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Simple Summary: Defective DNA damage response (DDR) is a hallmark of cancer leading to
genomic instability. Up to 15–20% of colorectal cancers carry alterations in DDR. However, the role
of DDR alterations as a prognostic factor and as a therapeutic target must be elucidated. To date,
disappointing results have been obtained in different clinical trials mainly due to poor molecular
selection of patients. Several challenges must be overcome before these compounds may have an
impact on colorectal cancer. For instance, although some preclinical evidence showed the vulnerability
of a subset of CRCs to PARP inhibitors, no specific clinical or molecular biomarkers have been
validated to select patients. Moreover, different DDR alterations may not equally confer platinum
sensitivity in CRC patients. Further efforts are needed in both preclinical and clinical settings
to exploit DDR alterations as therapeutic targets and to eventually discover PARP or other DDR
inhibitors (e.g., Wee1) with clinical benefit on colorectal cancer patients.

Abstract: Major advances have been made in CRC treatment in recent years, especially in molecularly
driven therapies and immunotherapy. Despite this, a large number of advanced colorectal cancer
patients do not benefit from these treatments and their prognosis remains poor. The landscape of
DNA damage response (DDR) alterations is emerging as a novel target for treatment in different
cancer types. PARP inhibitors have been approved for the treatment of ovarian, breast, pancreatic,
and prostate cancers carrying deleterious BRCA1/2 pathogenic variants or homologous recombination
repair (HRR) deficiency (HRD). Recent research reported on the emerging role of HRD in CRC and
showed that alterations in these genes, either germline or somatic, are carried by up to 15–20% of
CRCs. However, the role of HRD is still widely unknown, and few data about their clinical impact are
available, especially in CRC patients. In this review, we report preclinical and clinical data currently
available on DDR inhibitors in CRC. We also emphasize the predictive role of DDR mutations in
response to platinum-based chemotherapy and the potential clinical role of DDR inhibitors. More
preclinical and clinical trials are required to better understand the impact of DDR alterations in CRC
patients and the therapeutic opportunities with novel DDR inhibitors.

Keywords: DNA damage response; genetics; clinical trial; colorectal cancer; PARP inhibitors; preci-
sion oncology

1. Introduction

Colorectal cancer (CRC) is the third most common tumor in the world [1]. CRC remains
one of the principal causes of cancer-related deaths (counting ~9%), and the trend in the
past 15 years shows an increase in this percentage [2]. Recently, the algorithm of treatment
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for advanced CRC has changed, being increasingly focused on precision medicine and on
new biological drugs. For unresectable and metastatic CRC, several systemic treatment
options are available, according to the mutational profile of the tumor, the type of previous
treatment, and the profile of toxicities [3].

Currently, the most common treatment used in metastatic colorectal cancer (mCRC)
is represented by chemotherapy regimens constituting oxaliplatin, 5-fluorouracil, and/or
irinotecan in combination with targeted agents including bevacizumab or aflibercept (an-
tiangiogenic agents) and, according to the RAS/BRAF status, cetuximab or panitumumab
(anti-epidermal growth factor receptor (EGFR) drugs) [4]. Anti-epidermal growth factor
receptor (EGFR) drugs such as panitumumab or cetuximab, in association with FOLFIRI or
FOLFOX, are the standard first-line choice for left-sided, RAS and BRAF wildtype, and MSS
mCRC [5,6]. For right-sided, RAS and BRAF wildtype, MSS mCRC, ESMO guidelines allow
the use of anti-EGFR drugs in association with doublet-CT, despite the detrimental effect
on OS, for shrinkage purposes in symptomatic high-volume disease [7]. In RAS-mutated
tumors, regardless of left-sided or right-sided colon cancers, the association of chemother-
apy with the antiangiogenic drug bevacizumab is the standard first-line treatment with a
safe toxicity profile [8]. Patients harboring the BRAFV600E mutation have intrinsic resistance
to anti-EGFR drugs and worse outcomes compared to BRAF wildtype tumors [9]. About
30% of BRAF-mutated colon cancers have an MSI-high profile; for these patients, a first-line
systemic treatment with pembrolizumab is the first choice, followed by the newly approved
systemic regimen containing encorafenib plus cetuximab. After a first-line therapy with
doublet-CT plus bevacizumab, BRAF-mutated, MSS mCRC should also receive a second-
line treatment with encorafenib + cetuximab [10]. Moreover, mCRC HER2-mutated patients
may benefit from treatment with lapatinib or trastuzumab in different settings; phase 3 tri-
als are required to confirm the preliminary antitumoral efficacy [11,12]. Moreover, RAS
wildtype tumors harboring HER2 amplification may receive a second/third-line therapy
with trastuzumab deruxtecan [13,14].

After the publication of the results of the phase 3 KEYNOTE-177 trial, for mis-
match repair-deficient (MMR-deficient)/MSI-high mCRC, a first-line regiment with pem-
brolizumab has become the new standard of care [15]. Moreover, the combination of
anti-PD1 (nivolumab) plus anti-CTLA4 (ipilimumab) has been tested in a first-line setting,
with promising results in terms of PFS and OS in a phase 2 study [16,17].

