
Aperiodic neural activity reflects 
metacontrol in task-switching
Jimin Yan1, Shijing Yu2, Moritz Mückschel2, Lorenza Colzato1, Bernhard Hommel1 & 
Christian Beste1,2,3

“Metacontrol” refers to the ability to find the right balance between more persistent and more flexible 
cognitive control styles, depending on task demands. Recent research on tasks involving response 
conflict regulation indicates a consistent link between aperiodic EEG activity and task conditions that 
demand a more or less persistent control style. In this study, we explored whether this connection 
between metacontrol and aperiodic activity also applies to cognitive flexibility. We examined EEG and 
behavioral data from two separate samples engaged in a task-switching paradigm, allowing for an 
internal replication of our findings. Both studies revealed that aperiodic activity significantly decreased 
during task switching compared to task repetition. Our results support the predictions of metacontrol 
theory but contradict those of traditional control theories which would have predicted the opposite 
pattern of results. We propose that aperiodic activity observed in EEG signals serves as a valid indicator 
of dynamic neuroplasticity in metacontrol, suggesting that truly adaptive metacontrol does not 
necessarily bias processing towards persistence in response to every control challenge, but chooses 
between persistence and flexibility biases depending on the nature of the challenge.
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While many other animals easily outperform humans with respect to various basic functions, including 
perception, memory, and motor performance, humans excel if it comes to the tailoring of their behavior to 
different and quickly changing circumstances. This great flexibility of human behavior is commonly ascribed 
to cognitive control, a concept that summarizes the various functions that allow agents to carry out different 
actions to the same stimuli, and vice versa1. The traditional concept of cognitive control emphasizes what is 
called willpower in everyday language: sticking to one’s goal even under challenging circumstances, focusing 
on information related to this goal while ignoring distraction, and overcoming obstacles on the way2,3. Frontal 
areas, and the lateral prefrontal cortex in particular play a key role in orchestrating this persistence aspect of 
cognitive control4–6. However, there is increasing interest in another, in some sense opposite aspect of cognitive 
control as well. Indeed, sometimes it is more reasonable to give up one’s current goal and trade it for a more 
realistic, more rewarding one, to consider the opportunities provided by task-unrelated information, and to 
carry out unanticipated actions. Arguments in favor of a more balanced, bilateral view on action control have 
been motivated in various ways, including functional considerations7,8, neuroanatomical/neuropathological 
implications9,10, and neurochemical modeling11. These arguments motivated the metacontrol model of Hommel 
and colleagues12–14, which defines metacontrol as the function that serves to find the most adaptive balance 
between the poles of persistence, as reflected by willpower, and flexibility, which opens the processing stream for 
unpredicted events and unforeseen ideas and action alternatives.

Recent studies in electrophysiology have shown that aperiodic neural activity—non-oscillatory EEG signals—
plays a significant role in cognitive control15,16. While the aperiodic aspect has often been dismissed as mere noise 
or an extraneous factor to be overlooked or adjusted17, new findings indicate that this type of activity is consistently 
linked to various psychological functions, including arousal levels18, task performance19,20, and cognitive control 
mechanisms such as inhibition control15. Importantly, the power spectrum is characterized by a distribution 
where spectral power decreases as frequency increases21–23. The aperiodic dynamics can be reliably detected 
through the aperiodic exponent, which relates to the negative 1/f slope found in the logarithmic transformation 
of the power spectrum. This slope reflects the rate of decline in power across different frequencies21. Additionally, 
the aperiodic exponent may act as a measure of “neural variability,” representing the brain’s capability to adapt its 
neural activity according to the demands of the situation24. Shifts in aperiodic brain activity can indicate changes 
in the balance between excitatory and inhibitory neural mechanisms, commonly known as the “E/I ratio.” 
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According to Turri et al.25, a higher exponent (which reflects a steeper spectrum) typically suggests a greater 
prevalence of inhibition over excitation, while a lower exponent indicates the contrary26,27. Increased excitation 
levels have been associated with a decrease in the synchronization of rhythmic brain activities and neuron firing, 
leading to a rise in neural noise that may hinder proper neural communication28. Recent efforts have succeeded in 
providing a direct neurophysiological indicator of metacontrol and changes therein. Both neural intraindividual 
variability in fMRI and aperiodic exponents of so-called FOOOF (fitting oscillations & one over f21) analyses 
derived from EEG data could be demonstrated to directly reflect the impact of task conditions with different 
control demands. For instance, participants increase their FOOOF exponent as soon a task-specific stimulus 
appears, and they do more so if that stimulus signals a condition that requires more persistence29,30. Along the 
same lines, individual FOOOF exponents obtained under resting-state conditions can successfully predict the 
FOOOF exponent and its temporal dynamics in another, entirely different persistence-heavy or flexibility-heavy 
task29. Hence, the demand for metacontrol persistence is accompanied by an increase of the FOOOF exponent, 
a measure of aperiodic brain activity, which can be taken to reflect the cortical noise level. This suggests that 
cortical noise is at least a systematic, indicative by-product of metacontrol changes, perhaps even the means 
of implementing metacontrol policies. Accordingly, relatively high exponents (indicating decreased “E/I ratio”, 
more inhibition and likely less cortical noise) can be taken to indicate a metacontrol bias towards persistence, 
while relatively low exponents (indicating increased “E/I ratio”, more excitation and likely more cortical noise) 
would indicate a metacontrol bias towards flexibility.

