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Summary

Klebsiella pneumoniae has become the number one
bacterial pathogen that causes high mortality in clini-
cal settings worldwide. Clinical K. pneumoniae strains
with carbapenem resistance and/or hypervirulent phe-
notypes cause higher mortality comparing with classi-
cal K. pneumoniae strains. Rapid differentiation of
clinical K. pneumoniae with high resistance/hyperviru-
lence from classical K. pneumoniae would allow us to
develop rational and timely treatment plans. In this
study, we developed a convolution neural network
(CNN) as a prediction method using Raman spectra
raw data for rapid identification of ARGs,
hypervirulence-encoding factors and resistance pheno-
types from K. pneumoniae strains. A total of 71
K. pneumoniae strains were included in this study. The
minimum inhibitory concentrations (MICs) of 15 com-
monly used antimicrobial agents on K. pneumoniae

strains were determined. Seven thousand four hundred
fifty-five spectra were obtained using the InVia Reflex
confocal Raman microscope and used for deep
learning-based and machine learning (ML) algorithms
analyses. The quality of predictors was estimated in an
independent data set. The results of antibiotic resis-
tance and virulence-encoding factors identification
showed that the CNN model not only simplified the
classification system for Raman spectroscopy but also
provided significantly higher accuracy to identify
K. pneumoniae with high resistance and virulence
when compared with the support vector machine
(SVM) and logistic regression (LR) models. By back-
testing the Raman-CNN platform on 71 K. pneumoniae
strains, we found that Raman spectroscopy allows for
highly accurate and rationally designed treatment plans
against bacterial infections within hours. More impor-
tantly, this method could reduce healthcare costs and
antibiotics misuse, limiting the development of anti-
microbial resistance and improving patient outcomes.

Introduction

Klebsiella pneumoniae, belonging to the family Enterobac-
teriaceae, forms part of the normal flora colonizing muco-
sal surfaces in healthy humans and animals (Navon-
Venezia et al., 2017). Its infections account for a signifi-
cant proportion of serious community-acquired (CA) infec-
tions worldwide (Magill et al., 2014). This is because that,
under certain conditions, Klebsiella could disseminate to
other tissues and cause life-threatening infections includ-
ing pneumonia, wound, soft tissue or urinary tract infec-
tions, which are particularly problematic among neonates,
the elderly and the immunocompromised.
Virulence factors including various iron acquisition

molecules, specific capsular polysaccharide and the
hypermucoidy-related rmpA and rmpA2 genes are
known to be associated with invasive CA K. pneumoniae
infections characterized by high morbidity and high mor-
tality (Russo and Marr, 2019). Reported mortality rates
of K. pneumoniae bacteraemia in China ranged from
8.7% to 24.6% (Zhang et al., 2018; Liu et al., 2019; Li
et al., 2020). K. pneumoniae is also the most common
multidrug-resistant (MDR) pathogens and one of the six
nosocomial pathogens “ESKAPE” (Boucher et al., 2009).
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Gu et al. (2018) reported a fatal outbreak of MDR, in
which carbapenem-resistant K. pneumoniae (CRKP)
were found to be highly transmissible and posed a sub-
stantial threat to public health. Polymyxins can be used
to treat CRKP infections. Nevertheless, transferable col-
istin resistance mcr gene has been identified in such
strains in our recent study, which can cause the invalida-
tion of polymyxins (Lu et al., 2020a,b). What is more,
K. pneumoniae strains undergo active horizontal transfer
of antimicrobial resistance genes (ARGs) and act as the
reservoir of such genes. Current studies showed that a
large proportion of ARGs were identified in K. pneumo-
niae for their first time (Nordmann and Poirel, 2014;
Zheng et al., 2020; Hu et al., 2021).
A rapid and high specificity identification method is

