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Abstract

In winegrapes (Vitis spp.), fruit quality traits such as berry color, total soluble solids content (SS),
malic acid content (MA), and yeast assimilable nitrogen (YAN) affect fermentation or wine qual-
ity, and are important traits in selecting new hybrid winegrape cultivars. Given the high genetic
diversity and heterozygosity of Vitis species and their tendency to exhibit inbreeding depression,
linkage map construction and quantitative trait locus (QTL) mapping has relied on F families
with the use of simple sequence repeat (SSR) and other markers. This study presents the con-
struction of a genetic map by single nucleotide polymorphisms identified through genotyping-
by-sequencing (GBS) technology in an F> mapping family of 424 progeny derived from a cross
between the wild species V. riparia Michx. and the interspecific hybrid winegrape cultivar, ‘Sey-
val'. The resulting map has 1449 markers spanning 2424 cM in genetic length across 19 linkage
groups, covering 95% of the genome with an average distance between markers of 1.67 cM.
Compared to an SSR map previously developed for this F, family, these results represent an
improved map covering a greater portion of the genome with higher marker density. The accu-
racy of the map was validated using the well-studied trait berry color. QTL affecting YAN, MA
and SS related traits were detected. A joint MA and SS QTL spans a region with candidate
genes involved in the malate metabolism pathway. We present an analytical pipeline for calling
intercross GBS markers and a high-density linkage map for a large F, family of the highly het-
erozygous Vitis genus. This study serves as a model for further genetic investigations of the
molecular basis of additional unique characters of North American hybrid wine cultivars and to
enhance the breeding process by marker-assisted selection. The GBS protocols for identifying
intercross markers developed in this study can be adapted for other heterozygous species.
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Introduction

The inherent role of the enological properties of a winegrape cultivar is undeniable in the final
taste of wine. While both growing conditions and choice of vinification procedures influence
eventual wine properties [1-4], the grapevine cultivar has arguably the largest effect on wine
quality [5, 6]. Understanding the genetic controls of enologically important traits will assist
breeders, viticulturists, and enologists to delineate strategies for improving wine quality.

Grapevine is a cross pollinating, highly heterozygous crop that exhibits inbreeding depres-
sion in the form of diminished seed viability and reduced vine vigor. Because of this, grapevine
breeders typically employ breeding schemes based on background selection for V. vinifera fruit
quality and foreground selection for introgressed traits [7, 8], which are applied under a frame-
work of modified-backcrossing [2, 8].

Winegrape breeding began in earnest in the 19 C., as breeders attempted to develop grape-
vines with improved pest and disease resistance by cross-hybridizing popular V. vinifera wine-
grape cultivars with resistant North American wild species such as V. aestivalis Michx, V.
cinerea (Engelm. ex A. Gray) Engelm. ex Millard, V. labrusca L., V. riparia Michx and V. rupes-
tris Scheele [9].While these introgressions have positive adaptive traits including disease resis-
tance, pest resistance, and cold hardiness [5, 10, 11], they often have inferior fruit composition
for winemaking [9, 12].

Common quality parameters for wine grapes include titratable acidity (TA), soluble solids
(SS) content as a proxy for sugar concentration, and yeast assimilable nitrogen (YAN) [13].
Sugars increase during berry ripening, and an SS of 20-24% w/w (Brix) is typically targeted for
production of a dry table wine with 11-14% v/v alcohol. Conversely, malic acid (MA)-one of
the two major grape organic acids that contribute to TA-is respired during berry ripening [14].
While SS contents of wild Vitis and V. vinifera are comparable, MA concentrations in wild
Vitis are generally much higher-often in excess of 10 g/L at harvest [15]-and wines produced
from Vitis interspecific hybrids are frequently reported to have excessive acidity and sourness
[5] if not ameliorated before bottling. This situation is exacerbated in cooler climates where
hybrid grapes are more widely used, such as the northern United States, because of slower MA
respiration [16]. Thus, a key goal following trait introgression is combining lower MA content
with appropriate sugar content. YAN is also widely measured in winegrapes prior to fermenta-
tion, since insufficient concentrations (< 150 mg/L) can lead to stuck fermentations and oft-
odor formation [17], while excessive concentrations can lead to formation of ethyl carbamate,
a known carcinogen [1]. YAN concentrations at both extremes have been reported in interspe-
cific hybrids [18], and breeding cultivars with appropriate YAN content is desirable.

Genetic controls of these key compositional factors have only recently been investigated in
grapevine [19]. The formation of MA in the grape berry involves the glycolysis and citric acid
(TCA) cycle and is regulated by the malate metabolism pathway. The diverse pathways in met-
abolic processes and environmental factors, such as temperature during ripening, all contribute
to the complexity for dissecting the molecular basis of MA content. Two recent studies
reported several QTLs controlling total SS and acid content [20, 21]. However, the identified
QTLs could only explain a small percentage of the total phenotypic variance (< 17%), and can-
didate genes could not be identified. QTL analysis of YAN in grape berries has not been
attempted, even though YAN is known to vary considerably among both V. vinifera [22] and
Vitis spp. hybrids [18].

Given the heterozygosity and inbreeding depression in Vitis, QTL mapping studies gener-
ally use F; full-sib progenies and the pseudo-testcross method [23], with 70 to 300 progeny and
from 100 up to 1,826 molecular markers [20, 24-27]. Previously, a family of 119 F, progeny
was developed from selfing an F, individual derived from the cross V. riparia x Vitis hybrid
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‘Seyval’ [28], and a linkage map based on 120 simple sequence repeats (SSRs) was developed
[29]. ‘Seyval’ is a complex interspecific hybrid of V. vinifera (55% by pedigree) with wild species
native to the south-central United States and is a relatively cold hardy white wine cultivar,
resistant to disease and the phylloxera aphid Daktulosphaira vitifoliae (Fitch 1855). V. riparia
has been used to breed for early acclimation and freezing tolerance in hybrid winegrapes [28].
The acclimation and dormancy characteristics of V. riparia and ‘Seyval” have been studied at
the physiological, transcriptomic and metabolomic levels providing additional gene level char-
acterization [28-32].

