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Abstract: It is critical to construct stimuli-responsive multifunctional nanoparticles for the drug
delivery system for cancer treatment. Zeolitic imidazolate framework-8 (ZIF-8) has a large specific
surface area and decomposes quickly under acidic conditions, which presents an excellent potential
in pH-sensitive drug carriers. However, the mere chemotherapeutic drug loaded into ZIF-8 is a
monotherapy and may restrict the therapeutic efficacy of malignancies. In this work, an effective
nanoparticle-based delivery platform is established to simultaneously encapsulate doxorubicin
(DOX) and MXene quantum dot (MQD) in ZIF-8 nanoparticles (MQD@ZIF-8/DOX). Under near-
infrared (NIR) laser (808 nm) and UV light (365 nm) irradiation, MQD@ZIF-8 demonstrates a high
photothermal conversion efficiency and reactive oxygen species (ROS) production, which shows
excellent photothermal therapy and photodynamic therapy effects. Furthermore, the release of DOX-
loaded into MQD@ZIF-8 nanoparticles is significantly increased under NIR laser irradiation and at pH
5.6, indicating that acidic conditions and NIR laser irradiation can be effectively combined to stimulate
the drug release. The cellular experiments show that MQD@ZIF-8/DOX has an obvious killing effect
on HeLa cells and achieves the combined anti-tumor effect of chemotherapy and phototherapy.

Keywords: MQD@ZIF-8; chemotherapy; photothermal therapy; photodynamic therapy; anti-tumor

1. Introduction

A recent report suggests that malignant tumors remain a serious threat to human
health and life [1]. Hence, the development of effective cancer treatments is of great
importance [2,3]. Chemotherapy is one of the main treatment methods for malignant
tumors. Unfortunately, chemotherapy often has adverse effects on healthy tissue cells, and
the chemotherapeutic drugs alone are insufficient to destroy cancer cells. It is necessary
to develop an intelligent drug delivery platform to treat malignancies more effectively [4].
To better treat tumors, several approaches have been investigated. Combination therapy
combines two or more treatment forms, which offers a promising path to treating cancer
successfully [5]. Among the many combination therapies, phototherapy is of great interest
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due to its minimal invasion, slight drug resistance, and low toxicity [6–9]. Phototherapy
mainly relies on laser energy to produce adverse factors to kill cancer cells and realizes
high spatiotemporal accuracy [10].

Phototherapy includes photothermal therapy (PTT) and photodynamic therapy (PDT).
PTT converts light energy into heat by using the photothermic agent (PTA), resulting in local
hyperthermia of the surrounding environment to kill the tumor. Compared with traditional
cancer treatment methods, PTT has the advantages of non-invasiveness, low toxicity, and
high anti-tumor efficiency [11]. PTAs, such as Au [12–14], Ag [15–17], and Pd [18–20]
metal nanoparticles, play an important role in PTT. However, these metal nanomaterials
are limited in the biological field due to their high cost and high toxicity; it is crucial to
select a suitable PTA. PDT is also an important method of phototherapy because of its
high precision, good applicability, and repeatable treatment [21]. When the photosensitizer
(PS) is irradiated by laser, the energy is transferred to the surrounding oxygen molecules
to generate toxic reactive oxygen species (ROS), which leads to cancer cell death [22].
However, two independent agents (PTA and PS) are required to activate PTT and PDT,
respectively, resulting in a complex experimental process [23]. Furthermore, materials
with several components have complicated interactions and degradation tendencies in
biological systems, which might result in unidentified toxicity in the body [24]. Therefore, it
is essential to develop a novel nanomaterial with both PTT and PDT properties [25]. MXene
quantum dot (MQD) has attracted much attention due to the localized surface plasma
resonance (LSPR) effect [26] and good biocompatibility. According to previous research,
MQD is not only a photosensitizer but also a photothermal agent, so it endows a substance
to have the PDT/PTT effect at the same time [27]. However, MQD has been discovered to
be prone to agglomeration in solution, which can reduce its PDT and PTT effects and lead
to poor transportation to the target tumor site for action [28].