Subsequent lines of therapy may involve the rechallenge/reintroduction of previous
regimens, as well as the use of regorafenib or TAS-102 [3]. Other mutations are currently
under investigation, such as NTRK fusion (<1% of CRC) or the KRAS G12C mutation (3%
of mCRC), both targetable by the new drugs entrectinib and sotorasib, respectively [18,19].

An emerging aspect among different cancer types is the alteration of the DNA damage
response (DDR) pathway [20]. The DDR pathway plays a key role in preserving genomic
stability [21]. Many different endogenous and exogenous factors can cause genomic
instability and errors during the mechanism involved in the DNA replication. Reactive
oxygen species (ROS) and ionizing radiation are examples of endogenous and exogenous
factors involved in the altered DNA replication [21]. The DDR pathway has already been
studied in breast, ovarian, prostate, and pancreatic cancer. These tumors harboring a DDR
pathway mutation benefit from platinum compounds and poly(ADP-ribose) polymerase-
inhibitors (PARPi) [22–24]. Recent studies support the idea of the DDR pathway as an
important role in the development of CRC [25,26]. A meta-analysis reported an increased
risk of developing CRC in patients with a germline alteration in breast cancer gene (BRCA)
1, but not in BRCA2 [27]. Different studies reported a frequency of somatic DDR mutation in
CRC between 10% and 20% [28–30], while germline mutations have been reported in about
5% [28]. Interestingly, the frequency of DDR mutation was higher in MSI-H cancers than in
MSS [31] and in right-sided, RAS wildtype, BRAF-mutant, and CMS1 subgroups [31].

Despite these advances, treatment options for the majority of mCRC patients are
limited. Thus, drugs targeting BRCA and other DDR complex genes are being heavily
investigated [32].
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In this article, we review the role of the DDR pathway in CRC, highlighting available
preclinical and clinical evidence to show the most promising avenues for implications of
DDR alterations in CRC patients.

2. The DNA Damage Response (DDR) Pathway

The DDR pathway is a complex of different mechanisms including DNA damage
repair, DNA damage tolerance mechanisms, and cell-cycle checkpoint control (Figure 1).
This complex system regulates the proper performance of DNA replication, proliferation,
and consequently, cell survival. The role of the DDR pathway is crucial in maintaining
genomic integrity and stability by repairing DNA damages. Strand breakages induced
by base alterations, single-strand breaks (SSBs), or double-strand breaks (DSBs) can end
in chromosome breakages and, therefore, loss of genes. DNA DSBs are mostly caused
by altered DNA replication forks, ROS, ionizing radiation, and physical or mechanical
stress [31].
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Figure 1. Different mechanisms for DNA damage response and main inhibitors. DNA damage
is classified into different categories on the basis of the DNA damage type: single-strand breaks
(SSBs), double-strand breaks (DSBs), base alterations, and crosslinks. DNA damage activates the
DNA damage response pathway (DDR) that is composed of several downstream signaling pathways
based on the DNA damage type. The MMR and BER pathways are activated by crosslinks, base
alterations, and SSBs, the NER pathway is activated by by SSBs, and the NHEJ and HRR pathways
are activated by DSBs. We also represented the main drugs and their inhibitor sites that are currently
under investigation as new possible treatments in colorectal cancer (CRC). MMR, mismatch repair;
BER, base excision repair; NER, nucleotide excision repair; NHEJ, nonhomologous end joining; HRR,
homologous recombination repair; PARPi, PARP inhibitors.

The DDR system is composed of different components: the direct reversal/repair
(DR) pathway, the non-homologous end joining (NHEJ) pathway, the homologous recom-
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bination repair (HRR) pathway, the mismatch repair (MMR) pathway, the base excision
repair (BER) pathway, and the nucleotide excision repair (NER) pathway [33]. The first
studied gene involved in the DDR pathway was O(6)-alkylguanine-DNA methyltransferase
(MGMT) [34]. MGMT fixes DNA damage by removing alkyl groups from altered impaired
thymine or guanine bases. This mechanism is very important since alkylating agents create
O(6)-alkylguanine in DNA, which leads to carcinogenesis [35]. The BER pathway works by
removing damaged DNA bases and single-strand breaks produced by oxidation, alkylation,
and deamination [36]. The MMR pathway repairs mismatches of single base pairs (A–G,
T–C) and small insertion–deletion loops which are not repaired during the DNA replication
S phase [37].

Among the different types of DNA damage, DSBs represent the most dangerous. The
NHEJ and HRR systems are the most important mechanisms involved in neutralizing
serious DNA damage. NHEJ acts throughout the cell cycle, whereas HRR is restricted to
late S/G2 phases [38]. The proper balance between HRR and NHEJ is largely determined by
BRCA1 and 53BP1, DDR adaptor proteins that are upregulated at DSB site [39]. The 53BP1
protein triggers the NHEJ mechanism in repairing programmed DSBs, whereas BRCA1
antagonizes 53BP1 and activates DSB resection and the HRR mechanism [40]. Whenever a
two-ended DSB occurs, the NHEJ is activated, while the Ku70–Ku80 heterodimer (Ku) binds
to DNA ends and recruits DNA-dependent protein kinase catalytic subunit (DNA-PKcs),
creating the active DNA-PK holoenzyme [41]. On the other hand, the HRR mechanism is
activated whenever the NHEJ system fails or is inappropriate. In these cases, the DSBs are
exposed to 5′-end resection, generating 3′ single-stranded (ss) DNA that interferes with
Ku binding and supports the repair by HRR. The RE11–RAD50–NBS1 (MRN) complex is
the first one engaged in the lesion to activate the HRR mechanism. Subsequently, BRCA2,
together with PALB2, BRCA1, and RAD51, creates a complex which leads to the formation
of a new nucleoprotein filament [42].