Even though the idea of using measures of aperiodic brain activity to assess cognitive control was motivated 
by the metacontrol approach29,30, the available findings can also be accounted for by the more traditional control 
account31–34. Traditional accounts conceptualize cognitive control in terms of more or less, which implies a 
unipolar dimension ranging from maximal to minimal control. It has been assumed that control is related to 
the neural signal-to-noise (SNR) ratio, and that more control is associated with, or enabled by a higher ratio35. 
Consistent with this idea, our previous observations that experimental conditions calling for more and tighter 
control, like the rare Nogo trials in Zhang et al. and in Pi et al.29,36, can be easily accounted for by traditional 
control models31–34. The metacontrol model would make the same prediction, so that our previous observations 
do not serve to distinguish between the two approaches.

The purpose of the present study was to find and test a condition that would be better suited to evaluate 
and compare predictions from the traditional control account and the metacontrol account: a condition that 
control theorists would consider particularly control-demanding, so that they would need to predict a relative 
increase of the aperiodic exponent (which would reflect decreased “E/I ratio”, more inhibition and likely less 
cortical noise), but that from a metacontrol point of view would call for more flexibility, so that this approach 
would suggest a relative reduction of the aperiodic exponent (reflecting increased “E/I ratio”, more excitation 
and likely more cortical noise). We considered that the switch condition in a task-switching paradigm might 
serve this purpose. In this paradigm, participants are presented with the same stimulus- and response-set in 
each trial, but sometimes the mapping of responses to stimuli changes—the task, that is. These changes may be 
unpredictable37 or predictable38, as in the present study. It is a common finding that the need to switch the task 
hampers performance, often rather drastically, as compared to trials in which the task of the previous trial can 
be repeated39. Even though the exact reason for why that might be the case, and how many components might 
contribute to the so-called task-switching costs, are still under discussion, there is widespread agreement that 
trials that require a task switch rely much stronger on cognitive control than trials in which the previous task 
can be repeated39.

Indeed, control theories clearly assume that task switching requires more control resources and efforts than 
task repetition37,38. Accordingly, the switching condition should increase the amount of control and, if control is 
positively associated with an increase of the signal-to-noise ratio, cortical noise should be reduced, which in turn 
would be visible in an increased aperiodic exponent. The metacontrol model would also assume that switching 
conditions require control, but this control should not consist in a high or increased degree of metacontrol 
persistence (the traditional type of control), because persistence would result in sticking even more and longer 
with the previous task set. Rather, the system would need to open up, relax constraints, so to allow the new task 
set to be selected and established. If so, one would expect a reduction of persistence-type control and a stronger 
bias towards flexibility. This should come with an increase in cortical noise and, accordingly, with a decrease 
of the aperiodic exponent. To test this hypothesis, we analyzed two independent samples (Study 1 and Study 
2), which were previously tested for other scientific aims. To get a better idea about the temporal dynamics of 
metacontrol changes, we compared two time windows per trial: a pre-trial window preceding the stimulus, 
which can be taken as a temporal (relative) baseline29,36, and a within-trial window that was supposed to capture 
the stimulus-specific changes in metacontrol. The prediction of differences in the FOOOF exponents for switch 
and repeat trials referred to the within-trial time window.

So far, few studies studying scalp distributions of FOOOF exponents related to cognitive persistence 
indicated that the aperiodic exponents at frontal and central areas exhibited the most significant changes before 
and during the trial30,40–42. However, there are no theoretical reasons to believe that exponent effects are bound 
to particular loci. Metacontrol is commonly assumed to emerge from the interaction of the prefrontal and 
the striatal dopaminergic pathway43–45, which means that changes in metacontrol are likely to be bound to 
neurochemical changes. As these changes should be expressed through dopaminergic pathways, which reach a 
very substantial part of the entire brain, effects of these changes are unlikely to be bound to tightly circumscribed 
brain areas. Hence, even though future research may identify spatial boundaries of exponent effects, which for 
instance may depend on the task and/or the employed strategies, we neither claim nor assume a particular locus 
of exponent effects, and we see no theoretical constraints for a possible region of interest. Accordingly, we were 
interested in the scalp distribution of FOOOF exponents, so to fine-tune our analyses to those sensors that were 
most sensitive to exponent effects, but we always started with a whole-brain analysis of exponents—a brain-wide 
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permutation cluster-based test. In other words, we predicted the direction of exponent effects, but not their 
cortical location.

Results
Study1
Behavioral results
Mean percent errors (PEs) and reaction times (RTs) are shown in Fig.  1. Paired-sample t-tests showed a 
significant difference between the repeat and switch condition on PE (t(32) = 8.25, p < 0.001, d = 1.43, BF10 > 1000 
) and RT (t(32) = 9.42, p < 0.001, d = 1.64, BF10 > 1000). The PE was significantly higher in the switch condition 
(10.87 ± 4.96) than in the repeat condition (6.90 ± 3.04). The RT in the switch condition was also significantly 
higher (810.39 ± 38.34) than in the repeat condition (647.05 ± 26.05).

Aperiodic exponents
The power spectral density (PSD) results in a log-log space are shown in Fig. 2 at the frequency from 3 Hz to 
40 Hz for different experimental conditions in the within-trial period and the pre-trial period.

The results of the two-factor repeated measures ANOVA showed significant main effects of condition 
(F(1, 32) = 5.59, p < 0.05, 𝜂p

2 = 0.15, BF10> 1000) and time window (F(1, 32) = 14.01, p < 0.001, 𝜂p
2 = 0.31, BF10> 

1000). The aperiodic exponent was significantly lower in the pre-trial time window (1.32 ± 0.27) than in the 
within-trial time window (1.37 ± 0.027), and significantly higher in the switch condition (1.35 ± 0.27) than 
in the repeat condition (1.34 ± 0.27). The interaction effect of time window × condition was also significant 
(F(1, 32) = 61.49, p < 0.001, 𝜂p

2 = 0.66, BF10> 1000). Post hoc t-tests revealed that the relationship between repeat 
and switch trials reversed from the pre-trial to the within-trial period: whereas the aperiodic exponent was 
significantly higher in the switch condition (1.34 ± 0.26) than in the repeat condition (1.31 ± 0.25) during the 
pre-trial period (t(32) = 5.90, d = 1.03, p < 0.001, BF10> 1000), it was significantly lower in the switch condition 
(1.36 ± 0.26) than in the repeat condition (1.38 ± 0.26) during the within-trial period (t(32) = 4.06, p < 0.001, d = 
-0.71, BF10 = 96.40). The aperiodic exponent is displayed in Fig. 3 across various time windows and conditions.