A suitable drug delivery system must be chosen to address these issues. Metal-organic
frameworks (MOFs) are a new type of porous material with metal ions/clusters as nodes
and organic ligands as linkers. Due to high specific surface area and adjustable pore
structure, MOFs have great prospects for applications in energy [29–33], catalysis [34],
separations [35], and other fields [36]. In recent years, the encapsulation of drug molecules
by MOFs has opened up a new way to obtain intelligent nanocarriers [37,38]. Zeolitic
imidazolate framework-8 (ZIF-8), a low toxicity MOF, consists of Zn ions (Zn2+) and 2-
methylimidazole (2-MIM) [39,40]. As a result of tunable composition, easy modification,
and good biocompatibility, ZIF-8 can efficiently carry drugs, fluorescent molecules, and
nanoparticles [41]. In addition, ZIF-8 is stable under physiological conditions, but is prone
to decompose in a micro acidic environment such as the tumor microenvironment. The
property allows ZIF-8 to be used as a pH-sensitive drug delivery carrier.

In this work, we designed a multifunctional MQD@ZIF-8 drug delivery platform. As
illustrated in Scheme 1, Zn2+ was immobilized on MQD as nucleation nodes. MQD@ZIF-8
composites were in situ synthesized through the rapid reaction between Zn2+ and 2-MIM
molecules. The chemotherapeutic drug doxorubicin (DOX) was encapsulated in MQD@ZIF-
8 nanoparticles with loading capability as high as 89.5%. The structure of ZIF-8 can be
collapsed in an acidic environment due to the pH-responsive property, and the releasing
rate of MQD and DOX was therefore accelerated. MQD served as PTA and PS in this
system to realize combined PDT/PTT therapy, which rapidly converted NIR light energy
to ablative heat and produced ROS under UV laser irradiation to kill cancer cells. Moreover,
DOX release could be markedly increased under the tumor environment and 808 nm laser
irradiation, controlled by the pH and photothermal response. The MQD@ZIF-8/DOX
nanocarrier can therefore achieve the effect of combined chemotherapy and phototherapy
during tumor treatment [42].
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Scheme 1. Schematic illustration of the MQD@ZIF-8/DOX fabrication process and the combined
treatment for tumors stimulated by phototherapy and chemotherapy.

2. Materials and Methods
2.1. Materials

Zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and 2-MIM were supplied by Shang-
hai Aladdin Bio-Chem Technology Co. (Shanghai, China). MQD solution (2 mg/mL)
was obtained from Beijing Beike New Material Technology Co. (Beijing, China). 2′,7′-
dichlorofluorescein diacetate (DCFH-DA), Dulbecco’s minimum essential medium (DMEM),
DOX, fluorescein isothiocyanate (FITC), and phosphate-buffered saline (PBS) were supplied
from Solarbio Science and Technology Co., Ltd. (Beijing, China). 1,3-diphenylisobenzofuran
(DPBF) were purchased from Shanghai McKellin Biochemical Technology Co., Ltd. (Shang-
hai, China). HeLa cells were obtained from Tianjin Cancer Hospital.

2.2. Synthesis of MQD@ZIF-8

One milliliter of the MQD solution (2 mg/mL) was dispersed in 10 mL of Zn(NO3)2·6H2O
(0.1 mol/L) in methanol solution. Then, 10 mL of 2-MIM (0.8 mol/L) in methanol was
added to the Zn(NO3)2·6H2O/MQD solution, followed by stirring for 1 h at 25 ◦C. The
mixture was obtained by centrifugal separation and then washed 3 times with methanol.

2.3. Materials Characterization

The crystal structure was measured by X-ray diffraction (XRD, Bruker D8 Discover,
Germany). The morphology was observed by scanning electron microscopy (SEM, Hitachi,
Japan) and transmission electron microscopy (TEM, JEM2100F, JEOL, Japan). The charge
was measured on Zeta potential analysis of macroscopic solid surface (SURPASS 3, Anton
Paar GmbH, China). The surface area was assessed by Brunauer–Emmett–Teller (BET,
V-Sorb 2800P, China). The functional group was recorded by Fourier transform infrared
(FT-IR, TENSOR 27, Bruker, Germany). The UV-Vis spectra were performed by a UV-Vis
spectrophotometer (UV-6100, Mapada, China).