The cause behind inactivation of the DDR mechanism in cancer development can
be a genetic and/or an epigenetic alteration [43,44]. The most characteristic method is
genetic inactivation; this mechanism can change DNA sequences by germline or somatic
mutations. An example of germline inactivation is Lynch syndrome [33]. An analysis of
500 metastatic tumors showed a prevalence of pathogenic germline variants in 12.2%, 75%
of which were DDR-related mutations [45]. Epigenetic instability also plays an important
role in carcinogenesis. The microsatellite instability (MSI) phenotype is induced by different
alterations, with the most common being epigenetic silencing of MLH1, such as MLH1
hypermethylation [46]. The complete loss of function of the NEHJ mechanism causes a
high number of DSBs and a subsequent cell death impossible to prevent [47]. This is the
reason why only a few cases of downregulation or alteration of core NHEJ genes have
been described [47]. Nevertheless, HRR somatic alterations are the most frequent DNA
repair pathway among DDR genes over 33 cancer types [48]. BRCA1, BRCA2, RAD51, BLM,
and RAD50 are the most common mutations associated with homologous recombination
deficiency (HRD) [48].

In the last decade, the role of DNA damage repair (DDR) gene mutations has be-
come more and more relevant; they were shown to be a positive predictive marker of
sensitivity to platinum-based chemotherapy regimens and poly(ADP-ribose) polymerase
inhibitor (PARPi) response in different tumors, including breast, ovarian, pancreatic, and
prostate cancer [49]. The therapeutic role of platinum compounds and PARPi in BRCA
mutated breast and ovarian cancer is well established and a standard of care [50,51]. the
Food and Drug Administration (FDA) only approved the use of olaparib [52] and ruca-
parib [53] in 2020 for patients with DDR-mutated metastatic castration-resistant prostate
cancer (mCRPC). Regarding gastrointestinal (GI) tract tumors, promising results have been
reported with olaparib as maintenance therapy after platinum-based chemotherapy in
patients with BRCA1/2-mutated pancreatic cancer (POLO trial) [22,54]. Therefore, olaparib
was approved by the FDA and EMA in this therapeutic setting [55].
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In CRC, only few data are available about the prognostic and predictive role of
DDR alterations. However, a recent meta-analysis reported that carrying BRCA1 and/or
BRCA2 mutation is not associated with a higher risk of developing CRC, in contrast
with previously reported data (higher risk due to BRCA1 mutation) [27,56]. Despite that,
germline alterations in BRCA1 and BRCA2 genes seem to be associated with early-onset
CRC [57]. The risk for CRC, as well as for anal carcinoma, in BRCA carriers seems to
be elevated in women below the age of 50 [58], and BRCA-mutated CRCs were often
of mucinous histology [59]. This histology subtype is also associated with other defects
in DNA repair genes, such as the MMR genes, suggesting a distinct tumor biology that
deserves further investigation.

Interestingly, a recent article by Sayed et al. described the plausible mechanism of
microbe-induced impairment of DNA repair by specific downregulation of a BER protein,
NEIL2. Indeed, they showed that Fusobacterium nucleatum induces the downregulation of
NEIL2 and accumulation of DNA damage, eventually leading to CRC progression [60].
This may represent new avenues to be investigated to develop further effective treatments
for CRC patients.

3. Biomarkers of DDR: How to Select Patients

The identification of biomarkers of DNA damage response (DDR) genomic alterations
and of predictive biomarkers of the response to PARP inhibitors is a current unmet clinical
need [61]. In fact, a substantial number of patients who do not carry somatic or germline
BRCA1/2 mutations may still benefit from PARP inhibitors. Moreover, some BRCA1/2
mutations carriers may not respond to PARP inhibitors [62,63].

Therefore, several studies investigated the molecular characteristics of patients with
BRCA1/2-mutated tumors that could serve as biomarkers to select those BRCA1/2 wildtype
patients that could benefit from a PARP inhibitor. Hence, the term ‘BRCAness’ was coined
to define those tumors showing molecular and phenotypic features similar to those found
in BRCA1/2-mutated tumors. These characteristics can arise from a range of both genomic
and/or epigenetic alterations [61].

The term ‘BRCAness’ was then expanded to ‘HRDness’ to better include non-BRCA-
related sensitivity to PARP inhibitors [61]. The term ‘PARPness’ can be used when sensitiv-
ity to PARP inhibitors goes beyond the mechanisms of HRD, through different molecular
alterations from base-excision repair (BER), alternative NHEJ, or replication-fork protec-
tion [64]. However, outside of these definitions, there is to date no consistent identification
of patients who might respond to PARP inhibitors. The main clinical criteria of sensitivity to
PARP inhibitors used in most clinical trials is responsiveness to platinum-based chemother-
apy [65]. This is well defined in ovarian cancer, whereas there is still no commonly accepted
definition of ‘platinum sensitivity’ in CRC.