Figure 2. Log-log transformed power spectral densities averaged across electrodes and participants. Panel a 
shows PSDs in the pre-trial period; panel b displays PSDs in the within-trial period.

 

Figure 1. Behavioral data results. Panel a: Percent error (PE) results in different conditions. Panel b: Reaction 
time (RT) results in different conditions. Error bars represent standard errors of the mean (SEM), ***p < 0.001.
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Cluster-based permutation test
The scalp distribution of the aperiodic parameters was tested using cluster-based permutation. A main effect of 
time window was found in the aperiodic exponent over frontal, central, posterior, temporal and occipital, areas 
(cluster 1: CZ, FCZ, FC1, CP1, FZ, F1, FC3, C3, CP3, P1, AFZ, AF3, F(1,32) = 48.75, P < 0.01, 𝜂p

2 = 0.16; cluster 
2: AF7, FT7, T7, F(1,32) = 14.18, P < 0.05, 𝜂p

2 = 0.49; cluster 3: O1, FT9, TP9, F(1,32) = 46.90, P < 0.001, 𝜂p
2 = 0.78; 

cluster 4: P11, FC2, CP2, CPZ, F2, FC4, C4, CP4, P2, PZ, AF4, F(1,32) = 59.66, P < 0.001, 𝜂p
2 = 0.18; cluster 5: C6, 

CP6, F(1,32) = 20.28, P < 0.05, 𝜂p
2 = 0.57; cluster 6: O2, OZ, FT10, TP10, F(1,32) = 42.49, P < 0.01, 𝜂p

2 = 0.65). The 
main effect in the aperiodic exponent in different conditions was observed over frontal, central, temporal areas 
(cluster 1: AF7, FT7, T7, TP7, F(1,32) = 10.13, P < 0.05, 𝜂p

2 = 0.31; cluster 2: F2, FC4, C4, F(1,32) = 11.30, P < 0.05, 
𝜂p

2 = 0.45; cluster 3: FC6, C6. CP6, F(1,32) = 24.54, P < 0.05, 𝜂p
2 = 0.56; cluster 4: AF8, FT8, T8, TP8, F(1,32) = 13.49, 

P < 0.05, 𝜂p
2 = 0.32). The interaction effects of time window × condition formed a cluster containing all electrode 

points (F(1,32) = 83.96, P < 0.01, 𝜂p
2 = 0.051). The scalp topography for the aperiodic exponent is shown in Fig. 4.

Study 2
Behavioral results
The behavioral results were comparable to Study 1, see Fig.  5. Analysis using paired-sample t-tests revealed 
a significant difference between the repeat and switch conditions in both PE (t(42) = 3.46, p < 0.01, d = 0.39, 
BF10 = 24.53) and RT (t(42) = 6.31, p < 0.001, d = 0.56, BF10 > 1000). PEs were significantly higher in the switch 
condition (6.35 ± 0.79) than in the repeat condition (4.62 ± 0.55). Similarly, RTs were significantly longer in the 
switch condition (808.65 ± 25.64) than in the repeat condition (721.32 ± 21.33).

Aperiodic exponents
Figure 6 shows the PSD results at the frequency of 3 Hz to 40 Hz for different experimental conditions in the 
within-trial period and the pre-trial period in a log-log space.

Results are visually depicted in Fig.  7, showcasing the aperiodic exponent across different time windows 
and conditions. The two-factor repeated measures ANOVA yielded significant main effects for both condition 
(F(1, 42) = 6.56, p = 0.014, 𝜂p

2 = 0.135, BF10 < 0.01) and time window (F(1, 42) = 148.44, p < 0.001, 𝜂p
2 = 0.779, 

BF10 = 0.001).

Figure 3. Aperiodic exponent results. Panel a: Aperiodic exponent in different time windows; Panel b: 
Aperiodic exponent in different conditions; Panel c: The interaction effect of time window × condition. Error 
bars represent SEM, *p < 0.05, ***p < 0.001.
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Figure 6. Log-log transformed power spectral densities averaged across electrodes and participants. Panel a 
shows PSDs in the pre-trial period; panel b displays PSDs in the within-trial period.

 

Figure 5. Behavioral results. Panel a: PE results in different conditions. Panel b: RT results in different 
conditions. Error bars represent SEM, ** p < 0.01, *** p < 0.001.

 

Figure 4. Scalp distributions of the aperiodic exponent. The figures show electrode sites with a significant 
main effect of time window, condition and the interaction effect of time window × condition, respectively, 
in the aperiodic exponent (this corresponds to the subheading in the figure). Colors indicate cluster-level 
summed F-values.
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Furthermore, there was a significant interaction effect between time window and condition (F(1, 42) = 19.94, 
p < 0.001, 𝜂p

2 = 0.322, BF10 = 250). Post hoc analyses revealed a significant decrease in the aperiodic exponent 
in the switch condition (1.04 ± 0.35) as compared to the repeat condition (1.07 ± 0.36) during the within-trial 
period (t(42) = 4.46, d = 0.11, p < 0.001, BF10 > 380.48). However, no significant difference was observed between 
the two conditions in the pre-trial period.