urgently needed to differentiate MDR K. pneumoniae from
the classic non-resistant strains. This is because such a
method could allow clinicians to select appropriate antibi-
otics at the beginning of the treatment course and to
reduce the prevalence of drug resistance. Conventional
antimicrobial-susceptibility testing (AST) methods were
based on the observation of bacterial colonies in the pres-
ence of antibiotics, which typically take a few hours to
produce results (van Belkum et al., 2019). Polymerase
chain reaction (PCR)-based ARGs detection methods
require prior knowledge of the strains and is time-
consuming, which normally require several hours to run
(Tadesse et al., 2020). Although matrix-assisted laser
desorption/Ionization time-of-flight mass spectrometry
(MALDI-TOF MS) is a fast and effective method, it is hard
to be optimized due to the heterogeneity of analyte/matrix
mixture (Dortet et al., 2018; Furniss et al., 2019). Hence,
the initial antimicrobial therapy for acute infections is often
empirical (Rhodes et al., 2017). The Centers for Disease
Control and Prevention reported that over 30% of patients
are treated unnecessarily (Fleming-Dutra et al., 2016).
Such unnecessary treatment may select and promote the
dissemination of MDR K. pneumoniae strains.
Raman spectroscopy is a fast, noninvasive and cost-

effective technology, which requires a minimum sample
preparation process to generate a molecular fingerprint
of the chemical constituents of the sample (Pahlow
et al., 2015; Butler et al., 2016; Teng et al., 2016). When
combined with machine learning (ML), Raman spec-
troscopy has the potential to identify the bacterial spe-
cies and depict their antibiotic resistance status (Uysal
Ciloglu et al., 2020). However, previous studies focused
on the pathogen identification and resistance phenotype
prediction using deep learning or ML algorithms (Pahlow
et al., 2015; Ho et al., 2019; Uysal Ciloglu et al., 2020).
The ability of Raman spectroscopy combined with a
deep neural network for ARGs or virulence genes pre-
diction remains unknown. In this study, we used the con-
volution neural network (CNN) as a deep learning

strategy to classify bacterial spectra according to the
antibiotic resistance and virulence encoding factors.

Results

Antimicrobial susceptibility profiles

Antimicrobial susceptibility testing results indicated that all
of the 71 K. pneumonia strains exhibited MDR pheno-
types (Fig. 1), with all carbapenemase-producing strains
being resistant to meropenem (MICs ≥ 4 mg l�1), ertape-
nem (MICs ≥ 2 mg l�1), ceftazidime (MICs ≥ 16 mg l�1),
cefotaxime (MICs ≥ 4 mg l�1), cefoperazone/sulbactam
(MICs ≥ 64 mg l�1) and cefepime (MICs ≥ 16 mg l�1). All
but two carbapenemase-producing strains were resistant
to aztreonam (MICs ≥ 16 mg l�1). Moreover, it was also
found that all but one noncarbapenemase-producing
strains were sensitive to imipenem, meropenem and erta-
penem, whereas all were sensitive to ceftazidime/avibac-
tam. The number of these 71 K. pneumoniae strains
resistant to imipenem, meropenem, ertapenem, cefmeta-
zole, ceftazidime, cefotaxime, piperacillin/tazobactam, cef-
operazone/sulbactam, ceftazidime/avibactam, cefepime,
colistin, tigecycline, ciprofloxacin, amikacin and aztreonam
was 31 (43.7%), 42 (59.2%), 42 (59.2%), 31 (43.7%), 54
(76.1%), 59 (83.1%), 42 (59.2%), 46 (64.8%), 21 (29.6%),
53 (74.7%), 23 (32.4%), 6 (8.2%), 43 (60.6%), 20 (28.2%)
and 53 (74.7%) respectively.