Efforts to develop molecular biomarkers of HRD have included transcriptomic signa-
tures [66], mutational signatures [67], BRCA1 and RAD51 promoter hypermethylation [68],
and functional biomarkers. However, these approaches are not widely available in everyday
clinical practice.

The main molecular approach adopted in clinical trials is the detection of genetic
alterations through next-generation sequencing (NGS) technologies.

In particular, the FoundationFocus CDx BRCA LOH test was developed to predict the
efficacy of the PARP inhibitor rucaparib in high-grade ovarian cancer with BRCA alterations
and/or genomic LOH, referred to as HRD (tBRCA+ and/or LOHhigh) [69]. It consists of
three main elements: (a) germline BRCA gene test, (b) NGS analysis of somatic variants of
HR and NHEJ pathways, and (c) SNP profiling to evaluate LOH score [70].

The ARIEL2 study, involving platinum-sensitive relapsed ovarian cancer patients
treated with rucaparib, showed that LOHhigh status (defined as ≥14%) had a stronger
predictive value (78% of responders predicted) compared to other biomarkers (e.g., BRCA1
or RAD51 methylation or mutation in other HRR genes: 48% and 11%, respectively) [71].
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The overall response rates (ORR) in the gBRCA1/2, sBRCA1/2, LOHhigh, and intention-to-
treat population were 85%, 74%, 29%, and 31%, respectively [71].

In the ARIEL3 trial, rucaparib maintenance therapy was evaluated in the same
platinum-sensitive relapsed ovarian cancer population, specifically in patients carrying
a BRCA somatic mutation, HR-deficient (sBRCAm and BRCA wildtype LOHhigh), and
HR-proficient, with a threshold to define LOHhigh as≥16%. Median PFS in the sBRCAm pa-
tients was 16.6 vs. 5.4 months in the placebo group (HR 0.23; 0.16–0.34), in the non-BRCAm
HRD group was 13.6 vs. 5.4 months (HR 0.32; 0.24–0.42), and in the intention-to-treat
population was 10.8 vs. 5.4 months (HR 0.36; 0.30–0.45) [63].

However, there are still no data regarding the prevalence of genomic scarring in CRC.
In this regard, Foundation Medicine’s HRR–HRD Lynparza assay has developed a panel of
15 HR genes that could be considered in future studies investigating HRD in CRC [70].

The Myriad myChoice HRD test assesses BRCAness by global genomic scarring
through (a) loss of heterozygosity (LOH), (b) telomeric allelic imbalance (TAI), and (c) large-
scale state transition (LST). TAI consists of a discrepancy in the 1:1 allele ratio in the telomere,
while LST consists of transition points in different regions of DNA [72]. This test was used
in the NOVA study, where maintenance therapy with niraparib in platinum-sensitive
recurrent ovarian cancer showed a substantial benefit in terms of PFS [62]. However,
the benefit provided by the PARP inhibitor in this trial was observed independently of
the HRD status [62]. Thus, even genomic scarring assays are not inclusive enough in
defining the molecular signatures of HRD or in identifying the mechanisms of sensitivity
to PARP inhibitors. Probably, the selection of a platinum-sensitive population in this study
might have selected only HRD patients, although HRD was not detectable by the assay in
some patients.

With the advent and spreading of genomic sequencing, several studies have been
conducted on the identification of genomic signatures of HRDness. A study by Alexandrov
and colleagues retrospectively studied all mutations associated with BRCA1/2-mutated
tumors and identified signatures associated with BRCA1/2-inactivating mutations on a
variety of tumors, such as the so-called ‘Signature 3’ [67]. However, this signature does not
have a cutoff point to distinguish BRCA-proficient from BRCA-deficient tumors. On the
basis of these data, the HRDetect assay was designed to identify BRCA-deficient tumors
with a sensitivity of 98.7% [73].

However, despite their high sensitivity in detecting BRCA-deficient tumors, ‘Signa-
ture 3′ and HRDetect failed to detect other functionally relevant mutations in other HR
pathways [73].

Many studies on PARP inhibitors have observed objective responses in patients with
HRD tumors harboring non-BRCA-related mutations [24,64,74–76], such as ATM, CHEK,
and ATR, as well as other genes involved in chromatin remodeling such as ARID1A [77]
and BAP1 [78,79], or transcriptional regulators of DDR genes such as CDK12 [80].

The increasing use of NGS techniques has widened the range of predictive biomarkers
of sensitivity to PARP inhibitors, but it must be underlined that these biomarkers only
represent a snapshot of the mutational status of the tumor at the time of biopsy.

In order to have dynamic biomarkers that would better describe the evolution of tumor
mutational status over time, serial monitoring of circulating free DNA (cfDNA), before,
during, and at disease progression, has been investigated [81]. This has been studied for
example in metastatic castration-resistant prostate cancer (mCRPC), where NGS testing
on cfDNA at disease progression revealed the reversion of HR mutations, leading to a
re-establishment of DDR gene function and, consequently, drug resistance [81].

In addition, other dynamic biomarkers can be identified from preclinical comparisons
between HRD and HR-proficient cell lines in RNA profiling [82].