To test for systematic differences between the two studies, we ran a three-factorial ANOVA on aperiodic 
exponents from both studies with study as a between-participant factor and time window and condition as 
within-participant factors. Unsurprisingly, this ANOVA also yielded a highly significant effect of time and of 
the interaction between time and condition, again showing that the exponent was higher in the within-trial 
than in the pre-trial period, and lower for task switches than task repetitions, but only in the within-trial period. 
However, two other significant effects involved the study factor (all other ps > 0.158): The first was an interaction 
between time and study (F(1,74) = 16.09, P = 0.001, 𝜂p

2 = 0.18), indicating that the increase of the exponent from 
the pre-trial to the within-trial period was more pronounced in Study 2 (0.95 vs. 1.06) than in Study 1 (1.32 vs. 
1.37), where the pre-trial level of the exponent was also higher. The second was an interaction between condition 
and study (F(1,74) = 10.15, P = 0.008, 𝜂p

2 = 0.12). This reflected the fact that, averaged across the time factor, task 
switch showed a lower exponent than task repetition in Study 2 (0.99 vs. 1.01), but not in Study 1 (1.35 vs. 1.34). 
This in turn was due to that, in Study 2, the condition effect was even numerically absent in the pre-trial period 
(see Fig. 7), so that the overall condition effect was driven by the within-trial period only whereas, in Study 1, 
the pre-trial period showed a numerically reversed effect (see Fig. 3), which reduced and numerically reversed 
the overall condition effect. To get a better understanding of this pre-trial difference between the two studies, 
we subtracted the pre-trial scalp distribution of the exponent for Study 2 from this distribution for Study 1 (see 
Fig. 8). The distribution is clearly more homogeneous in Study 2, whereas Study 1 shows hotspots of sensors in 
central and prefrontal regions, as indicated in the difference plot (8c). We will consider possible reasons for this 
difference in the Discussion.

Cluster-based permutation test
An additional cluster-based permutation test was performed to examine the distribution of the aperiodic 
components on the scalp. A main effect of time window was found over the whole brain (F(1,42) = 164.73, 

Figure 7. Aperiodic exponent results. Panel a: Aperiodic exponent in different time windows; Panel b: 
Aperiodic exponent in different conditions; Panel c: The interaction effect of time window × condition. Error 
bars represent SEM, *p < 0.05, ***p < 0.001.
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P = 0.01, 𝜂p
2 = 0.05). The main effect in the aperiodic exponent in different conditions was observed over frontal 

and central areas (cluster 1: FC2, CP2, CPZ, CP1, F(1, 42) = 17.41, P < 0.05, 𝜂p
2 = 0.39; cluster 2: P2, PZ, P1, CP3 

F(1,32) = 20.12, P < 0.05, 𝜂p
2 = 0.43). The interaction effects of time window × condition was observed over frontal 

areas (cluster: AF7, FP1 F(1, 42) = 27.07, P < 0.05, 𝜂p
2 = 0.80). The scalp topography for the aperiodic exponent is 

shown in Fig. 9.

Discussion
The aim of this study was to test and compare predictions from the traditional approach to cognitive control 
with predictions from metacontrol theory in a task-switching paradigm. Assuming that higher control demands 
would lead to an increase of the signal-to-noise ratio and, accordingly, to an increase of the aperiodic exponent in 
a FOOOF analysis (indicating decreased “E/I ratio”, more inhibition and likely less cortical noise), the traditional 
approach31–34 would predict that the more demanding task-switching condition should show a higher aperiodic 
exponent than the less demanding task-repetition condition (note that this prediction holds irrespective of 
whether proactive or reactive control is assumed2). Metacontrol theory13,46, in turn, would agree that the task-
switching condition is demanding, but it suggests that this demand does not translate into more persistence but, 
rather, into more flexibility. Accordingly, it would predict a lower aperiodic exponent for task switching than for 
task repetition. Our results support the prediction from metacontrol theory13,46, but not the predictions from 
traditional control accounts31–34.

Figure 9. Scalp distributions of the aperiodic exponent. The figures show electrode sites with a significant 
main effect of time window, condition and the interaction effect of time window × condition, respectively, 
in the aperiodic exponent (this corresponds to the subheading in the figure). Colors indicate cluster-level 
summed F-values.

 

Figure 8. Scalp distributions of the aperiodic exponent in the pre-trial periods of (a) Study 1 and (b) Study 2, 
as well as (c) the difference plot (Study 1 minus Study 2). Colors indicate F-values.
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There are two widely accepted ways to interpret the aperiodic activity seen in EEG signals, and these 
interpretations can coexist. The first perspective is related to the E/I ratio, which can be estimated from the slope 
of the EEG power spectrum26,27. A flatter slope suggests an increase in the E/I ratio, whereas a steeper slope 
implies a decrease in this ratio. A range of studies has highlighted the relationship between the E/I ratio and 
aperiodic activity. First, research by Lendner et al. demonstrated that the aperiodic exponent can be used as an 
indicator to distinguish various arousal states, showing elevated values during REM sleep compared to NREM 
sleep and NREM sleep compared to wakefulness18. These findings are corroborated by in vivo calcium imaging 
work by Niethard et al., which indicates that inhibitory activity prevails in cortical networks during REM sleep47. 
Second, research indicates that the aperiodic exponent rises during propofol anesthesia, resulting in a notable 
increase in inhibitory activity24. In contrast, during ketamine anesthesia, this exponent decreases, resulting in 
a relative boost in excitation24. These findings imply that tasks relying on cognitive persistence might correlate 
with a reduced E/I ratio, whereas tasks relying on cognitive flexibility could be associated with an increased E/I 
ratio. Hence, the findings of the current study may reveal a potential link between states of metacontrol and shifts 
in neural modulation, either towards strengthened inhibitory processes or heightened excitatory activity within 
the brain’s circuitry.