Data preprocessing

Before the modelling process, preprocessing of spectral
data is indispensable. Raman spectra contain useful
information related to a sample, but it is often accompa-
nied by interfering information such as background fluo-
rescent signal, cosmic rays and random noise.
Therefore, eliminating noise and removing fluorescence
through spectral preprocessing is important and neces-
sary for the information receiving. We removed the back-
ground of the spectrum, used a smoothing filter for noise
minimization and performed baseline correction and area
normalization via the R program. The corrected spectra
were displayed in Fig. 2. Differences in intensities were
displayed among different groups of K. pneumoniae
strains. Table 1 showed the main Raman bands that
were observed in K. pneumoniae strains and their corre-
sponding assignments.

Deep learning for three identification tasks from Raman
spectra

To gather a training data set, we measured 71 K. pneu-
moniae strains using confocal microscopic Raman spec-
trometer in short measurement time. Only one strain
carried blaVIM gene and 10 strains each carrying the
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blaNDM, blaKPC, blaIMP, blaOXA, mcr-1, mcr-8 and no
above genes (Fig. 1). We constructed our data sets of
7455 spectra from 71 K. pneumoniae isolates, and three
strains were measured repeatedly (39). The results
prove a relative consistency of spectra over time in
Raman spectroscopy (Fig. S1). We then trained the neu-
ral network on three identification tasks, where the CNN

outputs a probability distribution across the seven ARGs,
two virulence genes (rampA and rampA2) and the drug-
resistant phenotypes (sensitive or non-sensitive) among
15 commonly used antimicrobial agents; the maximum
was taken as the predicted models (Fig. 3). The models
were only trained for 20 epochs as accuracy did not
increase significantly for greater epochs (Fig. S2). We
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Fig. 1. The heat map of the origin, resistance genes and the results of antibiotic susceptibility testing of all isolates for convolution neural net-
work training. The origin, resistance genes, virulence genes and the result of antibiotic susceptibility testing are given as coloured annotations
at the bottom of the heat map. AMK, amikacin; ATM, aztreonam; CAV, ceftazidime/avibactam; CAZ, ceftazidime; CIP, ciprofloxacin; CMZ,
cefmetazole; CO, colistin; CTX, cefotaxime; ETP, ertapenem; FEP, cefepime; IPM, imipenem; MEM, meropenem; SCF, cefoperazone/
sulbactam; TGC, tigecycline; TZP, piperacillin/tazobactam.

Fig. 2. Typical Ramanome of K. pneumoniae with diverse antimicrobial resistance genes. The spectra were shown after background subtrac-
tion and normalization for a measurement time of 5 s. The spectra were averaged spectra for each antimicrobial resistance gene group and ver-
tically shifted to increase the visibility of details. The mean Raman spectra were shown by the solid line, and the 95% confident intervals were
presented by the shadow.
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then evaluated and reported the accuracy of these three
types of models on the test data set, which was gathered
from independently cultured and prepared samples. The
performance breakdown of CNN models for ARGs and
the identification tasks of rampA/rampA2 genes were dis-
played in the confusion matrixes in Figs 4A and 5A. For
the identification of isolates, which harboured neither
carbapenemase-encoding genes (blaNDM, blaKPC, blaIMP,
blaOXA and blaVIM) nor mcr gene, the accuracy was
99.2%. The prediction accuracies for isolates, which har-
boured blaIMP, mcr-1, mcr-8, blaNDM and blaOXA, were
higher than 92% by our deep learning model. As for other
ARGs such as blaKPC and blaVIM, the identification accu-
racies were 88.4% and 84.0% respectively. The perfor-
mance of our CNN model for virulence genes prediction
delivers similarly good results, reaching 98.4% prediction
accuracy with non-rmpA/rmpA2-carrying strains and
83.3% prediction accuracy with rmpA/rmpA2-carrying
strains. The ROC curve was shown in Fig. 5B, and the
area under the curve (AUC) is 0.979. For predicting the
resistance phenotypes, the identification accuracies of
meropenem, ertapenem, ceftazidime, cefotaxime, cefoper-
azone/sulbactam, ceftazidime/avibactam, cefepime, tige-
cycline and ciprofloxacin were more than 85% (Fig. 6).
However, the identification accuracy of cefmetazole was
only 81.7 � 1.1%, which was the lowest accuracy in the
resistance prediction by our CNN models. The average
accuracies for prediction of ARGs, virulence-related
genes and resistance are 94.2 � 1.1%, 95.3 � 0.5% and
81.7–96.2% respectively.