Genotyping by sequencing (GBS) is a marker platform that uses restriction enzymes to
reduce genome complexity prior to next generation sequencing. GBS has become widely used
due to several benefits: simultaneous marker discovery and genotyping, high sample through-
put and scalability, and high resolution at a low per-marker cost [33]. However, due to arbi-
trary sampling of sites and the high level of multiplexing typical in GBS, sequencing depth is
usually reduced, leading to missing data and heterozygote undercalling, in which heterozygous
sites are undersampled and wrongly interpreted as homozygous [34]. While heterozygote
undercalling has been irrelevant to GBS applications in inbred species, it is a critical problem in
grapevine and other highly heterozygous and diverse species, requiring the development of
new methodologies.

The present study demonstrates the use of novel GBS analysis methods to develop an
improved linkage map for the F, mapping family derived from V. riparia x ‘Seyval’ [35]. This
GBS map was validated by analysis of the berry skin color locus, previously characterized [36-
38]. Our results indicate this is an effective approach for mapping QTL and identifying candi-
date genes in Vitis, including preliminary results for SS, MA and YAN.

Materials and Methods
Plant material

The F, mapping family was generated as described in Fennell et al. [28]. The F, progeny were
derived from self-pollination of a single hermaphrodite F; individual (16-9-2) generated from
a cross of V. riparia (USDA PI 588259) x ‘Seyval’ (Seyve-Villard 5-276). One hundred nine-
teen F, seedlings were germinated from seed, grown in the greenhouse, cycled into dormancy
and cuttings taken for vegetative propagation. After chilling fulfillment, cuttings were rooted
and vines grown for field establishment as well as maintenance in a controlled environment.
Ecodormant one-year-old vines were planted in the field in spring 2005, trained and main-
tained for fruiting. A first genetic map for this family was published in 2009 using SSR markers
[29]. Fruit from the F; parent, the V. riparia grandparent, and 65 fruiting progeny with greater
than 20 clusters were harvested 30 days post veraison, and 150 g of randomly collected berries
were flash frozen and sent to Cornell University for berry quality phenotyping in 2013. Fruit
ripening parameters particularly SS and acid content are impacted by changes in temperature.
This population had ripening times spanning early to late season; therefore, harvesting at 30
days post veraison avoided low night temperature exposure that would have impacted the late
season genotypes. Additional F, seeds were generated in 2011 and 2012. Three hundred four-
teen additional seedlings were germinated in 2013 and genotyped for increased map
resolution.

Phenotyping

Frozen berry samples (150 g) from each individual were destemmed, allowed to partially thaw,
and homogenized in a 250-mL stainless steel Waring blender (Waring laboratory science,
Stamford, CT, USA) at medium speed for 30 s followed by high speed for 30 s. A 10 g portion
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of berry slurry was transferred to a 15-mL plastic centrifuge tube and then frozen at -20°C.
Prior to analysis, samples were thawed. Juice soluble solids (Brix) were analyzed by refractome-
ter (Misco Model #PA203X; Misco, Cleveland, OH USA). The MA was measured on an Agilent
1260 infinity series HPLC using a previously reported method [39]. The YAN was measured as
the sum of ammonium and primary amino nitrogen using commercial enzymatic assays (Uni-
tech Scientific, LLC., Hawaiian Gardens, CA, USA) on a ChemWell model 2900 analyzer
(Awareness Technologies, Palm City, FL, USA). A subset of MA analyses (one out of every ten
individuals) were subjected to either injection replication or extraction replication. The relative
standard deviation (%RSD) for MA analyses was 0.4% and 0.7% for injection alone or extrac-
tion/injection, respectively. A set of standards and blanks was run every ten samples to verify
the retention time and response factor of analytes being measured. An analogous approach was
used for replication of YAN analyses. Technical replicates of SS measurements were not con-
ducted due to the high reproducibility of the method.

Genotyping

For each vine, a single small leaf (less than 1 cm diameter) was placed in a tube of a Costar
96-well cluster tube collection plate (Corning Life Sciences, Tewksbury, MA, USA). Each
96-well plate consisted of 91 genotype-specific samples, two sets of duplicates and one blank
well. The location of the blank well in each plate was unique as a plate identity control. Leaf tis-
sues were maintained at 4°C during and after harvest. In the laboratory, two stainless steel gen-
ogrinder beads were placed in each tube and plates were frozen at -80°C. Tissue grinding took
place in a Geno/Grinder 2000 (OPS Diagnostics LLC, Lebanon NJ, USA) with 96-well plates
agitated in pairs at 400X speed for 1 minute. Plates were then stored at -80°C until processing
with DNeasy 96-well DNA extraction kits (Qiagen, Valencia CA, USA). Modifications were
made to the manufacturer’s protocol to improve DNA quality and quantity as follows: 1) PVP-
40 (2% w/v) was added to the AP1 lysis buffer prior to heating; and 2) visual inspection for
complete re-suspension of the sample pellet of each 8-tube strip was added to the agitation step
following AP1 addition.