Promising alternative approaches, especially for CRC and breast cancer, in predicting
the benefit from PARP inhibitors are the assessment of gammaH2AX and RAD51 after
radiation-induced DNA damage. However, this approach requires an engineered system
based on plasmid transfection, making it not easily feasible on a routine basis [83].
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Furthermore, tumors lacking HRDness characteristics may also be sensitive to PARP
inhibitors, falling under the definition of ‘PARPness’. Potential biomarkers of PARPness
include levels of PARP1, E-cadherin, and/or Schlafen 11 (SLFN11) [84,85]. Other biomark-
ers include those associated with high levels of cell replication, a sign of instability and
replicative stress. IDH1 mutations in gliomas have been shown to confer sensitivity to
PARP inhibitors by reducing the production of NAD+, a molecular compound required for
PARP1-mediated DNA repair [86].

To address the biological rationale for a wider use of PARP inhibitors for different tumor
types, there is a relevant need to go beyond the BRCA1/2-centered mutational landscape.

In summary, there is still no standard test or a benchmark assay for the identification
of the HRD tumors that might be responsive to PARP inhibitors. In particular for CRC,
further efforts are needed to increase both the efficacy and clinical feasibility of these assays
to allow PARP inhibitors to enter clinical practice in CRC bearing genomic alterations in
DNA damage response.

4. Preclinical Data in Colorectal Cancer

The efficacy of PARPi has been proven in different cancer types. So far, only a few
preclinical works have assessed the efficacy of PARPi or other DDR inhibitors in CRC,
especially in MSS CRC patients, which still represent an unmet clinical need.

Among genes involved in DDR, McAndrew and colleagues focused on RAD54B, an
effector of the HR pathway. PARP1 silencing or inhibition selectively killed RAD54B-
deficient cells, with a concomitant increase in γ-H2AX, which is a marker of DNA DSBs, as
well as cleaved caspase-3 (an indicator of apoptosis) [87].

Wang et al. tested the same hypothesis in CRC cell lines and demonstrated that
ATM−/− cells with depletion of p53 have enhanced sensitivity to PARPi [88].

Other groups, as demonstrated by the work of Ozden et al. [89], investigated the
role of BARD1, a protein involved in BRCA1 stabilization and functioning, in PARPi
sensitivity. Assuming that an oncogenic BARD1 splicing variant may render cancer cells
more sensitive to HR inhibition, they showed how, in cell lines where there were higher
levels of BARD1beta, which creates an unstable BARD1/BRCA complex, there was an
increased sensibility to PARPi.

PARP sensitivity may also be related to TP53 status, as described Smeby and col-
leagues [90]. They investigated 93 CRC cell lines to evaluate PARPi sensitivity; MSI cell
lines had in general a higher PARP inhibition sensitivity index compared to MSS ones.
Among MSS cell lines, TP53 status was found to be related with PARPi sensitivity.

Other preclinical studies have investigated the interaction between PARPi and other
chemotherapeutic agents.

Kaiwu et al. have studied the interaction between olaparib and oxaliplatin in one
CRC line (SW480). They showed how olaparib may enhance the effect of oxaliplatin, since
cells treated with the combination of the two drugs exhibit higher sensitivity to oxaliplatin
(the surviving fraction of cells in response to olaparib combined with oxaliplatin was
significantly lower than that of the control) and a higher fraction of cells arrested their cell
cycle in G2/M phase [91].

Genther et al. studied the effect of niraparib and then the combination of niraparib +
SN-38 (the active metabolite of irinotecan) in CRC cell lines stratified by MMR status [92].
The study demonstrated that MSI phenotype does not sensitize CRC cell lines to PARP
inhibition, but MSI cells were more sensitive to SN-38. Similar results were found by
Tahara and colleagues; in their study, they also found that this effect may be amplified in
RAD51-deficient cells [93].

Augustine et al. investigated the efficacy of different PARP inhibitors and DNA-
damaging agents, both as single agents and in combinations, in CRC cells [94]. The
greatest synergy was demonstrated with rucaparib and irinotecan combination, followed
by olaparib in combination with PJ34, especially in MSI cells and when the two agents were
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used concomitantly. No synergy was seen with the combination of oxaliplatin and PARPi,
in contrast with previous findings.

Another important effector of HRD system is ATM. Greene et al. [95] tested whether
an ATM inhibitor (AZ31) would enhance sensitivity to irinotecan in CRC cell lines and
CRC patient-derived xenografts. They demonstrated that AZ31 strengthens the effect
of SN-38, especially in primary resistant irinotecan cells. In addition to this, in tumors
exhibiting irinotecan resistance and combination sensitivity, they found an association
between PIK3CA mutation and combination sensitivity.

Other preclinical studies have been conducted in order to find potential biomarkers to
PARPi sensitivity. Arena and colleagues tested the sensitivity to olaparib and to oxaliplatin
and 5-fluorouracil (5-FU) in CRC cell lines, patient-derived organoids (PDO), and patient-
derived xenografts (PDX) enriched for KRAS and BRAF mutations [83]. They found that
up to 13% of them undergo growth arrest after 2 weeks of exposure to clinically achievable
levels of olaparib and display functional deficiency in HR. PARPi sensitivity was positively
correlated with sensitivity to oxaliplatin, and treatment with olaparib impaired tumor
growth; in addition, maintenance therapy with PARP blockade after initial oxaliplatin
response delayed disease progression in mice. This work, conducted on a poor-prognosis
CRC subset, suggests the importance of identifying patients in whom colorectal cancer is
more likely to benefit from olaparib. They also analyzed whether biomarkers predictive
of clinical benefit from PARP inhibitors in other malignancies could be applied to identify
colorectal cancer models responsive to olaparib. They demonstrated that genomic features
associated with BRCAness or HR repair diagnostic assays do not directly correlate to
PARPi sensitivity, whereas other assays based on detection of DDR were able to pinpoint
vulnerability to PARP inhibition.