ML for three tasks identification from Raman spectra

We also predicted the ARGs, virulence genes and drug-
resistant phenotypes with classical analysis techniques
including LR and SVM based on the test data set. The
mean accuracies with a standard deviation of both LR
and SVM models were calculated. According to these
analyses, the SVM classifier exhibited a higher-level
accuracy (81.4 � 0.3%), whereas LR model showed a
slightly lower classification accuracy of 74.0 � 1.4% in
ARGs identification (Fig. 4B). When identifying the exis-
tence of virulence genes, SVM and LR models achieve
88.1 � 0.3% and 89.6 � 0.5% accuracies respectively
(Fig. 5C). For predicting drug-resistant phenotypes,
lower accuracies were observed in the SVM model, with
the accuracy ranging from 75.5% to 92.7%. The accu-
racy of LR model for phenotypes identification ranged
between 71.7% and 91.3% (Fig. 6).

Statistical comparisons

The sensitivity, specificity and accuracy, including stan-
dard deviation values for each classifier model, were
presented in Table S1. The CNN classifier achieved bet-
ter accuracy of the ARGs and virulence genes predic-
tion, comparing with the ML algorithms (P ≤ 0.01). In
resistance phenotypes identifying, the prediction accura-
cies of CNN models for all 15 antimicrobial agents were
higher than the ones in both two ML models. Nine of the
comparisons were statistically significant (Fig. 6).

Discussion

Klebsiella pneumoniae has the potential to carry a wide
range of ARGs that render current options for treatment
of K. pneumoniae infections ineffective (Boucher et al.,
2009). During the last decades, the incidence of CRKP
has markedly increased worldwide and posed an urgent
threat to public health. The polymyxins (colistin and poly-
myxin B) are antibiotics used for treating CRKP infec-
tions. With an increasing prevalence of CRKP infection,
the use of polymyxins has been rising. However, since
the discovery of the plasmid-mediated polymyxin resis-
tance gene (mcr) at the end of 2015, the treatment of
K. pneumoniae infections has become ineffective thus
eliciting worldwide attentions (Liu et al., 2016). There-
fore, effective methods for screening ARGs and viru-
lence genes are demanded urgently in clinical practice.
In this work, we collected the Raman spectra from 71

K. pneumoniae isolates. The band assignments
(Table 1) were performed based on the literature. These
spectroscopic vibrations were primarily related to the
skeletal structure of nucleic acid and the proteins they
express as these strains harboured a diverse range of

Table 1. Molecular assignment of the Raman peaks found in this
study.

Peak position
(Raman
shift cm�1) Band assignment References

~ 495–550 Disulphide bond (S–S) Devitt et al. (2018)
~ 786 Nucleic acid Notingher and Hench

(2006)
~ 726 C–S/cysteine Devitt et al. (2018)
~ 843 Glucose Devitt et al. (2018)
~ 923–958 C–C Devitt et al. (2018)
~ 1035 Phenylalanine (the

in-plane C–H bending
mode)

Fan et al. (2011)

~ 1060–1095 Nucleic acid, lipid
and carbohydrates

Notingher and Hench
(2006)

~ 1101 Nucleic acid Teng et al. (2016)
~ 1121–1145 C–N Devitt et al. (2018)
~ 1158 C–C/C–N Notingher and Hench

(2006)
~ 1220–1240 Nucleic acid, protein

and lipid
Notingher and Hench
(2006)

~ 1333–1350 Nucleic acid and protein Notingher and Hench
(2006) and Navon-
Venezia et al. (2017)