Genotyping-by-sequencing (GBS) was performed as described by Elshire et al. (2011) [35],
integrating four 96-well plates across 384 barcodes for library preparation and sequencing. For
SNP calling, the raw sequence data for the 424 F, progeny plus the F; progenitor (16-9-2) was
processed through the TASSEL 3.0 GBS pipeline [33] using the 12X.v2 V. vinifera ‘PN40024°
reference genome [40] from The French-Italian Public Consortium (https://urgi.versailles.inra.
fr/Species/Vitis/Data-Sequences/ Genome-sequences) for alignment and the Burrows—Wheeler
Aligner (BWA) mem [41] with default parameters. The output consisted of variant call format
(VCF) file version 4.1 [42] including SNPs present in at least 40% of the progeny and with a
minor allele frequency (MAF) > 0.1. Subsequently, the VCF was filtered using vcftools ver.
1.12a [42] and TASSEL [43] versions 3.0 and 4.0. A total of 291,453 SNPs were identified in
424 F, progeny by TASSEL 3.0, then a custom filtering process was applied for alignment. The
filtering was based on keeping sites with a minimum read depth of 6 and 75% completeness by
site across progeny and by progeny across sites. Results were output as a TASSEL hapmap file.
Finally, using a custom perl script (S1 File) markers heterozygous in the F; progenitor and with
a co-dominant 1:2:1 segregation among the F, progeny were identified by a chi-squared ()
goodness-of-fit test at <0.01. These were reformatted to be imported in JoinMap®) 4.1.

Map construction

For map construction, the intercross markers described above were coded as hkxhk (assump-
tion of no dominance because the gametic phases were unknown) to be imported in
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JoinMap4®) 4.1 Build: 31jul13.4feb11. Cross-pollination (CP) cross type was used to estimate
linkages [44]. This type of marker segregation is particularly useful when performing linkage
mapping in outbreeding species because the markers are symmetrical with respect to parental
segregation and because they allow construction of integrated linkage maps even when the
identification of tri or tetra-allelic markers is insufficient [45]. For the present study, these
markers, in conjunction with the multipoint maximum likelihood algorithm implemented in
JoinMap®™ [46], allowed linkage calculation and phasing determination, which enabled us to
recode marker genotypes based on predicted phase, and then perform QTL analyses as in an F,
experimental cross.

Prior to grouping and ordering, markers with highly significant (p<0.00001) deviation from
Mendelian expectations and loci duplicating genetic information were filtered in JoinMap ™.
For grouping, a linkage-independence LOD >10 was used. For ordering and genetic location
determination, the Maximum Likelihood mapping algorithm and Kosambi mapping function
were applied, in addition to three rounds of map optimization. Given the amount of missing
data allowed, genetic distance inflation occurred among markers. Thus, to keep the most reli-
able markers and their locations while limiting distance inflation, a threshold of 2.5 ¢cM for the
nearest neighbor stress (N.N. stress) was considered. This is an empirical threshold determined
through the linkage mapping of 16 full-sib families analyzed in the USDA-NIFA Specialty
Crops Research Initiative VitisGen project (www.vitisgen.org).

Sixty-five F, progeny were included for evaluation of berry skin color, for which black (pig-
mented) and white (nonpigmented) were recoded as 1 and 0, respectively. QTL analysis was
performed using the standard interval mapping procedure (EM algorithm) with binary model
in the package R/qtl [47] version 1.36.5 for R ver. 3.1.2 [48] and using F, as the cross type. One
thousand permutations at oo = 0.05 were executed to calculate the LOD threshold. The additive
and dominance QTL effects were estimated taking missing genotype information into account.
Missing genotypes were simulated given observed marker data by the hidden Markov model
(sim.geno function in R/qtl). Reports were generated for maximum LOD score, 1.5-LOD sup-
port interval in ¢cM, and the physical location in the reference genome in Mbp, as well as the
percentage of variation explained (R?).

The QTL mapping of the quantitative traits SS, MA and YAN was performed in two stages:
1) for each trait independently using composite interval mapping through the package R/qtl
[47] version 1.36.5 for R ver. 3.1.2 [48]; and 2) joint QTL mapping for multi-trait trials in a sin-
gle environment, using the routines QMTQTLSCAN, QMTESTIMATE and QMTBACKSE-
LECT [49] integrated in the statistical package GenStat for Windows 17" [50].

For the three traits, phenotypic information was used from fruit of 63 progeny harvested in
2013. The normality of the distributions was tested by the Shapiro-Wilks tests. Logarithm
(Log) transformation was applied for results validation. The QTL detected were similar using
either transformed or original data. The markers were coded according to the recommenda-
tions of the software used (A, B and H for R/qtl, and as 1|1, 2|2 and 1|2 in GenStat). QTL map-
ping was executed as described for the berry skin color in R/qtl. The 1.8-LOD support intervals
were reported as suggested by “A Guide to QTL Mapping” [51] for mapping traits for an inter-
cross family.

In the case of the joint QTL mapping in GenStat, the joint QTL mapping was performed
using the phenotypic data for each combination of two traits (MA-SS, MA-YAN and
SS-YAN). Cofactors were placed every 1.51 cM along the genome, resulting in placement
of 861 cofactors along the genetic map. The model used for the first QTL scan was
= n+ T+ Zfep[(x:}ddczfdd + xgifamcz_am) + (x;zdda}zdd + x;ioma;lom)} + TE,, where y;; is the

value of trait j for genotype i, T; is the trait main effect, F is the set of cofactors, x,»f“dd and
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xiadd

are the additive genetic predictors of genotype i at the cofactor positions and at the
tested position, respectively. The associated effects are denoted by cjf“dd and aj“dd for cofac-
tors and tested positions, respectively. xijcd"m and x;%™ are dominance genetic predictors of
genotype i at the cofactor positions and at the tested position, respectively, with associated
effects ¢;*°", and ;™. TE;; refers to the residual error of the trait j for genotype i. The fit
of the unstructured model was iteratively performed through Restricted Maximum Likeli-
hood (REML), using 1000 iterations. The QTL threshold was set at a significance level of
0.05 using the Li and Ji method [52] with minimum cofactor proximity of 50 cM and mini-
mum separation of selected QTLs of 30 cM.