However, considering these results, further preclinical studies are needed to assess the
efficacy of PARPi as maintenance therapy in CRC, as already approved in other malignancies.

5. Clinical Data and Ongoing Trials in CRC
5.1. PARP Inhibitors

Only few clinical data are available on the use of PARPi in CRC. Phase 1/2 studies
investigated the use of PARPi in association with chemotherapy or PAPRi alone in cohorts
of patients with solid malignancies, including CRCs.

However, to date, no large clinical trials targeting somatic BRCA-mutant CRC patients
have been published (Table 1). Several phase 1 studies were conducted with PARPi in com-
bination with other drugs or alone in patients with pretreated mCRC [96–100], unselected
for any specific DDR gene alterations.

Table 1. Published trials on PARPi in mCRC.

Authors/Year Phase Patient Population Drugs Results Ref.

Leichman et al., 2016 2 CRC, 33 patients (20 MSS; 13
MSI-H) Olaparib (AZD-2281)

No complete or partial
responses were reported;

ORR 0%
[101]

Gorbunova et al., 2019 2 mCRC, 130 patients
Veliparib + FOLFIRI ± bevacizumab

vs.
Placebo + FOLFIRI ± bevacizumab

mPFS 12 vs. 11 months
mOS 25 vs. 27 months
mDOR 11 vs. 9 months

ORR 57%
[102]

Pishvaian et al., 2018 2 mCRC, 75 patients Veliparib + temozolomide
DCR 24%

mPFS 1.8 months
mOS 6.6 months

[103]

Czito et al., 2017 1b Locally advanced RC, 32
patients Veliparib + capecitabine + RT 29% of patients achieved CR [99]

Samol et al., 2012 1 mCRC, 8 patients Olaparib + topotecan ORR 0% [97]

Kummar et al., 2011 1 CRC, 5 patients Veliparib + topotecan ORR 0% [98]

Berlin et al., 2018 1 CRC, 10 patients Veliparib + FOLFIRI ORR 20% [96]

CR, complete response; CRC, colorectal cancer; DCR, disease control rate; mCRC, metastatic colorectal cancer;
mDOR, median duration of response; mOS, median overall survival; mPFS, median progression-free survival;
MSI-H, microsatellite instability-high; MSS, microsatellite stable; ORR, overall response rate; RC, rectal cancer;
REF, reference; RT, radiotherapy.
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BRCA status was not assessed as an eligibility criterion in several small clinical trials
investigating PARPi in CRC, and only one ongoing phase II trial ([104], NCT04171700)
selected patients with solid tumors, including CRC, according to deleterious pathogenic
variants in HRR genes.

A randomized phase 2 trial investigated the use of olaparib 400 mg BID as a single
agent in patients with mCRC, after progression on systemic therapy (20 microsatellite stable
(MSS), 13 MSI-H). In both MSI-H and MSS mCRC, olaparib failed to demonstrate activity
(PFS 1.84 months; no complete or partial responses were reported) [101].

Veliparib was the first PARPi investigated in mCRC in combination with irinotecan
or oxaliplatin, demonstrating a synergistic activity with standard chemotherapeutical
regimens [105]. In a phase 1b trial, veliparib was also associated with capecitabine and
radiotherapy with an acceptable safety profile, but preliminary antitumor activity needs
confirmation on larger studies [99]. In a study combining veliparib with FOLFIRI with
or without bevacizumab, an ORR of 57% was observed [102]. However, adding veliparib
to standard treatment did not demonstrate differences in PFS or OS. No stratification
according to BRCA-mutant status was performed.

More promising results were achieved in a single-arm phase 2 study in heavily pre-
treated mCRC patients (N = 50 + 5 patients with mismatch repair-deficient (dMMR)) with
two cycles of veliparib plus temozolomide; a disease control rate (DCR) of 24% and two
partial responses were reported. Moreover, PTEN and MGMT protein expressions assessed
in tumor specimens were not associated with DCR. Five patients with dMMR tumors were
unrolled and seemed to have the worst outcomes [103].

Ongoing trials with PARPi are listed in Table 2.

Table 2. Active clinical trials on PARPi in mCRC.