~ 1420–1480 Nucleic acid, protein,
lipid and carbohydrates

Notingher and Hench
(2006)
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ARGs, virulence genes or resistance elements. Thus, we
considered these peaks as the discrimination of different
resistant genes and proteins, which may be related to the
degradation of antibacterial drugs, alteration in antimicro-
bial targets and changes in membrane permeability to
antibiotics. However, it was extremely difficult to distin-
guish them by the naked eyes (Fig. 2). Thus, we
employed the ResNet architecture to produce predictors
of ARGs, virulence genes and resistance phenotypes
based on the Raman spectra. We attempted to compare
the CNN model with other classical ML algorithms like
SVM and LR, which are the most preferred models for
bacteria detection studies with Raman spectroscopy
(Beier et al., 2010; Uysal Ciloglu et al., 2020). The results
of ARGs identification showed that the CNN model could
identify both carbapenemase-encoding genes (blaNDM,

blaKPC, blaIMP, blaOXA and blaVIM) and mobile colistin
resistance genes with 94.24 � 1.14% accuracy, which is
better than SVM (81.44 � 0.33%) and LR
(73.97 � 1.41%) (Fig. 4B). These differences were statis-
tically significant (P < 0.01). Moreover, 7455 spectra were
then used to train a CNN model for rapid virulence-
related genes detection. The results in the test data set
were nearly the same as ARGs prediction task, indicating
that CNN model provided better detection accuracy than
ML algorithms (Fig. 5). The accuracy of phenotype-based
identification is important to guide the efficient therapies
for clinical infections. In this study, we found significant
differences in the accuracy of prediction of phenotypic
resistance to nine commonly used antimicrobial agents by
the CNN model and ML algorithms. Our CNN predictive
model demonstrated reasonably good discrimination. The

Input

Output

(A)

(B)

Fig. 3. Summary schematic of confocal Raman microscope techniques including sample preparation to spectral analysis and the construction
of ResNet taxonomic model.
A. The K. pneumoniae lawn was smeared onto the stainless-steel plate for Raman spectral collection. The schematic identifying light scattering
after laser exposure on a sample surface. When the electrons are excited to virtual energy levels, it can return to the original energy level by
emitting a photon of light, known as Rayleigh scattering, or it can undergo an energy shift, known as Stokes scattering or anti-Stokes scattering.
Resonance Raman scattering and fluorescence can occur when electrons are excited to electronic energy levels.
B. The antimicrobial resistance genes (ARGs), virulence genes and antibiotic susceptibility are identified and analysed using convolutional neu-
ral network. Using a one-dimensional residual network with 25 total convolutional layers (see Section 2 for details), Raman spectra are analysed
to predict the existence of ARGs and virulence genes or the drug-resistant phenotypes.

ª 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd., Microbial
Biotechnology, 15, 1270–1280

1274 J. Lu et al.



Confusion matrix for ARGs prediction
100

80

60

40

20

0 CNN SVM LR
70%

80%

90%

100%

A
cc
ur
ac
y(
%
)

**
**

(B)(A)

Tr
ue

 la
be

l

-

bl
aK
PC

bl
aN
D
M

P
MIal b

A
X

Oalb
1-r c

m
MI

Va lb
m
cr
-8

- blaIMP blaKPC mcr-1 mcr-8 blaNDM blaOXA blaVIM

Predicted label

94.2%

81.4%

74.0%

Fig. 4. Three model performance breakdown by antimicrobial resistance genes (ARGs).
A. Confusion matrix for convolution neural network (CNN) models. Each row of this matrix represents the percentage of spectra in an actual
class, whereas each column represents the percentage of spectra in a predicted class. The diagonal elements of this matrix show the percent-
age of correctly classified spectra, whereas the off-diagonal elements indicate the percentage of misclassified ones.
B. The accuracy box plot to three types of models; *P < 0.05; **P < 0.001. LR, logistic regression; SVM, support vector machine.