Subsequently for the interval mapping and estimation of QTL effects, the model was simpli-
fied tO:yij =u+ T] + ZleL[(x?ldda;Idd + xgomaﬁom)} + GTij’
genotype i, T; is the trait main effect, x;™ are the additive genetic predictors of genotype i for

where y;; is the value of trait j for

locus I, and ajl“dd are the associated effects. x;°™ are the dominance genetic predictors, and o;-
dom are the associated effects. The method to fit these models follow the ideas of Malosetti et al.
[53] and Boer et al. [54]. Both mixed models consider the genotypes as random terms, while
the genetic predictors as fixed effects. The genetic predictors can be considered as genotypic
covariables informing the genotypic composition of a genotype at a specific chromosome locus
[55]. GT}; is assumed to follow a multi-Normal distribution with mean vector 0, and a variance
covariance matrix X, which was modeled during the QTL mapping procedure.

Finally, to approach the causality between traits MA and SS (causal, reactive, independent,
full), a causal model selection test [56] was implemented using the function cmst in the R pack-
age qtlhot version 0.9.0 [57].

Results
Marker development

A total of 291,453 quality single nucleotide polymorphisms (SNPs) were identified in 424 F,
progeny relative to the V. vinifera ‘PN40024’ reference genome, version 12X.v2. Subsequently
SNP filtering by minimum read depth and missing data rate yielded 2180 intercross markers
with 1:2:1 segregation in the progeny, as determined by a 2 test of marker segregation. The
markers were discovered and coded as hkxhk using a custom perl script (S1 File). Further
marker curation and genetic map construction were performed in JoinMap® 4.1, resulting in a
final set of 1,449 markers. The workflow for marker development and linkage map construc-
tion in the F, mapping family are presented in Fig 1.

Linkage map construction

Linkage analysis using LOD 10.0 grouped the 1449 markers into 19 linkage groups (LG) with a
total map size of 2423.9 cM and a map density (average distance between markers) of 1.67 cM
(Fig 2). Given the grapevine genome size of about 458.8 Mb [40], the current genetic map is
about 0.189 Mb/cM. Based on a comparison of the genetic map to the reference genome (phys-
ical map), all linkage groups (except Chr15) had an estimated genome coverage greater than
90%, and the average genome coverage was 95.1% (S2 File). To check marker order, the genetic
positions of markers within each LG were compared with physical coordinates on the reference
genome (S3 File). Marker order was conserved between the genetic and physical map.
Compared to an SSR map previously developed for the same F, family [29], this GBS map
represented a nine-fold improvement in resolution from 14.9 ¢cM to 1.67 cM between markers
and an 11% increase in the average genome coverage, from 84% to 95% (Table 1). In addition,
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Workflow of Genetic Map Construction
V. riparia x ‘Seyval’ F, family No. of Markers

GBS Build: alignment by BWA mem & SNP calling by 291,453
TASSEL-GBS pipeline

Quality Control: no MAF, missing data (<25%), min depth
(6) 20,297
Identify intercross markers based on x? test of marker 2,180
segregation (1:2:1) in F, progeny
Map construction and curation in JoinMap 4.1 1,449

Report as F, maps for QTL detection in R/qtl

Fig 1. Workflow of marker development and genetic map construction in the V. riparia x ‘Seyval’ F, family. The left panel shows the five main steps
with filtering parameters, and the right panel shows the numbers of markers resulting from each step.

doi:10.1371/journal.pone.0149560.g001

there were six gaps greater than 20 cM in the previous SSR map, while the largest gap in the
GBS map was 13.5 cM.

Berry color mapping for map validation

Berry skin color is controlled by the VvimybAI gene (Chr02: 14,179,266-14,180,746) [58]. This
well-studied trait was used to validate the soundness of the F, map construction strategy. Berry
skin color was recorded for 65 F, progeny and showed a 51:14 ratio of black:white (pigmented:
nonpigmented), which was not significantly different from 3:1 (Chi-squared test, p = 0.80, 54
File), confirming the trait was controlled by one completely-dominant gene. Only one significant
QTL, with a peak LOD score of 12.47 (threshold = 3.9), was identified on LG02, and explained
up to 90% of the phenotypic variance for berry skin color (Fig 3A). The 1.5-LOD support interval
spanned the genetic map at 71.06-90.85cM, corresponding to Chr02 6.3-14.3Mbp and encom-
passed the VvmybA1l locus (Table 2). The estimated additive effect was 0.5 (a = 0.50), equal to the
estimated dominant deviation (d = 0.46), which perfectly matched the one-locus, complete-dom-
inance model and thereby validated the F, map construction strategy (Fig 3B).