2.4. DOX Loading and Release

To test the loading of the anticancer medication, 10 mg MQD@ZIF-8 was dispersed in
the PBS solution of DOX (1 mg/mL) under the dark condition; the mixture was put in a
reciprocating shaker at a speed of 150 rpm for 24 h. Then, the solid and liquid were then
centrifuged for 5 min at 8000 rpm. MQD@ZIF-8/DOX was obtained by washing the solid
3 times with PBS and then freeze-drying. DOX content in the supernatant was determined
by UV-Vis spectrophotometer, which was the mass of unencapsulated DOX. The loading
efficiency (LE) of DOX was calculated according to the following equation.

LE =
Mx −My

Mx
× 100%

where Mx is the total mass of DOX, and My is the mass of unencapsulated DOX.
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To demonstrate the drug release of the sample under pH and NIR stimulation, the
as-prepared MQD@ZIF-8/DOX (10 mg) was dispersed in 5 mL PBS of different pH values
(pH 7.4 and 5.6), placing them in the reciprocating shaker. The supernatant was collected at
regular intervals by centrifugation, and the release of DOX was recorded by UV-Vis spec-
trophotometer. For photothermal-triggered drug release, the MQD@ZIF-8/DOX solution
was irradiated under 808 nm NIR laser (2.0 W/cm2) for 5 min and then tested by UV-Vis
spectrophotometer. The experiment was repeated by replenishing fresh equal amounts
of PBS.

DOX release(%) =
n

∑
i=1

Mi/M0 × 100%

where Mi is the amount of DOX released from MQD@ZIF-8/DOX at time i and M0 is the
total amount of loaded drug in MQD@ZIF-8.

2.5. Photothermal Effect of MQD@ZIF-8

The photothermal conversion ability of MQD@ZIF-8 was investigated. Firstly, the
different concentrations (0.125, 0.25, and 0.5 mg/mL) of MQD@ZIF-8 in deionized water
were irradiated by 808 nm NIR laser at 2.0 W/cm2 for 5 min. Next, the MQD@ZIF-8
solutions (0.5 mg/mL) were irradiated with different laser power densities (1.0, 1.5, and
2.0 W/cm2) to evaluate the effect of different laser power densities on photothermal
performance. Finally, under laser irradiation at 808 nm (2 W/cm2), the temperature
of MQD@ZIF-8 (0.5 mg/mL) was increased until it stabilized and then cooled to room
temperature, 5 cycles were recorded to verify the photostability. Temperature variations
were tracked in real-time using an FLIR (FLIR E95, Estonia) infrared thermal camera.

2.6. Photodynamic Effect of MQD@ZIF-8

Detection of singlet oxygen (1O2): In general, DPBF was selected as the 1O2 trapping
agent. Under the dark condition, N,N-Dimethylformamide (DMF) solution of DPBF (1 mL,
200 µg/mL) was added to 9 mL of MQD@ZIF-8 in DMF solution (0.55 mg/mL). The mixture
was irradiated under UV light for 20 min, and the absorbance of DPBF was detected every
5 min by a UV-Vis spectrophotometer. In addition, the absorbance of free DPBF under UV
light was also measured under the same conditions.

In vitro 1O2 detection: HeLa cells were seeded into 96-well plates with a density of
5 × 104 cells per well and cultured in DMEM medium for 24 h at 37 ◦C and 5% CO2. Next,
the medium was removed, and the MQD@ZIF-8 sample (0.25 mg/mL) was co-cultured
with HeLa cells for 2 h. After that, the cells were treated with DCFH-DA for 20 min and
were exposed to UV light for 10 min. When the ROS was produced in cells, DCFH-DA can
be oxidized to form fluorescent DCF. 4′,6-diamidino-2-phenylindole (DAPI, 100 nM) was
used to label the nucleus. Confocal laser scanning microscopy (CLSM, TCSSP5II, Leica,
Ernst-Leitz-Strasse, Wetzlar, Germany) was used to capture fluorescence pictures. The 1O2
generation capacity was measured by fluorescence intensity at 525 nm and 488 nm.

2.7. Cell Culture and Cell Cytotoxicity

Cell culture: HeLa cells were cultured into 96-well plates with a density of 5 × 104 cells
per well for 24 h. The medium was then removed, and the FITC-labeled MQD@ZIF-8
(0.25 mg/mL) was introduced to the medium to co-culture with HeLa cells for 4, 8, and
12 h. The cells were cleaned 3 times with PBS and stained with 4% paraformaldehyde for
20 min. The nucleus was labeled by DAPI, and the fluorescence pictures were obtained
by CLSM.