Fig. 5. Three model performance breakdown by virulence genes.
A. Confusion matrix for convolution neural network (CNN) models; values are listed as percentages.
B. The receiver operating characteristic curves and area under curves of different models for rampA/rampA2 identification.
C. Bar diagrams of accuracy to three types of models; *P < 0.05; **P < 0.001. LR, logistic regression; SVM, support vector machine.
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LR and SVM classifier exhibits lower accuracies than
CNN when used in resistance prediction.
High accuracy of the Raman-CNN system indicates

that we can utilize Raman spectroscopy to produce a
fine-grained and reliable genotype and phenotype signa-
ture characteristic for each K. pneumoniae strains.
Raman spectroscopy has the unique potential to identify
bacterial phenotypes without requiring additional markers
and generate spectral data within a few seconds. The
advantages of this method for bacterial species identifica-
tion and phenotyping include more rapid and easier to
interpret when comparing with other culture-free methods
such as single-cell sequencing and fluorescence or mag-
netic tagging (Wang and Navin, 2015; Martynenko et al.,
2019; Tadesse et al., 2020). It also allows the prediction
at both genotype and phenotype levels. When compared
with MALDI-TOF MS, Raman spectroscopy is non-
destructive because no living cells need to be broken for
DNA or protein extraction. Besides, MALDI-TOF MS
requires the use of additional materials or chemicals and
time for sample preparation such as sample deposition
onto a plate, drying, adding matrix, drying again and even
semiextraction or extraction step. These processes may
result in variable analyte signal intensities (AlMasoud
et al., 2021). Several Raman data analysis approaches
based on ML algorithms, including decision tree learning,
LR analysis and SVM, have been developed for discrimi-
native analysis (Ho et al., 2019; Uysal Ciloglu et al.,
2020). However, when creating models for discriminating
analyses, some valuables are likely to get lost during data
transformation and variable selection, such as dimension-
ality reduction from the raw spectral data or selecting a
variable from a large number of variables. In this work,
we use CNN as the prediction method which utilize
Raman spectra as raw data for analysis. Unlike other
conventional Raman analysis methods, CNN combines

feature extraction and classification in a single network
architecture. In other words, it requires a lower level of
manual supervision. Our results showed that the CNN
model not only simplifies the classification system for
Raman spectroscopy but also provides significantly higher
accuracy than SVM and LR models.
Some limitations in this study should be realized. First,

due to the difficulties in obtaining sufficient carbapenemase
and mcr-producing K. pneumoniae, only one VIM-positive
K. pneumoniae strain was used for modelling. Besides, the
same strains were used to obtain the test data set.
Although other researchers have employed the same
approach to obtain a test data set, it should be noted, more
clinical strains are required for validation in further studies.
Second, as shown in Fig. 2, our model encountered seri-
ous generalization problems due to the small differences
between the spectra. In addition, the accuracy of the mod-
els in our study needs to be improved. Further studies
using optimized models are suggested to improve the prac-
ticability of deep learning in Raman spectrum application.
In conclusion, Raman spectroscopy is a promising

technique for a fast, noninvasive, culture-independent,
single-cell level identification of microbial genotype and
phenotype. Combined with artificial intelligence and large
data sets, the method provides results with high accu-
racy. The Raman–CNN platform allows for highly accu-
rate and targeted treatment of bacterial infections within
hours. This will reduce turnaround time, healthcare costs
and antibiotics misuse. In the meantime, it will limit
antimicrobial resistance and improve patient outcomes.