QTL mapping for enological traits

QTL mapping of the enological traits YAN, MA and SS was conducted using composite inter-
val mapping (CIM) and the Kosambi mapping function. Each phenotype followed a normal
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Chr01 Chr02 Chr03 Chr04 Chr05 Chr06 Chr07 Chr08 Chr09 Chr10 Chr11 Chr12 Chr13 Chr14 Chr15 Chr16 Chr17 Chr18 Chr19

Fig 2. Linkage map of F, mapping family derived from V. riparia x ‘Seyval’. The linkage map consists of 1,449 markers with a total map size of 2423.9
cM. The 19 chromosomes are labeled at the top of each linkage group. Genetic positions (cM) and physical locations (‘PN40024’ reference version 12X.v2)
are listed to the left and right of each chromosome, respectively.

doi:10.1371/journal.pone.0149560.9002

distribution (54 File). A QTL corresponding to YAN was identified on LG07 with a peak at
100.44 cM (LOD = 6.48; Fig 4A). This YAN QTL spanned a physical interval from 17.0-20.6
Mbp (1.8-LOD support interval) and explained 22.8% of phenotypic variance (Table 2). The
additive effect of the QTL was negative, indicating that higher concentrations of YAN came
from the grandparent 1, V. riparia. For MA, a single QTL was observed on LG06 with a peak at
70.24 cM (LOD = 6.24). This MA QTL contained a relatively narrow 1.8-LOD support interval
from 7.3-8.4 Mbp and explained 26.2% of the phenotypic variance (Fig 4B, Table 2). In con-
trast to YAN, the positive additive effect of MA refers to higher concentration in the grandpar-
ent 2, ‘Seyval’. For the ratio of MA/SS, a single QTL was identified on LG06, peaking at 32.10
cM (LOD = 5.93). This MA/SS QTL spanned a relatively narrow interval between 3.5 and 4.3

Table 1. Comparison between the previously published SSR-based map and the GBS-based map.

SSR map GBS map

No. of progeny 119 424

No. of markers 120 1449
No. of linkage groups 21 19

Map size (cM) 1784 2424

Average distance between markers (cM) 14.87 1.67

Average genome size per cM (Mb/cM) 0.257 0.189
Genome coverage (%) 83.7 95.1

doi:10.1371/journal.pone.0149560.t001
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Fig 3. Berry color segregation used for genetic map validation. (A) QTL for berry skin color is confirmed on Chr02 of the genetic map. Permutation tests
were carried out to identify the 95% confidence threshold, and the significance threshold for the LOD score is presented as a horizontal red dashed line. (B)
The additive effect (a, blue line) and dominant deviation (d, red line) are estimated across the whole genome.

doi:10.1371/journal.pone.0149560.g003

Mbp and explained 26.0% of the phenotypic variance (Table 2). The additive effect was posi-
tive, indicating that higher MA/SS ratios came from ‘Seyval’, and the dominant effect was
negligible.

Since the QTL analysis was performed on data for a single year and single location, data
transformation and multiple QTL detection methods and software programs were applied to
confirm the results. The joint analysis of SS and MA showed evidence of two QTLs affecting
both traits (Fig 4C). One QTL was detected at LGO1 at the 49.94cM (5.0 Mbp), for which the
additive effects indicated that the traits came from the grandparent 1, V. riparia (Table 2). This
QTL explained around 7.9% and 1.0% of the phenotypic variance for MA and SS, respectively.
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Table 2. Summary of QTL analyses in V. riparia x ‘Seyval’ F, family.

Trait

Berry skin color

Yeast
assimilable
nitrogen (YAN,
mg/L)
Malic acid
concentration
(MA, g/L)
Total soluble
solids content
(SS, %w/w)

MA/SS ratio

Joint analysis of
MA and SS

Joint analysis of
MA and SS

No. of
individuals
phenotyped

65

63

63

63

63

63

63

Linkage Peak Physical LOD LOD LOD interval  Additive = Dominant R%¢
Group position position of score interval (physical effect © effect
(LG) (cMm)? the nearest (cM)® location)
marker

2 85.40 9,126,568 12.47 71.06— 6,360,259 -0.50 0.47 89.92
90.85 14,300,736

7 100.44 18,819,915 6.48 94.87— 16,987,038— -52.55 -38.91 22.81
106.85 20,565,550

6 70.24 7,985,435 6.24 62.95— 7,343,698— 2.50 1.26 26.19
75.23 8,358,059

6 46.18 5,498,696 4.76 35.85— 4,258,443~ -2.16 0.0811 19.14
54.71 6,497,323

6 32.10 3,857,140 5.93 27.07- 3,5624,817— 0.17 0.00262 26.04
35.85 4,258,443

1 49.94 5,061,702 6.55 49.10- 5,026,255— MA -0.40 0.34 7.93
51.12 5,123,842

SS-0.14 0.20 1.02

6 75.23 8,358,059 4.23 70.21—- 7,985,435 MA 0.60 0.28 18.37
80.83 11,876,418

SS 0.62 -0.24 19.43

2 Position of likelihood peak (highest LOD score).

P LOD interval refers to 1.8-LOD support interval, except for Berry skin color, for which a 1.5-LOD support interval was used.

¢ Additive effect: A positive value means the higher value of the trait due to allele from grandparent2, ‘Seyval’. A negative value means the higher value of
the traits due to allele from grandparent1, V. riparia. The units depend on the traits.

9 R? (coefficient of determination): percentage of phenotypic variance explained by the QTL.

doi:10.1371/journal.pone.0149560.t002

Another QTL on LGO06 at 75.23cM (8.3 Mbp) also showed high evidence for influencing both
traits simultaneously; however, the additive positive effect on MA came from grandparent 2,
‘Seyval’, and the additive effect on SS came from V. riparia. This particular QTL was notewor-
thy since it explained around 18.3 and 19.4% of the phenotypic variance of MA and SS, respec-
tively, and co-localized with the MA QTL identified in the CIM analysis. No significant
dominance effect was observed for either trait. The interaction between QTL and trait additive
effects was significant (Fig 4D). Thus for SS, both QTLs showed negative additive effects (-0.14
and -0.62, for LGO1 and LGO6, respectively), while for MA, the QTL on LG01 showed a nega-
tive effect and the QTL on LGO06 positive (-0.40 and 0.60, respectively).