Cell Cytotoxicity: The cytotoxicity was determined by the cell counting kit-8 (CCK-8,
Abbkine Scientific Co., Ltd., Beijing, China). In a 96-well plate, HeLa cells were plated at a
density of 1 × 104 cells per well for 24 h. Firstly, the sterilized samples with concentrations
of 50 µg/mL, 25 µg/mL, and 0 µg/mL were dispersed in the fresh medium. For the
non-laser group, the medium of HeLa cells was removed, and the same amount of medium
containing materials was co-cultured with cells for 24 h. For the laser irradiation group, the
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materials and HeLa cells were first co-cultured for 12 h, and then irradiated with 808 nm
laser (2 W/cm2, 10 min), UV (10 min), 808 nm laser (2 W/cm2, 10 min) + UV (10 min),
respectively, followed with another 12 h culture. After the above co-culturing for 24 h, the
PBS buffer was used to wash the HeLa cells, and each well was filled with a combination of
10 µL of CCK-8 solution. After 3 h culture in an incubator, the OD values of the HeLa cells
at 450 nm and the 96-well plate at 630 nm were detected by an enzyme labeling instrument,
and then the OD value of 450–630 nm was used to evaluate the changes in cell proliferation.

2.8. Statistical Analysis

The results were reported as mean ± SD and were assessed statistically using the
one-way analysis of variance (ANOVA). Statistical significance was accepted at p < 0.05.

3. Results and Discussions
3.1. Samples Characterization

TEM and SEM were used to observe the morphologies of samples. MQD exhibited
a good dispersion with a diameter of about 2~10 nm (Figure 1a) [43]. ZIF-8 presented
as a rhombic dodecahedral crystal with uniform dispersion and a size of about 100 nm
(Figure 1b,g). After the addition of MQD, the morphology of ZIF-8 did not change much;
which was still a rhomboidal dodecahedron, but with a slight increase in size (Figure 1c,h).
The size distributions of MQD, ZIF-8, and MQD@ZIF-8 were approximately 3.18 ± 0.6,
100 ± 15, and 107 ± 21 nm, respectively (Figure 1d–f). The TEM image shows apparent
black nanodots in MQD@ZIF-8, which cannot be observed in pure ZIF-8. The black
nanodots were very consistent with pure MQD (Figure 1g,h), proving that MQD was
successfully loaded on the surface of ZIF-8 [44]. High magnification elemental mapping
was also performed at a selected area, which further demonstrated the homogeneous
element distribution of the obtained MQD@ZIF-8 composite (Figure 1i).
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After that, the zeta potentials of nanomaterials were tested. Zeta potentials of ZIF-8
and MQD@ZIF-8 samples were 17.7 and 9.5 mV, respectively (Figure 2a). The free carboxyl
group of MQD had a significant negative charge, which caused the charge reversal, and
the change of zeta potential proved the successful loading of MQD [45]. Figure 2b shows
the XRD pattern of the samples; the coherent diffractions of the (011), (002), and (112)
planes were responsible for characteristic peaks of ZIF-8 at 2θ = 7.28, 10.33, and 12.69◦ [28].
The (002) and (110) peaks of MQD and the (101) and (200) peaks of the titanium dioxide
(TiO2) (JCPDS Card No. 71-1168) can be presented in the curve of the MQD sample,
which indicated that a part of MQD was oxidized to TiO2 [46]. Moreover, the peaks of
MQD@ZIF-8 and ZIF-8 were consistent, showing that the loading of MQD did not influence
the crystal structure of ZIF-8. The nitrogen adsorption–desorption isotherms of ZIF-8
and MQD@ZIF-8 nanoparticles showed the type I isotherms, revealing a microporous
structure. In addition, the specific surface areas of ZIF-8 and MQD@ZIF-8 were 1885.258
and 1544.752 m2/g, respectively (Figure 2c), which indicated that some pores were filled
with MQD. The maximum pore size distribution of MQD@ZIF-8 appeared at 1.6 nm, which
was similar to that of the ZIF-8 sample (Figure 2d). It is proved that the loading of MQD
did not affect the pore size of ZIF-8.
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3.2. Loading and Releasing Profiles of DOX