An alternative perspective regarding aperiodic activity is often referred to as the “neural noise” interpretation. 
This approach proposes that the aperiodic exponent serves as an indicator of the amount of noise within the 
neural circuits that generate these signals19,48. Synchronized neural spiking activity results in a pronounced 
increase in the steepness of the 1/f slope, which is associated with an improved SNR in the nervous system. On 
the contrary, when spiking becomes desynchronized, the 1/f slope often appears less steep, leading to a lowered 
SNR28,49. Converging evidence from different studies support the assumption that variations in the 1/f slope 
found in EEG signals may serve as a potential indicator of “neural variability”50,51. That is, neural variability 
fluctuations are thought to contribute to the brain’s ability to dynamically adjust its activity in response to the 
requirements of various tasks or situations24. Therefore, our results are in line with previous findings by Pi et al., 
Gao et al., Jia et al., and Zhang et al.29,36,41,42, which suggest that different levels of neural variability are associated 
with varying states of metacontrol.

The main effects of the aperiodic exponent in different conditions were observed in particular over frontal 
and central areas. This fits with previous observations in metacontrol studies29,41. However, as emphasized in the 
introduction, there are good theoretical reasons to be skeptical about a strong connection between metacontrol 
effects and particular cortical loci. Given the widespread assumption that metacontrol is an emergent property of 
interactions between the prefrontal and the striatal dopaminergic pathway43–45, effects are theoretically expected 
at least across all cortical areas that are affected, directly or indirectly, by these dopaminergic pathways—which 
holds for the largest part of the human brain. Accordingly, exponent analyses should consider wide cortical 
spaces, and it is possible that differences in terms of scalp distribution, such as between our two studies, reflect 
a mixture of theoretically relevant and theoretically irrelevant factors, such as sample size, experimental design, 
participant characteristics, tasks, and strategies.

Our theoretically motivated main interest was related to the sign of effect in the within-trial period, and here 
our predictions were clearly supported. Not only was the exponent lower in switch than in repeat trials, but this 
pattern was found in both studies, suggesting that this effect is replicable. Given that this effect is counter to 
predictions from traditional control theory, which would have predicted increases in persistence in the switch 
trials, this demonstration of the robustness of the effect was particularly important.

Even though we had no particular predictions for the pre-trial period, we found that the exponent effects 
differed between the two studies. In Study 2, the exponents for switch and repeated trials were statistically 
equivalent, which makes intuitive sense. Not so in Study 1, however, where the pre-trial interval showed the 
opposite effect of what was obtained in the within-trial interval. Given that the trial did not yet begin, why would 
there be a difference between the two conditions at all and why would it show the opposite pattern as the within-
trial period? Considering the structure of the task makes this outcome more intuitive. Note that the relationship 
between the condition in the within-trial period and the preceding condition was not random but followed the 
instructed sequence of tasks. Accordingly, a task switch in the within-trial period would always be preceded 
by a task repetition. A task repetition in the within-trial period might be preceded by a task switch or a task 
repetition, but the probability that the preceding task was a task switch was higher for task repetitions than it was 
for task switches. If we thus assume that the previous trial was accompanied by a metacontrol state that tended 
to be the opposite of the metacontrol state in the present trial (which fits with the pattern shown in Fig. 8c), 
it is not unreasonable that the pre-trial period shows the opposite pattern than the within-trial period at all. 
What remains to be understood, however, is why this pattern occurred in Study 1 but not in Study 2. This might 
reflect a different strategy of the participants and/or a different speed to change metacontrol from one trial to the 
other. For instance, participants in Study 1 may have been (more) aware of the task rule, (better) anticipated the 
upcoming task-switching trial, and (more strongly) prepared to exert greater control. This could be associated 
with an increased aperiodic exponent. In any case, more research to clarify this issue will be necessary.

One significant limitation of this study is its correlational nature, which restricts the conclusions that can 
be drawn regarding the relationship between aperiodic activity and metacontrol. Specifically, while this study 
successfully identifies an association between aperiodic activity and metacontrol, it does not provide evidence 
for a cause-and-effect relationship. This means that we cannot conclude that changes in aperiodic activity 
directly influence metacontrol or vice versa. To address this gap, future studies that include causal manipulations 
of aperiodic activity are warranted. Exogenous modulations of metacontrol may involve techniques thought to 
affect individuals’ cortical noise levels. One effective method is transcranial direct current stimulation (tDCS), 
a non-invasive brain stimulation technique that alters cortical excitability in the areas directly beneath the 
electrodes by making subthreshold adjustments to resting membrane potentials52,53. Indeed, studies have shown 
that anodal tDCS (atDCS) improves the SNR by increasing spontaneous neuronal firing and enhancing cortical 
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excitability in the targeted regions54–56. Therefore, using atDCS could help illuminate the relationship between 
metacontrol and aperiodic activity, as reflected in cortical noise levels.

Taken altogether, our findings provide new insights into the adjustment of cognitive control processes 
to task-induced challenges. In particular, they offer two major conclusions. First, they support assumptions 
that the regulation of cognitive control is targeting changes in the neural signal-to-noise ratio35. However, in 
contrast to traditional control theory31–34, which suggests that all control challenges increase the ratio, we found 
evidence that some challenges can also reduce it. This finding fits with predictions from metacontrol theory13,46, 
which suggests that it is the nature of the challenge that determines the direction of the adjustment. While it 
is true that many challenges call for stronger persistence, like flanker or Stroop tasks, some challenges, like the 
need to switch from one task to another, call for more flexibility. As persistence can be considered to benefit 
from a less noisy brain, flexibility is likely to benefit from more noise36. Accordingly, and this is our second 
conclusion, truly adaptive metacontrol does not necessarily bias processing towards persistence in response to 
every control challenge, but chooses between persistence and flexibility biases depending on the nature of the 
challenge. Which, indeed, fits with the very definition of metacontrol.