The results from the causal model selection hypothesis tests showed that the values for
Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) did not agree in
their most adequate model (S5 File). The AIC value suggested that the full model with nine
parameters was best, and that the traits were affected by more than genetic factors. The BIC
value suggested that considering SS as phenotype 1, the best model was a causal effect of SS on
MA. When MA was considered as phenotype 1, the BIC value indicated the reactive model was
best, confirming that MA was reacting to a causal effect of SS.

Discussion

Over the last ten years, linkage map construction has been widely used in grapevine genetic
research, with markers primarily being amplified fragment length polymorphisms (AFLPs),
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doi:10.1371/journal.pone.0149560.9004

SSRs and SNPs [27]. Although SSRs have been widely used in grapevine linkage map construc-
tion, the method is relatively time consuming and costly, typically resulting in low marker den-
sity. For example, 119 individuals from the mapping family used here were previously
genotyped using 115 SSRs [29], which was much less than that required to capture all the infor-
mative recombination. That SSR map was unable to cover the whole genome and resulted in
six gaps larger than 20 cM due to uneven distribution, which would result in information loss
if causal alleles were located in the missing region.

In contrast, GBS-based SNPs can provide high-density genetic maps and are conducive to
high-throughput genotyping. The genetic map for this F2 population (Fig 2, Table 1) consisted
of 1,449 markers 12.6-fold increase in marker density compared to the earlier SSR map. The
maximum spacing between markers was reduced to 13.5 cM, and 15 out of 19 chromosomes
have maximum gaps less than 10 cM, resulting in an average distance of 1.67 cM/marker. The
GBS markers are almost evenly distributed across the genome, and cover 95% of the ‘PN40024’
reference genome. This high-resolution genetic map should better detect recombination events.
Since linkage disequilibrium (LD) is low in Vitis due to its heterozygosity and diversity [11,
59], greater marker density increases the odds of finding markers for specific traits, or even to
fine map candidate causal genes. Further, the GBS protocol is well established, publicly avail-
able, and can be scaled efficiently up to the current 384-plex barcoding system [35], at which
the total genotyping cost is currently less than $15 per sample. Thus, GBS-SNP markers are a
time- and cost-efficient method for high resolution genetic map construction and potentially
for marker-assisted selection. However, current GBS pipelines have been designed for inbred
germplasm with very low residual heterozygosity and do not provide methodology for
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obtaining intercross markers, for which heterozygous materials are enriched and for which the
marker phase is not known.

The co-dominant intercross markers of an F, mapping family enabled the capture of addi-
tional meiotic events relative to the F; pseudo-testcross mapping approach. Furthermore, in an
F; family, only QTLs in heterozygous allelic states in the parents with large allele-effect differ-
entials can be detected [60], which complicates the estimation of additive effects contributed by
each parent. Thus, F, families with at least 200 progeny genotyped with intercross markers
have superior linkage map accuracy [61, 62] and allow the estimation of additive, and to some
extent dominant, genetic effects contributed per parent [63]. There are two types of markers in
an F, mapping family: 1:2:1 segregation of co-dominant markers, which are more informative
than 3:1 segregation of dominant markers.

Here, we addressed several specific challenges associated with GBS analysis, particularly of a
heterozygous family. First, retrieving useful GBS markers for map generation poses a challenge,
since there is still a gap between the standard GBS variant calling pipeline TASSEL and com-
mercial map construction software JoinMap. Also, heterozygous genotypes may be called due
to sequencing errors or genome structure variance such as paralogs or tandem duplication.
When imputation is difficult to apply on highly heterozygous species, pre-filtering and marker
type identification and selection need to be carefully performed. The custom perl script (S1
File) provided in this paper identified markers with a co-dominant segregation (i.e. 1:2:1) in
the progeny and verified each marker against the allelic state of the progenitor. To our knowl-
edge, this is the first publication using intercross SNP markers for map construction in an F,
progeny in grapevine. The perl script can be used for marker development in other highly het-
erozygous species, such as apple, poplar and willow.

To validate the marker development and map construction strategy, the trait of berry color
was subjected to QTL analysis (Fig 3). Berry color was selected for map validation for two rea-
sons: (1) it is a highly heritable binary trait that is easy to phenotype; and (2) the genetic basis is
well studied. Specifically, the VvmybA1 gene (Chr02: 14,179,266-14,180,746) regulates antho-
cyanin pigment biosynthesis in grapes [64], and a retrotransposon-induced mutation in
VvmybA1 has been identified as the molecular basis of white cultivars of V. vinifera [58]. The
QTL detected at 14.2 Mbp on Chr02 aligned perfectly with VvmybA 1, indicating our approach
was effective, even with a small sample size of 65 phenotyped progeny. The GBS genetic map
was also compared to a physical map based on the reference genome V. vinifera ‘PN40024’ (S3
File). The majority of co-linearity indicated that marker order is well conserved even across the
genome segments of diverse Vitis species represented in the parents, including V. vinifera, V.
rupestris, V. aestivalis var lincecumii and V. riparia. These markers can be used as anchors to
improve the ‘PN40024’ reference genome assembly by filling existing gaps or incorporating
random contigs. However, there are some chromosomal regions that show weaker correlation
between genetic and physical maps, e.g. the upper end of Chr16. These regions might indicate
species-specific genome structure variation, such as chromosome rearrangement, transposable
elements and tandem duplication. V. vinifera is the only species in the Vitis complex with a
whole genome sequence already published, and the de novo genome assembly for other Vitis
species can provide insight into unique characteristics arising from adaption to local condi-
tions. Thus, this interspecific genetic map can be viewed as an early step toward a grapevine
pan-genome, as pursued in maize [64].

