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Background: A favorable model for predicting disease-free survival (DFS) and stratifying prognostic risk in breast cancer
(BC) treated with neoadjuvant chemotherapy (NAC) is lacking. The aim of the current study was to formulate an
excellent model specially for predicting prognosis in these patients.
Patients and methods: Between January 2012 and December 2015, 749 early-stage BC patients who received NAC in
Xijing hospital were included. Patients were randomly assigned to a training cohort (n ¼ 563) and an independent
cohort (n ¼ 186). A prognostic model was created and subsequently validated. Predictive performance and
discrimination were further measured and compared with other models.
Results: Clinical American Joint Committee on Cancer stage, grade, estrogen receptor expression, human epidermal
growth factor receptor 2 (HER2) status and treatment, Ki-67 expression, lymphovascular invasion, and residual
cancer burden were identified as independent prognostic variables for BC treated with NAC. The C-index of the
model consistently outperformed other available models as well as single independent factors with 0.78, 0.80, 0.75,
0.82, and 0.77 in the training cohort, independent cohort, luminal BC, HER2-positive BC, and triple-negative BC,
respectively. With the optimal cut-off values (280 and 360) selected by X-tile, patients were categorized as low-risk
(total points �280), moderate-risk (280 < total points � 360), and high-risk (total points >360) groups presenting
significantly different 5-year DFS of 89.9%, 56.9%, and 27.7%, respectively.
Conclusions: In patients with BC, the first model including residual cancer burden index was demonstrated to predict
the survival of individuals with favorable performance and discrimination. Furthermore, the risk stratification generated
by it could determine the risk level of recurrence in whole early-stage BC cohort and subtype-specific cohorts, help
tailor personalized intensive treatment, and select comparable study cohort in clinical trials.
Key words: breast neoplasm, nomogram, predictive factors, prognosis, neoadjuvant chemotherapy, residual cancer
burden
INTRODUCTION

Breast cancer (BC) is the most leading malignancy, and its
mortality rate ranks second among all cancer-related deaths
in women.1 Neoadjuvant chemotherapy (NAC) has become
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an established treatment option for locally advanced BC to
reduce tumor size and to increase the breast conservation
rate.2,3 BC patients received NAC shows a great heteroge-
neity of disease with a significantly different survival,4,5

rendering it critical to build up a risk stratification model.
To date, existing models such as Rouzier model,6 Clinical-

Pathologic Scoring System incorporating estrogen receptor
(ER)-negative disease and nuclear grade 3 tumor pathology
(CPS þ EG scoring systems),7 Colleoni model,8 neoadjuvant
response index (NRI),9 Keam model,10 Nottingham Clinico-
Pathological Response Index (NPRI),11 and Neo-Bioscore12

have been developed, validated, and extensively used in
the clinic.13-15 However, almost all these studies are seemly
dated because human epidermal growth factor receptor 2
(HER2)-targeted therapies and informative pathological
https://doi.org/10.1016/j.esmoop.2021.100269 1
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measurement were not taken into consideration in that
case.6-12,16,17 A nomogram created for the population in the
recent clinical guidelines is therefore urgently required and
comparisons of the novel model with previous models are
crucial.

Basic and predictive parameters for formulating a model
specific to patients with BC encompass clinical stage, his-
tology type, grade, the expression of ER, progesterone re-
ceptor (PR), Ki-67, and HER2, residual tumor burden
[including pathological complete remission (pCR) status,
pathological AJCC stage], and lymphovascular invasion
(LVI).6-22 Among these indicators, residual tumor appears
especially important not only because it shows a negative
correlation with prognosis but also its cancer burden ranges
from single cancer cell to large diameters of tumor in these
patients, which, in part, could lead to a great degree of
heterogeneity in BC population after NAC. Several ran-
domized studies and meta-analysis demonstrated that pa-
tients achieving pCR during the NAC have longer disease-
free survival (DFS) and overall survival (OS) than those
with residual cancer.23-25 It is for this reason that almost all
prior studies have only focused on patients with pCR or
residual cancer. However, since the measurement criteria of
residual cancer burden index (RCB) were proposed by
Symmans et al. in 2007,26 RCB score and class were highly
sought-after in many studies.4,27-31 RCB is based on the
measurement of histopathological indicators such as num-
ber of positive nodes, diameter of the largest metastatic
node, and the size and percent cellularity of the primary
tumor bed (www.mdanderson.org/breastcancer_RCB).
Recent findings showed that no prognostic difference for OS
or relapse-free survival was observed between pCR and low
residual cancer burden class (I),27,28,31 which provides
rationale to establish a predictive model for all patients
(including pCR and non-pCR) who received NAC. However,
there is currently no available prognostic model that can be
applied for all early-stage BC patients treated with NAC.