Experimental procedures

Bacterial isolates

A total of 51 K. pneumonia strains collected from Jan-
uary 2018 to December 2018 in a Chinese clinical
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Fig. 6. Bar diagrams of accuracy � standard deviation values for drug-resistant phenotypes prediction. *P < 0.05; **P < 0.001. AMK, amika-
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microbiology laboratory and 20 animal-borne K. pneumo-
nia strains collected in November 2019 were included in
this study (Fig. 1). The clinical strains were recovered
from 16 hospitals in 10 Chinese provinces (Anhui,
Fujian, Henan, Hunan, Shandong, Shanghai, Tianjin,
Xinjiang, Zhejiang and Chongqing provinces). The 20
K. pneumoniae strains of animal origin were isolated
from chicken cloaca in Shandong province. A total of 61
K. pneumonia strains were found to carry diverse
carbapenemase-encoding genes (blaNDM, blaKPC, blaIMP,
blaOXA and blaVIM), mobile colistin resistance genes
(mcr-1 and mcr-8) and virulence genes (rampA and
rampA2). The remaining 10 K. pneumonia strains did not
carry carbapenemase genes or mcr gene, but the rampA
was detected in these strains. In total, 22 K. pneumoniae
strains were found to harbour the rampA or rampA2
genes. All the ARGs and virulence genes were verified
by PCR analysis.
All the K. pneumonia strains were recovered on the

Mueller–Hinton agar (MH, Oxoid, Basingstoke, UK) for
24 � 2 h at 35°C as described in a previous study
(Uysal Ciloglu et al., 2020). Species identity of 71 iso-
lates was confirmed by matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry (MALDI Bio-
typer; Bruker Daltonik GmbH, Bremen, Germany), fol-
lowed by antimicrobial susceptibility tests, whole-genome
sequencing and Raman spectroscopy analysis.

Antimicrobial susceptibility testing

The minimum inhibitory concentrations (MICs) of 15
commonly used antimicrobial agents (imipenem, mero-
penem, ertapenem, ceftazidime/avibactam, cefepime,
cefmetazole, ceftazidime, colistin, tigecycline, cefo-
taxime, ciprofloxacin, piperacillin/tazobactam, amikacin,
cefoperazone/sulbactam and aztreonam) on K. pneumo-
niae strains were determined by the broth microdilution
method, using K. pneumoniae strain ATCC 13883 as a
quality control. Susceptibility results for tigecycline were
interpreted using the EUCAST breakpoints (www.eucast.
org). The results of the other agents were interpreted
according to Clinical and Laboratory Standards Institute
guidelines (www.clsi.org).

Raman microscopy

All experiments were performed using a InVia Reflex
confocal Raman microscope (Renishaw, Wotton-under-
Edge, UK). Bacterial samples were excited with a near
infrared 785-nm diode laser in a range of 390.79–
1552.14 cm�1 at ~ 150-mW laser power. The wave-
length of the instrument was calibrated automatically
using a silicon wafer by setting the silicon peak to
520 cm–1. One thousand two hundred litres per

millimetres grating was used to maximize signal strength
while minimizing background signal from autofluores-
cence. Spectral resolution was < 1 cm�1. The 50 9 0.5-
NA objective lens (Leica, Wetzlar, Germany) generates
a diffraction-limited spot size, ~ 1.9 lm in diameter, the
spacing between which was set at 14.5 lm to avoid
overlap between spectra. The spectra were generated
with five areas of scanning in each sample (technical
replicates). At each area, 21 scans were obtained; a
total of 105 scans were obtained for each sample (5-s
integration time per scan). These 7455 spectra were
used for ResNet and ML learning models training. Mean-
while, another 1775 spectra gathered from separately
cultured 71 strains were used as an independent test
data set to evaluate the accuracy of the models referring
to the method of Lu et al. (2020a,b). Strain 270, 104 and
R210 were measured repeatedly (39) to ensure the con-
sistency of spectrum for each at different measurements,
according to previous studies (Rebro�sov�a et al., 2017).