DOX is a model chemotherapeutic drug. The loading of DOX was recorded by UV–
Vis spectra (Figure 3a). DOX and MQD@ZIF-8/DOX exhibited absorbance at 480 nm
and 500 nm, respectively. Here, the absorbance of MQD@ZIF-8/DOX was slightly red-
shifted, possibly because of the interaction between DOX and ZIF-8, demonstrating
the successful loading of DOX. In addition, the FT-IR spectra of DOX, MQD@ZIF-8,
and MQD@ZIF-8/DOX samples were measured (Figure 3b). The bands at 3143 cm−1,
2927 cm−1, 1583 cm−1, and 1425 cm−1 were ascribed to the stretching vibrations of the
C-H, and -NH- of the imidazole ring; the peaks at 1309, 1145, and 999 cm−1 were from
the in-plane bending vibration of the imidazole ring, the peaks at 754 and 686 cm−1 were
attributed to the out-of-plane bending vibration of the imidazole ring; the small peak near
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424 cm−1 corresponded to the stretching vibration of Zn-N in ZIF-8. The obvious bands at
1624, 1049, and 609 cm−1 were assigned to the stretching vibrations of -OH, C-N, and Ti-C
of the FT-IR spectra of MQD nanoparticles. Furthermore, the stretching vibration of C=O in
the encapsulated DOX was found at 1728 cm−1, which corresponded with that of the free
DOX. The characteristic peaks of DOX and MQD@ZIF-8 can be observed in the MQD@ZIF-
8/DOX infrared spectrum, which indicated the successful synthesis of MQD@ZIF-8/DOX.
Then, we tested the release behavior of DOX in PBS at pH 7.4 and 5.6; the release rate of
DOX-loaded into MQD@ZIF-8 increased with the change of pH from 7.4 to 5.6. Nearly
70% of DOX was released from MQD@ZIF-8/DOX at pH 5.6 within 81 h, but just 24% was
released at pH 7.4 (Figure 3c). Furthermore, DOX release was significantly increased under
NIR laser irradiation (Figure 3d), proving that MQD@ZIF-8 can stimulate the release rate
of DOX via adjusting pH values and NIR laser irradiation, which is favorable for combined
chemical-photothermal treatment [47].
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3.3. Analysis of Photothermal Properties of MQD@ZIF-8

Next, the photothermal properties of MQD@ZIF-8 were investigated. Under 808 nm
NIR laser irradiation, we measured the temperature changes of MQD@ZIF-8 aqueous
dispersions with different concentrations. After 5 min of laser irradiation (2 W/cm2), the
temperature of the water group only increased by about 2 ◦C. However, the temperature
of the MQD@ZIF-8 (0.5 mg/mL) solution could rise to 53.1 ◦C (Figure 4a), indicating that
the temperature rose in the solution was due to the presence of MQD@ZIF-8. As shown in
Figure 4b, when the NIR laser power increased, the temperature of the MQD@ZIF-8 aque-
ous solution also rose. In addition, the photothermal stability of the MQD@ZIF-8 solution
was measured under 808 nm NIR laser irradiation, and the temperature profiles remained
basically unchanged during the five-cycle heating and cooling process (Figure 4c) [48],
which demonstrated that the MQD@ZIF-8 solution had excellent photothermal conversion
efficiency. The IR thermal pictures were taken using the FLIR infrared camera (Figure 4d),
which revealed that as the time passed, the temperature of the MQD@ZIF-8 solution in-
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creased. However, the temperature of the water group only rose a little, proving that
MQD@ZIF-8 exhibited excellent photothermal effects [49].
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Figure 4. (a) Temperature increasing curves of water and different concentrations of MQD@ZIF-8
under irradiation of an 808 nm NIR laser at 2 W/cm2. (b) Temperature elevation of MQD@ZIF-8
dispersion (0.5 mg/mL) under varied laser power densities of an 808 nm NIR laser. (c) Photostability
test of MQD@ZIF-8 solution under 808 nm NIR laser irradiation for 5 cycles (2 W/cm2, 5 min). (d) IR
thermal images of water and MQD@ZIF-8 solution after irradiation for 5 min (808 nm, 2 W/cm2,
5 min).

