graph as mean ± SEM 

(*p<0.05 and ** p<0.005).
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Figure 6. The effects of Stat3 deficiency on MPN induced by Jak2V617F are cell-autonomous
(a) Experimental design for cell autonomous BM transplantation assay. (b) Peripheral blood 

RBC and platelet counts and percentages of neutrophils and lymphocytes from mice 

receiving control (n=3), MxCre;V617F/+ (n=3), and MxCre;V617F/+;Stat3fl/fl (n=4) BM at 

8 weeks after BM transplantation. (c) Flow cytometric analysis of BM and spleens from 

recipient mice transplanted with control, MxCre;V617F/+, or MxCre;V617F/+;Stat3fl/fl 

BM. Representative dot plots are presented. (d) The percentages of myeloid (Gr-1+/

Mac-1+), erythroid (Ter119+/CD71+) and megakaryocytic (CD61+/CD41+) precursors as 

well as B-cells (B220+) and T-cells (Thy-1+) are shown in bar graphs (n=3). (e) GMP 

population was significantly increased in mice receiving MxCre;V617F/+;Stat3fl/fl BM 

compared to those receiving control or MxCre;V617F/+ BM. Representative contour plots 

are shown on the left panel, and the percentages of LSK, CMP, GMP, and MEP are 

presented in bar graphs on the right panel (n=3). Data are presented as mean ± SEM 

(*p<0.05 and ** p<0.005).
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Figure 7. Effects of Stat3 deletion on cell signaling and gene expression in hematopoietic cells 
and progenitors of Jak2V617F mice
(a) BM cell lysates from control, MxCre;V617F/+, and MxCre;V617F/+;Stat3fl/fl mice 

were immunoblotted with phospho-specific antibodies against Stat3, Stat5 or Stat1, and total 

antibodies against Stat3, Stat5, Stat1 or SOCS3. β-actin was used as a loading control. (b) 
Relative expression of Stat3, Notch-1, SOCS3 and C/EBP-β mRNA in the multi-potent 

progenitors (MPP) from control, MxCre;V617F/+, and MxCre;V617F/+;Stat3fl/fl mice was 

determined by quantitative real-time PCR and normalized with 18S expression. Data are 

presented as mean ± SEM (n=3 to 4 in each group, *p<0.05 and ** p<0.005).
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