On the other hand, individualized prediction has been
regarded as an important requisite for an excellent predic-
tive model,32-34 considering that relapse is a frequent cause
of death in BC and substantially affects the quality of life for
BC patients. More importantly, prognostic model with
excellent performance of discrimination can help develop
new drugs for population in the high-risk group.35 There-
fore, it is crucial for clinicians to construct a novel model to
accurately stratify the risk level of recurrence.

In the present study, we sought to create a risk stratifi-
cation model that can represent continuous prognostic risk
and can be applied to predict individual prognosis and
separate patients into different risk groups in BC with NAC.

PATIENTS AND METHODS

Study design and population

In the current study, we collected the clinical and patho-
logical data of 876 patients who were diagnosed with BC
and received NAC at Xijing Hospital in 2012-2015. The
following data were selected as study variables: age at
2 https://doi.org/10.1016/j.esmoop.2021.100269
diagnosis, family history of BC, menopausal status, clinical
AJCC stage, laterality, histology, pathological information,
and treatment data. Family history of BC refers to a pa-
tient’s first- or second-degree relatives with BC.

The inclusion criteria were listed as follows: (i) female BC
was diagnosed by positive histology; (ii) all patients were
given NAC. The exclusion criteria were as follows: (i) bilat-
eral BC; (ii) metastatic BC; (iii) information on ER was un-
available; (iv) not received mastectomy; (v) incomplete
follow-up; (vi) patients with unavailable pathology slides.

Finally, 749 patients were enrolled into the study. The
eligible population was randomly assigned in a 3 : 1 ratio to
a training cohort and an independent cohort by computer-
generated randomized number. The flowchart of the study
is shown in Figure 1A.

The clinical stage was assessed based on the sixth edition
of the AJCC BC staging system before NAC.36 The detailed
NAC regime and dose were described in our prior reports.37

The study was approved by the institutional review board
of Xijing hospital and received an exemption of informed
consent from the local ethics committee.

Outcomes

The primary endpoint of our study was DFS. The secondary
endpoints of this study were OS, local regional recurrence
(LRR), and distant metastasis (DM). DFS was measured from
the date of mastectomy to the date of disease recurrence,
death, or the last follow-up. OS was defined as the time
from the date of mastectomy to the date of death due to
any cause or the last follow-up. LRR was defined as first
cancer recurrence in the regional areas (including axillary,
supraclavicular, internal mammary nodes, and chest wall).
DM was identified as first recurrence beyond the LRR area
as defined above. Patients with local and distant recurrence
were analyzed in LRR and DM, respectively.

Pathological evaluation of residual disease

All patients underwent a pathological evaluation at the
Department of Pathology. Formalin-fixed paraffin-embedded
post-NAC resection specimens were retrieved from the Pa-
thology Department Archive.The assessment of the punctual
specimens before NAC was utilized to determine the histol-
ogy type of BC and grade. Considering that patients with pCR
have no residual cancer burden, we carried out immunohis-
tochemistry evaluation for ER, PR, HER2, and Ki-67 based on
the pathology slides obtained before NAC. Only nuclear
reactivity was considered for ER, PR, and Ki-67 expression,
using continuous expression. HER2/neu positive means that
the number of cells with complete membrane staining>10%
of the total tumor cells or HER2 amplification determined by
FISH gene detection.

Primary tumor bed, overall cancer cellularity (as per-
centage of area), percentage of cancer that is in situ dis-
ease, number of positive lymph nodes, and diameter of
largest metastasis of resected lymph node after NAC were
pathologically evaluated on hematoxylineeosin-stained
slides according to the criteria reported by Symmans et al.26
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http://www.mdanderson.org/breastcancer_RCB
https://doi.org/10.1016/j.esmoop.2021.100269
https://doi.org/10.1016/j.esmoop.2021.100269
https://doi.org/10.1016/j.esmoop.2021.100269
https://doi.org/10.1016/j.esmoop.2021.100269
https://doi.org/10.1016/j.esmoop.2021.100269
https://doi.org/10.1016/j.esmoop.2021.100269
https://doi.org/10.1016/j.esmoop.2021.100269
https://doi.org/10.1016/j.esmoop.2021.100269
https://doi.org/10.1016/j.esmoop.2021.100269


d1

d2

A B

C

Patients diagnosed as breast cancer in 2012-2015 received neoadjuvant
chemotherapy (n = 876)