Clinical Trial Phase Patient Population Mutations Treatment Arm(s)

NCT02484404 1–2 Advanced solid tumors Not required MEDI4736 (anti PD1) + olaparib
and/or cediranib

NCT04171700 2 Solid tumors

Deleterious mutation (germline or
somatic) in BRCA1, BRCA2, PALB2,
RAD51C, RAD51D, BARD1, BRIP1,
FANCA, NBN, RAD51, or RAD51B

Rucaparib

NCT04166435 2 mCRC MGMT promoter hypermethylation Temozolomide + olaparib

NCT03983993 2 mCRC Not required (RAS wildtype) Niraparib + panitumumab

NCT04456699 3 mCRC Not required
Olaparib OR olaparib +

bevacizumab
Vs. bevacizumab + 5-FU

NCT04511039 1 CRC or gastroesophageal
cancer Not required Trifluridine and tipiracil

hydrochloride + talazoparib *

NCT03337087 1–2

Advanced pancreatic,
colorectal,

gastroesophageal, or
biliary cancer

Only for pancreatic cancer: BRCA1 or
BRCA2 or PALB2 mutation, or HRD

(non-BRCA, non-PALB)

Rucaparib + liposomal irinotecan +
fluorouracil + leucovorin calcium

NCT03842228 1 Advanced solid tumors

Germline or somatic mutations in DDR
genes (ARID1A, ATM, ATRX, BARD1,

BRCA1, BRCA2, BRIP1, CDK12,
CHEK1, CHEK2, FANCA, FANCL,
MRE11A, MSH2, PALB2, PARP1,

POLD1, PP2R2A, RAD51B, RAD51C,
RAD51D, RAD54L, or XRCC2),

actionable mutations in the PTEN gene,
or hotspot mutations in the PIK3CA

gene (E542, E545, or H1047)

Olaparib + MEDI4736
(durvalumab) + copanlisib

hydrocloride

NCT04123366 2 Advanced solid tumors
Known or suspected deleterious
mutations in ≥1 of the specified

15 genes involved in HRR
Olaparib + pembrolizumab
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Table 2. Cont.

Clinical Trial Phase Patient Population Mutations Treatment Arm(s)

NCT04497116 1–2 Advanced solid tumors ATR inhibitor-sensitizing mutations RP-3500 (oral ATR inhibitor) ±
talazoparib

NCT03127215 2 Advanced solid tumors Defective DNA repair via HRR Trabectedin/olaparib vs.
physician’s choice

NCT04276376 2 Advanced solid tumors
In CRC cohort: ATM, BARD1, BRCA1,
BRCA2, BRIP1, CDK12, CHEK2, PALB2,

RAD51C, RAD51D, FANCA, NBN,
RAD51, RAD54L

Rucaparib + atezolizumab

NCT03851614 2
mCRC or Pancreatic
adenocarcinoma or
Leyomiosarcoma

Not required (CRC patients must have
MMR proficiency disease)

Olaparib + durvalumab OR
cediranib + durvalumab *

NCT04693468 1 Metastatic solid tumors Defect in DDR, MET, ALK, or ROS1
genes

Talazoparib + palbociclib
OR talazoparib + axitinib

OR talazoparib + crizotinib

NCT03772561 1 Advanced solid tumors Not required AZD5363 + olaparib + durvalumab

NCT04672460 1 Advanced solid tumors

Solid tumors with known or likely
pathogenic germline or somatic

variants in BRCA1 or BRCA2 that
would benefit from PARPi therapy

Talazoparib capsule vs.
talazoparib soft gel capsule

5-FU, 5-fluorouracil; CRC, colorectal cancer; DDR, DNA damage response, HRR, homologous recombination
repair; HRD, homologous recombination deficiency; mCRC, metastatic colorectal cancer; MMR, DNA mismatch
repair; PARPi, poly(ADP-ribose) polymerase inhibitors. * Active, recruiting.

5.2. Not Only PARPi: Other Inhibitors of the DDR System

The DNA damage response pathway is an extremely complex system that can be split
into two categories: the pathways involved in the repair of single-strand breaks (SSBs) of
DNA and those involved in the repair of double-strand breaks (DSBs) of DNA; the latter is
constituted by the mechanisms of homologous recombination (HR) and nonhomologous
end joining (NHEJ), which include PARP proteins [61]. The HR system is an error-free
pathway that can be used only in the late S and G2 phase, whereas NHEJ is an error-prone
repair pathway that can occur throughout all cell-cycle phases [106].

As said in previous paragraphs, the ‘BRCAness phenotype’ is associated with patients
with defects in HR family genes different from BRCA; these mutations are not surely known
to drive carcinogenesis but can possibly cause deficiency in DNA repair [107]. This can be
clinically relevant not only because loss of function in genes involved in DDR can predict
sensitivity to DNA damage-inducing agents, such as platinum, but also because they can be
targeted with specific inhibitors [61]. For instance, defects in ATM can confer susceptibility
to both PARP inhibitors and oxaliplatin in CRC [108,109].

Indeed, the phosphatidylinositol 3-kinase (PI3K)-like kinase (PIKK) family has a
role as mediator in the initiation of repair pathways. Members of this family are ATM,
ataxia telangiectasia and Rad3-related protein (ATR), and DNA-dependent kinase (DNA-
PK) [106].

ATM and ATR respond to different stimuli. After a DSB, the MRN complex, consti-
tuting MRE11, RAD50, and NBS1 proteins, binds the break and recruits the DDR proteins,
including ATM. This protein is able to phosphorylate multiple targets facilitating cellular
responses to the damage: H2AX, which recruits MDC1 and consequentially more molecules
of MRN and ATM, amplifying the same system; NBS1 and Chk2, which arrest the cell cycle
in the S and G2/M phase; BRCA1 and p53, which induce arrest in the G1 phase, upreg-
ulating the expression of p21. By contrast, ATR is activated when an SSB occurs, thereby
activating Chk1 kinase that induces cell-cycle arrest; since SSBs can take place naturally
during DNA replication, ATR is essential for survival under basal conditions [106].