Once the genetic map was generated and validated, three berry traits related to winegrape
quality were chosen for QTL analysis. YAN-or the sum of nitrogen contained in primary
amino acids and ammonium-is the nitrogenous component of grapes that can be utilized by
yeast during alcoholic fermentation. Proper nitrogen concentrations are of interest to wine-
makers since nitrogen deficiency is associated with sluggish or stuck fermentations, increased
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production of off-aroma compounds like H,S, and decreased formation of desirable odorants
like esters [1, 65]. Conversely, excess YAN can cause several problems, most notably formation
of carcinogenic ethyl carbamate. Typically, ammonium is accumulated first, and decreases dur-
ing ripening with corresponding increases in primary amino nitrogen [1]. Total YAN changes
relatively little during berry ripening-across a wide range of cultivars and sites, YAN concen-
trations at commercial harvest averaged only 25% higher and were well correlated with values
measured up to 5 weeks prior [66]. However, genotype can have a profound effect on YAN-up
to a three-fold variation among vinifera cultivars (75 mg/L vs. 220 mg/L) was observed in a sur-
vey of cultivars in one growing region [66], and much larger variations were observed among
interspecific hybrids [18]. We observed a YAN range in our mapping family (100-600 mg/L)
greater than this previous survey, further confirming the importance of genetics in YAN.

Currently there is little information on the genetics of YAN and this, to our knowledge, is
the first YAN associated QTL in grapevine. The QTL results in this study revealed one locus
associated with YAN on LG07 (LOD = 6.48) from 16,987,038 to 20,565,550 bp, within the
1.8-LOD support interval (Table 2). Thirteen genes relevant to nitrogen metabolism were iden-
tified within the interval and can be used to further explore the trait. Because berries appear to
accumulate ammonium, which is subsequently metabolized to primary amino acids, the pres-
ence of ammonium transporter genes in this list (AMT2) is of particular interest. The altered
function of these genes could limit either N uptake by the vines or YAN accumulation in the
berries. The estimated additive effect of the QTL indicated the V. riparia grandparent con-
tained a higher concentration of YAN than ‘Seyval’ and may provide a novel tool for research
into the nature of nitrogen content in grape berries.

Both MA and SS are critical parameters for evaluating fruit maturity, where the primary
component of SS in mature fruit is hexose sugars (fructose, glucose). The key biochemical path-
ways associated with MA and hexose sugar metabolism are well-established [67]. Pre-veraison,
sucrose imported into grape berries via the phloem is used as the primary metabolic substrate.
Concurrently, a portion of malate from the citric acid cycle is transported and stored in vacu-
oles, where it serves as a key contributor (along with tartaric acid) to the high TA of unripe
grapes [68]. During veraison and ripening, grapes accumulate sugars, and shift to using MA as
an energy source [14]. Thus, a key change associated with veraison is an increase in SS (caused
primarily by inversion of imported sucrose and accumulation of resulting hexose sugars) coin-
ciding with a reduction in TA (caused primarily because of MA respiration). Grape crosses
with non-domesticated Vitis in their background, e.g. V. riparia, can have unacceptably high
TA values and MA concentrations (>10 g/L) even at normal harvest SS values (>20 Brix) [5].
The family used in this study shows this problem with over 50% of individuals having
MA > 10 g/L (54 File).

Because MA and SS are co-regulated, QTL analyses of individual traits were complemented
by two other approaches 1) QTL analysis of the ratio, MA/SS, and 2) joint (simultaneous
multi-trait) analysis of MA and SS. Both techniques have advantages over the trait-by-trait
analysis, the most relevant being the increase in power to identify and accurately locate QTLs
[69-72]. However, both approaches also provide additional information that is not easily
obtained when traits are analyzed separately, such as the power to identify loci involved in the
regulation at specific metabolic branch-points and infer interaction among genetic compo-
nents for the exhibition of the traits.

The analysis of two traits as a ratio creates some difficulties, because when two traits are
identically normally distributed, their ratio follows a Cauchy distribution as opposed to the
normal distribution expected by most algorithms [71]. However, the mapping of these ratio-
traits is relevant because it allows researchers to test and infer the interaction between traits,
exemplified here by the interaction of compounds that have relevance for harvest decision-
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making in the field and fermentation must manipulations in the winery. From a genetics per-
spective, the analysis of ratio-traits allows the potential opportunity to integrate and discover
independent, closely-linked, and pleiotropic loci [73] when the separated traits exhibit a signifi-
cant positive or negative correlation. For example, MA/SS ratio would be less sensitive than the
individual traits to changes in berry size.

In our study, the analysis of the MA/SS ratio showed a QTL on LGO06 distal from the QTLs
identified for SS and MA when analyzed separately (Table 2, S6 File). The LOD-based evidence
(4.77-6.24) and amount of variance explained (19-26%) was comparable for the traits analyzed
individually or as a ratio. The interpretation of the additive and dominance effects suggested
that the higher value for the ratio could be due to the genetic contribution from ‘Seyval’; how-
ever, since this ratio can be interpreted as a biochemical interaction, the interpretation may
require additional inference to suggest what is being genetically inherited.