Methods
Study 1
Participants
Study 1 involved a reexamination of data that had been previously collected from a cohort of 50 participants for 
different scientific purposes57. Participants who did not complete the experiment for physiological reasons (i.e. 
cramps in neck or arm muscles, drowsiness, headaches) and technical problems during recording were excluded 
from data analysis (n = 10). We also excluded participants with performance < 70% in any session (n = 3) and 
participants (n = 4) who were unable to improve their performance above 70% even with the presentation of 
helping cues (see task design and statistical analysis below). As a result, the final sample for these and our 
present analyses consisted of 33 participants, including 15 males, with an average age of 24.56 ± 4.75 years. Each 
participant provided their written consent voluntarily and received compensation, either in the form of financial 
remuneration or course credits, for their participation. The research was conducted in compliance with the 
ethical guidelines set by the Ethics Committee of the Medical Faculty at TU Dresden, following the principles 
outlined in the Declaration of Helsinki.

Task design
A task-switching paradigm established by, and validated in various previous studies of the Dresden lab was 
used58–61. Participants were asked to follow specific rules while responding to a series of number stimuli. 
Each trial involved selecting one number from the set {1,2,3,4,6,7,8,9}. Out of these numbers, {1,3,4,7} were 
consistently presented in a large font size of 100, while the remaining numbers were displayed in a smaller font 
size of 50. The response for each stimulus in this experiment was determined based on three rules. These rules 
were referred to as NUM (short for the German word “numeric,” meaning “numeric” in English), GER (short 
for “Geradzahligkeit,” meaning “even(ess)” in English), and SG (short for “Schriftgröße,” meaning “font size” 
in English). Participants had to make decisions regarding whether the stimulus was smaller or larger than 5 
(NUM), the polarity of the number (GER), and the font size of the number (SG). Figure 10 (panel A) visually 
represents the pairings between different stimuli and their corresponding responses, organized according to 
each specific grammar.

In the experiment, a predetermined sequence of rules was followed during the trials. This sequence involved 
the repetition of rules such as NUM-NUM-NUM-GER-GER-GER-SG-SG-SG-NUM- and so on. Participants 
were required to maintain this rule sequence in their working memory to guide the selection of appropriate 
responses. To facilitate the application of a rule to a presented target stimulus, a dummy cue in the form of 
“XXX” was used. This dummy cue served as a reminder for participants to retrieve the relevant rule and prepare 
for selecting the appropriate response. The sequence of events for each trial are shown in Fig. 1B. At the begin 
of the trial, a fixation cross appeared on the screen for 500 ms, followed by a dummy cue for 1,300 ms, the 
target stimulus for 1,200 ms, and a blank screen for 1,300 ms. Participants were instructed to respond as quickly 
and accurately as possible immediately after the stimulus appeared. Once a response was made, the trial ended 
promptly. In order to counteract any effects on pupil dilation caused by irrelevant brightness, suitable colors 
were chosen for both the stimuli (RGB code 168, 175, 77) and the background (RGB code 147, 170, 192), as 
illustrated in Fig. 1 (panel B). To help participants remembering the task rules, we implemented a reminder 
mechanism. Whenever participants made consecutive errors, they were provided with informative cues that 
explicitly conveyed the task rules. These cues were presented three times alongside feedback, with the aim of 
helping the participants regain their focus and understanding.

Procedure
To control the effects of daytime and caffeine (which may lead to performance enhancement), all participants 
were told to avoid the use of caffeinated beverages prior to the experiment and were tested at approximately 9:00 
AM. Participants’ psychological status was assessed via the Fatigue Scale for Motor and Cognitive Functions 
(FSMC)62 and Beck’s Depression Inventory (BDI)63. Following that, while EEG caps were set in place, participants 
were positioned in front of a 24-inch screen, situated 50–70 cm away. An initial brief version of the experiment, 
comprising 36 trials, was conducted to acquaint participants with the task. The main experiment commenced 
once participants had a comprehensive understanding of the task, encompassing a total of 2,880 trials and lasting 
approximately 2 h.
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Nineteen 10-sec intervals were implemented throughout the whole experiment for participants to relax the 
muscles in neck and arm/hand. The total trials were evenly distributed into four sessions, with each session 
containing a set of 720 trials.

EEG recording and processing
During the EEG data recording, a total of 60 Ag/AgCI equidistant electrodes were used, along with the 
BrainVision Recorder software package from Brain Products, Inc. The data was sampled at a rate of 500 Hz. The 
ground electrode was positioned at coordinates theta = 58, phi = 78, while the reference electrode was positioned 
at theta = 90, phi = 90. To preprocess the collected EEG data, the BrainVision Analyzer 2 software package was 
employed. The first preprocessing step involved downsampling the raw data to a frequency of 256 Hz. Then, an 
infinite impulse response (IIR) filter was applied to the downsampled data, with a range of 0.5 to 40 Hz. The 
slope of the filter was set to 48 dB/oct, and a notch filter was applied at 50 Hz to eliminate any interference from 
power line noise.

Following the filtering step, faulty channels that showed no activity or had high noise levels were identified 
and removed. Additionally, a new average reference was calculated and subtracted from the remaining channels 
to improve the data quality. To further enhance the quality of the data, manual inspection and artifact removal 
were performed. Independent component analysis (ICA) using the infomax algorithm was implemented, to 
enable the removal of common artifacts such as eye blinks and eye movements from the EEG data (average 
number of 6.21 ± 2.80 independent components were removed). Then, to interpolate discarded channels, 
spherical splines interpolation was applied.