The last mediator involved is DNA-PK, which, after its recruitment and activation
by the complex Ku70/Ku80 DSBs, provides access to end processing enzymes, such as
ARTEMIS [110], and phosphorylates XRCC4/LIG4, which promotes the re-ligation of the
broken ends with the help of the stimulatory factor XLF [111]. It is noteworthy that ATM



Cancers 2022, 14, 1388 11 of 17

also acts on ARTEMIS, and this supports the concept that ATM, ATR, and DNA-PK have
redundant roles [111].

Strictly related to mediators are the effectors, among which Chk1 and Chk2 have
already been mentioned as effectors of ATR and ATM signaling, respectively [61]. Above
these, Wee1 is a tyrosine kinase that prevents the entrance in the mitotic phase by inacti-
vating CDK1 when DNA damage occurs. Therefore, the inhibition of Wee1 can sensitize
tumors to DNA-damaging therapies [112,113].

Acting with drugs targeted against these specific molecules involved in the DNA
repair cascade, next to PARP proteins, has a strong rationale. Clinical application is still
premature, and different trials are ongoing.

The largest study is investigating the addition of elimusertib (BAY 1895344) to FOLFIRI
in stomach and intestinal advanced or metastatic cancers. This is a still recruiting phase
1b study and the expected enrolment is 90 patients. Elimusertib is a specific inhibitor of
ATR, and this class of drugs has already been studied, especially in ovarian and breast
cancer; supposing that the same mechanism can be translated in CRC, they seem to be more
effective when combined with genotoxic agents such as chemotherapies [107]. The primary
aim of the study is to determine the safety and maximum tolerated dose, and secondary
aims are the objective response rate (ORR), progression-free survival (PFS), and overall
survival (OS) [114] (NCT04535401).

Another ATR inhibitor under initial investigation is ceralasertib (AZD6738); different
studies, the majority of which aim to investigate safety and tolerability, have already been
published, including different solid tumors, mainly melanomas [115,116], as well as gyne-
cological, lung, and intestinal neoplasms [117]. Currently, the DASH trial is still recruiting
patients to evaluate the safety of the association of ceralasertib and trastuzumab/deruxtecan
in solid tumors characterized by HER2 expression [118] (NCT04704661).

Moreover, a phase 1b trial with the specific inhibitor of Wee1 adavosertib has just
closed enrolment (AZD1775). This drug was administered in association to irinotecan as
second line in patients affected by metastatic RAS- or BRAF-mutated CRC. The outcomes
were tolerability and objective response, but few patients were included (seven), and the
results are still unpublished [119] (NCT02906059). Adavosertib, in addition, seems to
double PFS compared with active monitoring in mCRC with both TP53 and RAS mutations,
which were stable or responding after 16 weeks of chemotherapy [120].

In conclusion, we can state that DDR-targeted therapy has a strong biological rationale
in the treatment of CRC, but clinical data and applications are still immature and further
investigations are needed.

6. Hereditary Implications

Patients affected by DDR alterations should be discussed by a molecular tumor board,
in order to identify those eligible for targeted therapies together with those affected by
hereditary syndromes [121].

This might be of great relevance to both patients and their relatives. In particular, for
carriers of pathogenic germline variants in BRCA 1 and 2, personalized follow-up should be
tailored for patients surviving their first cancer, in order to decrease their risk of non-CRCs.
In addition, surveillance programs should be offered to their relatives at risk, to reduce
their mortality for cancer [122].

For other rarer DDR-related syndromes, less consolidated guidelines are available, but
multidisciplinary discussion should increasingly help selected patient referral to genetic
counseling and detection of germline pathogenic variants. For example, ATM pathogenic
germline variants are increasingly found to be associated with a wider cancer spectrum
than previously known, and cancer risk management programs for ATM carriers have been
proposed [123–125].

Increased DDR testing will also increase complexity, with a need for adequate in-
terpretation of results, in particular for variants of unknown significance (VUS). For this
purpose, Lorans et al. highlighted the need for international collaborations to create large
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databases. These will allow researchers to conduct well-powered studies to determine CRC
susceptibility with a specific gene, develop better tools for the interpretation of VUS, and
conduct more accessible clinical translation research [126].

7. Conclusions

The implementation of DDR alterations into clinical practice is one of the most promis-
ing research avenues for CRC to date. However, the exploitation of DDR defects in CRC
patients is at a very early stage of development, and several challenges must be addressed
in order to have novel compounds available for clinical use.

Indeed, a better understanding of DDR alterations and their impact on CRC biology is
necessary. One of the most challenging issues is to understand which DDR alterations can
be used as a novel biomarker. This would help to better identify new subsets of patients
who more likely would benefit from PARPi or other DDRi (e.g., ATR or Wee1 inhibitors)
and achieve the most benefit from platinum-based regimens in frontline treatment, as well
as in the reintroduction setting.

For these reasons, we believe that further efforts in both preclinical and clinical settings
with robust translational research should be carried out to make DDR alterations suitable
targets for drug development and to eventually improve outcome in CRC patients.
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