The joint analysis of multiple traits includes all traits of interest simultaneously in a single
model. This approach can provide insights into fundamental genetic mechanisms underlying
trait relationships such as pleiotropy and close linkage, genotype-by-environment (G x E)
interactions, and the possible trade-off given for negatively correlated traits [70]. This joint
analysis approach generated a list of 14 candidate genes within the QTL region. The joint anal-
ysis showed a QTL detected on Chr06 with 1.8-LOD support interval from 70.2-80.8 cM
(Table 2). The corresponding physical interval, Chr06:7,985,435-11,876,418, covered the
region of grapevine orthologs of the aluminum activated malate transporter, ALMT1. This
gene corresponds to the Mal and Ma2 loci in apple, which are malic acid transporters control-
ling the acidity level in apple fruits [74]. Our observation aligns with a QTL for MA at 74.1 cM
on Chr06, reported by another group using a Vitis spp. mapping family [20]. The QTL
explained 17% of the variance for MA in one year of a three year study. This group did not
implicate ALMT1 as a candidate gene in Chr06, although they did observe a more minor QTL
on Chrl18, which they suggested could be related to a different ALMT. Interestingly, significant
QTL were not detected for other genes expected to control MA concentrations. For example,
MA respiration rate, the rate at which grape berries metabolize MA after veraison, is dependent
on NAD dependent malate enzyme [68], but no QTL was detected at its genetic location. QTL
analyses of MA are complicated because high MA at harvest could arise from either high MA
accumulation pre-veraison or slow MA respiration, and future studies could likely benefit from
having multiple time points, i.e. pre- and post-veraison.

The analysis of multiple traits simultaneously implies advantages when causal relationships
between the studied traits and genes or among traits exist; however, when the trait is affected
by a gene through a transitional trait, the advantages almost disappear [72]. For such a reason
the testing of the causal relationships (correlation, pleiotropy, or close linkage) between or
among traits must be addressed to yield outputs that can be interpreted biologically. Also, the
addition of more traits to the joint QTL analysis does not result in more detection power, but
may give rise to spurious signals since additional parameters will be fitted in the model [75].
However, to break unfavorable linkages of genes involved in the exhibition of economically
important traits, the separation of closely linked loci is needed to eliminate pleiotropic negative
effects [75].

In this study, the test for causal relationships between SS and MA was pursued through
causal model selection hypothesis tests [56]. The results from CMST showed that a causal rela-
tionship clearly exists between MA and SS with a common genetic component (QTL), as the
model for independence was not significant in any of the tests. AIC values were minimized for
the full model, indicating SS and MA share more than one common genetic component.
While, BIC values were minimized for models showing a casual effect of a QTL controlling SS
also affecting MA. The discrepancy between AIC and BIC is not a concern for the
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interpretation of the results in the light of the empirical experience for these traits. Therefore,
the results are compatible with the empirical experience, in which the balance between MA
and SS is intertwined and influenced by several other factors, such as environment (particularly
temperature), field management (irrigation, fertilization), and biology (additional biochemical
interactions). Hence, genetic research, breeding, and probably biochemistry approaches,
should consider MA and SS simultaneously, as well as the possible interactions with non-
genetic factors.

Conclusions

The results presented here confirmed the GBS mapping strategy for an expanded F, mapping
family in grapevine. The protocol presented here filters heterozygous markers and retrieves
high quality intercross markers which are phased during linkage map development and allows
QTL analysis using an F, genetic design, which is not common for grapevine genetic research.
In addition, the protocols for calling intercross GBS markers could be used for other heterozy-
gous species. The linkage map provided qualitative and quantitative improvements over a pre-
vious SSR map for marker density and genome coverage while maintaining co-linearity with
the reference genome. The availability of the linkage map facilitated the genetic study of wine-
grape quality traits, including a well-characterized binary trait (berry color), more complicated
traits (malic acid, soluble solids) and a neglected trait (yeast assimilable nitrogen). Enhanced
marker resolution provided the opportunity to conduct joint analysis of malic acid and soluble
solids and results indicated these compounds are intertwined and should be considered jointly
in future genetic studies. The resources generated here can further guide the study and manipu-
lation of fruit harvest, must processing and wine fermentation, and may also contribute to deci-
sion making for breeding and cultivar development of grapevines. The novel GBS analysis
methods presented here could have broad impact for F, mapping in diverse heterozygous
species.

Supporting Information

S1 File. Perl code for obtaining intercross markers. Perl code to identify markers from TAS-
SEL hapmap file that are (1) heterozygous in the F; progenitor and (2) show co-dominant 1:2:1
segregation among the F, progeny by a chi-squared ()*) goodness-of-fit test at az<0.01.

(PL)

S2 File. GBS-based linkage map statistics. Summary statistics of the V. riparia x ‘Seyval’ F,
GBS-based linkage map.
(DOCX)

S3 File. Comparison between GBS genetic map and physical map. X-axes represent physical
coordinates in the reference genome V. vinifera ‘PN40024’ version 12X.v2 (Mb). Y-axes repre-
sent genetic coordinates (cM).

(PDF)

$4 File. Distribution of traits in the V. riparia x ‘Seyval’ F, family. (A) Sixty five F, progeny
were measured for berry skin color. White (nonpigmented) is coded as 0 and black (pig-
mented) is coded as 1. (B-D) Distribution frequency for quantitative enological traits in 63 F,
progeny.

(PDF)

S5 File. Results from the causal model selection test. Log-likelihood (LogLik), Akaike Infor-
mation Criterion (AIC) and Bayesian Information Criterion (BIC) evaluated for each of the
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causal models considered in CMST. In the column “Test”, a simple directed acyclic diagram is
shown as a representation of the test performed. In this particular case, a genetic component-
QTL (Q) influences either of the traits (MA or SS). The arrows represent the direction of the
influence, which can go from Q to either trait or from trait to trait. Influence of trait upon Q is
not considered in this approach. The values associated with the most likely models are
highlighted in bold.

(DOCX)

S6 File. QTL mapping for berry quality traits. QTL mapping for (A) total soluble solids con-
tent (SS, %w/w) and (B) the ratio of malic acid concentration (MA, g/L) to total soluble solids
content (SS, %w/w). Permutation tests were carried out to identify 95% confidence thresholds,
and the significance threshold of LOD score is presented as a horizontal red dashed line.
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S7 File. SNP marker sequences. The sequence of markers in the final map.
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