Next, the pre-processed EEG data were split into fragments of 5500ms duration, with the stimulus onset 
serving as the locking point. Each fragment spanned from 2,500ms before to 3,000ms after the locking point. In 
order to identify and eliminate trials with residual artifacts, an automated artifact rejection method was applied, 
using the default criteria specified in BrainVision Analyzer 2. These criteria involved limiting the maximum 
voltage step to 30 mV/ms, allowing a maximum difference of 100 mV in intervals of 200 ms, and setting the 
minimum and maximum amplitude at 150 mV respectively. Additionally, the activity in any given 100ms 
interval should not fall below 0.5 mV. Trials with helping cues and feedback were excluded from the analysis. 
The trials were further categorized as either “switch” or “repetition” trials based on the presence or absence of a 
rule transition, respectively.

Parameterization of spectral data
We identified two specific time windows for analysis. The pre-trial period encompassed the time form − 1000 
ms to 0 ms before the stimulus. The within-trial period spanned form 0 ms to 1000 ms after the stimulus onset. 
Drawing from prior research64, which incorporated a 0.25s Hamming window and a 50% overlap, the power 

Figure 10. The specific rules and procedure of the experimental paradigm. Panel a depicts the responses 
corresponding to numerical stimuli under different rules. Panel b shows the procedure of each trial. To 
enhance visibility, the colors of the stimuli and background have been changed to white and black. GER, 
even(ess); NUM, numeric; SG, font size.
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spectral density (PSD) for each frequency was computed using the ‘pwelch’ function in Matlab (version R2018a). 
These calculations were performed individually for each participant, electrode, condition (switch/repeat) and 
specific period (pre-trial/within-trial). The power spectra of the EEG were analyzed using the Python-based 
FOOOF toolbox version 1.0.0 (available at https://github.com/fooof-tools/fooof21,65). This toolbox decomposes 
the power spectrum into two components: aperiodic activity [L(f)] and periodic (oscillatory) activity [Gn(f)]. 
The FOOOF algorithm breaks down the power spectrum and expresses it as a linear combination of these two 
components, where f represents the frequency:

 PSD (f ) = L (f ) +
∑

nGn (f )  (1)

The PSD is achieved by merging the aperiodic element, denoted as L(f), with a sum of n Gaussian distributions. 
To encompass the entire spectrum being analyzed, L(f), which represents the aperiodic component, is fitted as 
a function spanning the complete range. The mathematical expression that describes the aperiodic component, 
L(f), is defined as follows:

 L (f ) = b− log [fx] (2)

In this mathematical expression, we encounter two variables. The first variable, denoted as ‘b’, represents the 
aperiodic offset, indicating the overall shift in broadband power. The second variable, represented by ‘x’, stands 
for the aperiodic exponent, which signifies the slope of the power spectrum line when plotted on a log-log 
scale. This expression also involves periodic components, often referred to as oscillatory components, which 
correspond to specific frequency regions where the power surpasses the aperiodic component. Each oscillatory 
element, known as a ‘peak’, can be characterized by a Gaussian function that requires three parameters for 
its definition. The Gaussian fitting can be encapsulated by the following model where the amplitude, center 
frequency, and bandwidth are the characteristics represented by ‘αn’, ‘µn’, and ‘σn’ respectively:

 
Gn (f ) = α nexp

[
−(f − µ n)

2

2σ 2
n

]
 (3)

To fit the spectra within the frequency range of 3 to 40, specific settings were used: peak width limits of 2 to 8, a 
maximum of 8 peaks, a minimum peak height of 0.05, and a fixed aperiodic mode. This fitting process provided 
an aperiodic exponent value for each electrode, task condition, participant, session and period. The average 
R2 value for the spectral fits across all 33 participants exceeded 0.97, indicating highly accurate fits. The study 
conducted by Zhang et al. highlighted the influence of index metacontrol states on the aperiodic exponent30, 
while the impact on the offset was negligible. Accordingly, our analysis primarily focuses on examining the 
aperiodic exponent. We calculated this exponent for each participant and electrode using the aperiodic-only 
signal. Since we had no a-priori assumptions about the distribution of aperiodic neural activity across the scalp, 
we followed the recommendation of Hill et al. by utilizing the “global” exponent for our statistical analysis66. 
First of all, the average of the exponent values across 60 electrodes for each participant were calculated to 
observe the overall trend of variation at different periods. After that, an extra cluster-based permutation test was 
conducted to examine the distribution of the aperiodic components on the scalp. The non-parametric cluster-
based permutation test is a statistical method proposed for analyzing high-dimensional EEG/MEG data. Its aim 
is to identify significant differences between electrodes while taking into account multiple comparisons67. This 
approach involves the formation of clusters based on the adjacency of thresholded sample-level F-values with an 
alpha level of 0.0567. MNE-python (https://mne.tools/stable/index.html) was used to perform the permutation 
cluster test. Permutation testing involves repeatedly shuffling the data labels (e.g., assigning different conditions 
to the data points) to create random permutations. The more iterations conducted, the closer the simulation 
results align with the real situation, leading to a more accurate estimation of the P-value. In general, the number 
of iterations should reach at least 1000 to yield more reliable results. The specified number of permutations (in 
our case, 1000) determines how many times the shuffling process is repeated. By generating a large number of 
permutations, the test can estimate the probability of observing the detected clusters by chance, even if there 
are no real differences between the conditions. This helps control for false positives (Type I errors). In line with 
this, the cluster-level statistics are calculated by summing the F-values within each cluster. To determine the 
significance of clusters, a Monte Carlo random sampling technique is employed, with 1,000 iterations and a 
significance level of 0.05.