Raman spectral preprocessing

Nearest neighbour algorithm was used to remove cosmic
rays. The spectra are preprocessed in three steps: (1)
background subtraction, (2) smoothing and (3) normaliz-
ing according to a previous existing method (Lu et al.,
2020a,b). The polynomial baseline fitting was applied for
background fluorescence subtraction, and the Savitzky–
Golay filter was used for smoothing. For the vector
normalization method, the zero-mean normalization
(Z-score) was applied. These preprocessing steps were
all conducted using the R language (v3.6.2) with the
packages of “prospectr” and “baseline.”

Identification by deep learning

The CNN architecture is adapted from the ResNet archi-
tecture, which has been shown to be successful in a
range of computer vision tasks (He et al., 2020). The
model consists of an initial convolution layer, followed by
six residual layers and a final fully connected classifica-
tion layer (Fig. 3). Each residual layer contains four con-
volutional layers, and the total depth of the network is 26
layers. Shortcut connections are added throughout the
residual layers between the input and output of each
residual block for better gradient propagation and stable
training. The initial convolution layer contains 64 convo-
lutional filters, whereas each of the hidden layers has
100 filters. The architecture of our network was similar to
the previous study by Ho et al. (2019).
We first trained the network on the seven diverse

ARGs identification tasks, where output of the CNN is a
vector of probabilities across the seven ARGs and the
maximum probability is taken as the predicted class. The
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binary differentiation of drug-resistant phenotypes (sensi-
tive or resistant) among 15 commonly used antimicrobial
agents and the virulence genes have the same architec-
ture as the ARGs identification task, except for the num-
ber of classes in the final classification layer. We trained
the network with the Stochastic Gradient Descent (SDG)
optimizer across all experiments at a learning rate 0.001,
betas (0.5 and 0.999) and batch size 100 to minimize
the categorical cross entropy loss. We utilized a 10-fold
cross-validation to evaluate the classifying ability of
these ResNet models. The 10-fold cross-validation con-
sists of 10 separate runs with different sets of training
data (used for fitting the model) and test data (used for
testing model performance). This process was repeated
10 times to make sure that each of the 10 sets acted as
test data once.
We next used our trained ResNet models to identify

seven diverse ARGs, drug-resistant phenotypes and vir-
ulence genes in a test data set. The test data set is
independent of the training data set used for construct-
ing the deep learning models. The diagnostic perfor-
mance of these identification models was assessed
using confusion matrixes and plotting a receiver operat-
ing characteristic (ROC) curve. The accuracy, sensitivity
and specificity of the deep learning models were calcu-
lated. All procedures were implemented with the
PyTorch deep learning framework in Python program-
ming language in the NVIDIA GeForce RTX 3070 Ti
platform.

Identification by ML algorithms

The identification of seven diverse ARGs, drug-resistant
phenotypes and the virulence genes was also accom-
plished by using the ML algorithms, including logistic
regression (LR) and support vector machine (SVM). The
data set was trained using 10-fold cross-validation where
90% was used for training and 10% was used for cross-
validation. The predictive performance of these ML mod-
els was calculated in terms of accuracy, sensitivity,
specificity and the area under the ROC curve in the test
data set. All calculations were implemented in PYTHON

(v3.7.3, package sklearn) and R software (package
pROC).

Statistical comparisons

The mean accuracy for the CNN, SVM and LR models
was tested for equal variances using Levene’s test. The
Student’s t test or Welch’s t test were used to test
whether the differences in mean accuracy between the
CNN and ML algorithms were statistically significant. A
P-value < 0.05 was statistically significant. Multicompar-
ison correction was performed by Bonferroni correction.
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Fig. S1. 2-D-scores plots of principle component relation
(PC1and PC2) for three K. pneumoniae strains (270, 104,
R210). The dots in different color and shapes represent the
spectra gathered in different measurement times.
Fig S2. The model was created at each epoch to select the
most optimal epoch. The accuracy of the models did not
increase significantly after 20 epochs training.
Table S1 Sensitivity, specificity and accuracy of the CNN
models and the ML models in three identification tasks.
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