3.4. Photodynamic Properties of MQD@ZIF-8

To demonstrate whether the obtained MQD@ZIF-8 could generate 1O2 under UV
light. Using the DPBF as a probe, DPBF can react with the 1O2 and then decomposed
into 1,2-dibenzoylbenzene under laser irradiation, which resulted in the decrease of the
absorption intensity at 410 nm. As shown in Figure 5a, the free DBPF had no noticeable
change in UV-Vis absorbance spectra. However, the UV-Vis absorbance of DPBF incubated
with MQD@ZIF-8 decreased with the laser irradiation time increasing from 5 min to 20 min
(Figure 5b), which suggested that MQD@ZIF-8 can produce 1O2 due to the generation of
TiO2. Furthermore, the 1O2 generation capability of MQD@ZIF-8 was observed in vitro.
DCFH-DA was often used as an oxidation-sensitive probe to measure the 1O2 production in
HeLa cells. When 1O2 was generated, DCFH-DA can be oxidized to DCF with fluorescent.
The MQD@ZIF-8 group showed a large amount of intense green fluorescence under UV
laser irradiated in confocal fluorescence images (Figure 5c), indicating the formation of
toxic ROS in cells.
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3.5. In Vitro Cellular Uptake

The uptake efficiency of MQD@ZIF-8 toward HeLa cells was evaluated via CLSM.
HeLa cells were incubated with FITC labeled MQD@ZIF-8 for 4 h, 8 h, and 12 h, respectively.
When incubated for 4 h, green fluorescence of FITC could be observed in HeLa cells
(Figure 6). When the incubation time was prolonged to 12 h, MQD@ZIF-8 treated cells
showed stronger green fluorescence, showing that MQD@ZIF-8 was internalized by the
cells and had high uptake efficiency toward cancer cells.
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3.6. Cell Cytotoxicity of MQD@ZIF-8

In order to further study the biological application of MQD@ZIF-8 in vitro, the cytotox-
icity of MQD@ZIF-8 was examined by using the CCK-8 assay. HeLa cells were co-cultured
with diverse concentrations of MQD@ZIF-8 and MQD@ZIF-8/DOX for 24 h under dark
conditions. According to the findings, MQD@ZIF-8 showed good biocompatibility and can
be used as a drug delivery platform. However, the addition of DOX had a certain killing
effect owing to the toxicity of the drug DOX itself (Figure 7a). Furthermore, we investigated
the cytotoxicity from a combination of chemotherapy and photothermal therapy. The
viability of HeLa cells incubated with MQD@ZIF-8 and MQD@ZIF-8/DOX significantly
decreased under laser irradiation compared to that without irradiation, demonstrating that
MQD@ZIF-8 can be used as PTA to effectively destroy the structure of cancer cells under
the 808 NIR laser irradiation (Figure 7b). Moreover, to further research the PDT effect of
MQD@ZIF-8 and MQD@ZIF-8/DOX in HeLa cells, the OD values of nanocomposites at
various concentrations were tested under UV light irradiation. The sample had obvious
cell death at the highest concentrations because of the production of ROS during the PDT
process (Figure 7c). In addition, compared with the non-laser group, MQD@ZIF-8-treated
cells with 808 nm laser and UV light irradiation had a significant difference. Further-
more, HeLa cells had substantially greater apoptotic than those treated with a single laser,
demonstrating that combined therapy could significantly strengthen the therapeutic effect
(Figure 7d).
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4. Conclusions

In conclusion, a well-designed multifunctional MQD@ZIF-8 drug delivery system
was created by simultaneously encapsulating MQD with phototherapeutic effects and
the chemotherapeutic drug DOX in a ZIF-8 matrix. The MQD@ZIF-8 nanocarrier not
only has a simple preparation method but can also efficiently connect pH with NIR dual
responsive to stimulate drug release. In addition, through the cell experiment, it can be
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proved that MQD@ZIF-8 has superior biocompatibility, and MQD@ZIF-8 can generate heat
and ROS around cells under 808 nm laser and UV irradiation to kill HeLa cells, respectively.
Therefore, MQD@ZIF-8 is a nanoplatform with great potential for combination therapy
of tumors.
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