Statistical analysis
This is a re-analysis of existing data from Yu et al.57, who studied the impact of fatigue by dividing trials into four 
sessions. As our present study did not focus on fatigue, we omitted this factor in our analyses by averaging across 
sessions. SPSS 26.0 (IBM) was used to analyze the behavioral data, and the aperiodic exponent data. Percent error 
(PE) and mean reaction times (RTs) data from trials with correct responses were used as behavioral measures. 
The parameters for each condition (switch/repeat) were calculated for each participant. Then, paired-sample 
T-test was used to analysis the percent error and reaction time. A two-factor repeated measures ANOVA was 
conducted to analyze the data on aperiodic exponent. The factors included were condition (switch/repeat) and 
time window (pre-trial/within-trial). Greenhouse–Geisser correction was used to adjust the ANOVA results, 
and Bonferroni correction was applied to Post hoc tests. Finally, an extra cluster-based permutation was used to 
test the distribution of the aperiodic exponent on the scalp. All descriptive statistics include reporting the mean 
and the standard error of the mean (SEM).
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Study 2
Participants
Study 2 used data from 45 healthy participants collected in a previous study for a different scientific aim68. Two 
participants were excluded due to strong artifacts. As a result, the present analyses consisted of 43 participants, 
including 21 males, with a mean age of 34.65 ± 10.48 years. All participants had normal or corrected-to-normal 
vision. For more information on the participants, see Petruo et al., 2017. The study and all procedures were 
approved by the Ethics Committee of the Technical University of Dresden.

Task design
Study 2 employed a task-switching paradigm based on previous work by Wolff et al. and Gajewski et al.58,60. This 
paradigm closely resembled the one used in Study 1, except for the following differences. Two conditions, cue 
block, and memory block, were introduced in this version. In the cue block, a specific rule cue was presented 
before each trial to indicate the rule to be followed. However, in the memory block, an “XXX” dummy cue 
replaced the informational cue. Participants were asked to memorize the sequence of response rules and to 
respond accordingly in the memory block. The stimulus materials, specific rules, response sequence and 
conditional division (switch & repeat) in the memory block were identical to the task in Study 1. In the memory 
block, the presentation of the fixation point marks the start of a trial. This fixation point was followed by a 1300 
ms dummy cue, after which a target stimulus appeared. Participants were instructed to respond promptly and 
accurately based on the memorized rules. After the response, a feedback stimulus was presented with a delay of 
500 ms, lasting 500 ms. Correct feedback was indicated by a positive sign and incorrect feedback by a negative 
sign. After 300 ms, the feedback stimulus disappeared and the next trial started. Upon three successive incorrect 
responses or no response within a 2500 ms interval, a written rule statement was shown on the screen, along with 
a clear task cue for the subsequent three trials to guide participants back on track. The memory block consisted 
of 198 trials. After every 33 trials, participants could take a short break and decide when to start the next 33 
trials. Only data from correct trials in the memory block were included in the analysis. The specific rules and 
procedure are shown in Fig. 11. For more details on the task, see Petruo et al.68.

Procedure
Participants were treated in accordance with the Declaration of Helsinki and informed consent was 
obtained before conducting measurements. They were then asked to complete demographic and self-report 
questionnaires, which included the German versions of the Beck Depression Inventory (BDI)69 and the Fatigue 
Scale for Motor and Cognitive Functioning (FSMC)62. In addition, ta short and validated test for estimating 
premorbid IQ levels, the Multiple Choice Word Test-B (MWT-B)70, was administered. The task was presented 
on a 20-inch CRT monitor with white numbers on a black background. The numbers were displayed 3 mm above 

Figure 11. The specific rules and procedure of the memory block paradigm. Panel a depicts the responses 
corresponding to numerical stimuli under different rules. Panel b shows the procedure of each trial. To 
enhance visibility, the colors of the stimuli and background have been changed to white and black. GER, 
even(ess); NUM, numeric; SG, font size.
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a 10 mm diameter white fixation cross, the size of which varied between task conditions (small = 7 × 10 mm; 
large = 12 × 18 mm). Prior to the formal test, participants were introduced to the task requirements and asked 
to complete 18 practice sessions to familiarize themselves with the stimuli and task rules. Once participants 
were confident in understanding the task requirements, they proceeded to the formal trial. All participants were 
encouraged to answer the questions as quickly and accurately as possible. At the end of the testing, participants 
were rewarded with €30.

EEG recording and processing
The settings for electrode points, sampling rate and electrode impedances during the acquisition of Study 2 were 
all consistent with Study 1. Data were manually pre-processed using the Brain Vision Analyzer application. 
The first step in data pre-processing was to manually inspect and remove visible technical artefacts. The data 
were then downsampled to 256 Hz using a bandpass filter (IIR zero phase shift Butterworth filter, order 8, 
time constant 0.32). After downsampling, Independent Component Analysis (ICA) was performed to remove 
recurrent artefacts such as eye movements, blinks and pulse artefacts. In this way, reconstructed EEG data 
were obtained. The data were then divided into 4000 ms starting 2000 ms before the lock point and ending 
2000 ms after the lock point. An automated artefact rejection procedure was then applied to discard segments 
containing signal amplitudes greater than 150 µV, less than − 150 µV, periods of 200 ms with activity less than 
0.5 µV, or amplitude differences greater than 80 µV for at least 100 ms. The next step was re-referencing using 
the current source density (CSD) transformation, which removes the reference potential by using the potential 
difference between the electrodes and the total potential difference of the surrounding electrodes. (parameters 
utilized: n = 4 splines, m = 10 Legendre polynomials, λ = 1 × 10−5). Subsequently, baseline corrections and mean 
calculations were made for each condition at the individual level before group means were calculated. Only 
correct trials were included in the analysis. As in Study 1, trials were further categorized into ‘switch’ and ‘repeat’ 
conditions.

Parameterization of spectral data
The procedure and specific parameterization of the spectral data was identical to Study 1. The average R2 value 
for the spectral fits across all participants was 0.85, indicating a good fit.

Statistical analysis
The procedures for the analysis of the data were the same as in Study 1.

Data availability
The aggregated data analyzed in this article are available via the Open Science Framework: https://osf.io/hvf29.
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