Excluded:
• Bilateral breast cancer (n = 6)
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Figure 1. Flowchart of the current study design (A), parameters of residual cancer burden measurement including bidimensional diameter (d1, d2) of primary
residual tumor bed (B), and the diameter of the largest nodal metastasis (C).
ER, estrogen receptor.
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Figure 1B and C shows the measurement of bidimensional
diameters of the primary tumor bed (d1, d2) and diameter
of the largest nodal metastasis. RCB was assessed and
divided into RCB classes. LVI and skin involved were care-
fully measured based on post-NAC pathological slides. The
pathology slides were measured independently by the three
pathologists of the authors.
Statistical analysis

Chi-square test or Fisher’s exact test was utilized to
compare the categorical variables between the training
cohort and independent cohort, whereas quantitative var-
iables were listed as median with interquartile range (IQR)
and statistical comparisons were made using Student’s t-
test or non-parametric ManneWhitney U test. Patients who
were alive at last follow-up data (15 September 2020) or
lost to follow-up were censored at the time of the last
contact. The KaplaneMeier analysis was employed to
calculate the survival rate, and the log-rank test was used to
compare the differences between the curves.

Variables with P <0.05 in univariable Cox analysis were
incorporated into multivariable Cox analysis to generate
independent prognostic factors of BC in the training cohort.
A backward step-down selection identified a final model
according to the Akaike information criterion.38 A nomo-
gram for predicting DFS was built up based on the
Volume 6 - Issue 5 - 2021
multivariable Cox results. In the current study, the bootstrap
method ¼ 200 was applied to validate the model’s per-
formance. The 3-year and 5-year receiver operating char-
acteristic (ROC) curves and calibration curves were drawn to
evaluate the predictive performance of the nomogram in
the internal and independent validation.39 The larger the
area under the ROC curve (AUC), the higher the predictive
accuracy of the nomogram. The closer the calibration curve
is to the ideal curve, the more unbiased the predictive
performance of the model. The time-dependent ROC
curves, corresponding AUC values, and Harrell’s C-indexes
were utilized to measure and compare the performance of
the final model, Rouzier model, CPS þ EG scoring system,
Colleoni model, Keam model, Neo-Bioscore, RCB, AJCC, and
Ki-6739 among the training cohort, independent cohort,
luminal BC, HER2-positive BC, and triple-negative BC (TNBC)
groups. Decision curve analysis was carried out to identify
whether the nomograms could be deemed useful tools for
clinical decision making by comparing the net benefits at
any threshold probability.40 All patients were grouped into
three risk stratums (low-risk, moderate-risk, and high-risk
group) according to two optimal cut-offs identified by X-
tile in the training cohort.41

Statistical tests were two-sided, and P values <0.05 were
considered as statistically significant. All statistical analyses
were conducted using R version 3.3.6 (http://www.R-project.
org/) with packages rms, timeROC, caret, and ggDCA.
https://doi.org/10.1016/j.esmoop.2021.100269 3
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RESULTS

Characteristics of the training cohort and independent
cohort

A total of 749 BC patients who received NAC were finally
selected. Among them, 563 (75.2%) patients were included
in the training cohort and 186 (24.8%) patients were
included in the independent cohort (Figure 1A). Baseline
characteristics between the two cohorts are presented in
Supplementary Table S1, available at https://doi.org/10.
1016/j.esmoop.2021.100269. Notably, compared with pa-
tients in the training cohort, a lower proportion of patients
in the independent cohort had hormone receptor-positive
(HRþ) BC. Other characteristics were comparable be-
tween the two cohorts.

The median follow-up for the total population was 58
months (IQR, 50-71 months), with 3-year and 5-year DFS
being 78.8% and 72.8%, respectively. The median follow-up
for the training cohort and independent cohort was 58
months (IQR, 50-71 months) and 59 months (IQR, 48-71
months), respectively. Recurrence occurred in 157 (27.8%)
patients in the training cohort and 53 (28.3%) patients in
the independent cohort. No significant difference in survival
was observed between the training cohort and independent
cohort {5-year DFS 72.6% [95% confidence interval (CI),
68.8% to 76.3%] versus 73.7% (95% CI, 67.3% to 80.1%);
log-rank P ¼ 0.884} (Supplementary Figure S1, available at
https://doi.org/10.1016/j.esmoop.2021.100269).

Construction of a prognostic nomogram based on multi-
variable prognostic analysis. The 3-year and 5-year DFS of
563 BC patients in the training cohort were 78.5% and
72.6%, respectively. The univariable and multivariable Cox
results are presented in Supplementary Table S2, available
at https://doi.org/10.1016/j.esmoop.2021.100269. AJCC
stage I, grade 1, higher expression of ER, lower expression
of Ki-67, HER2 positive with trastuzumab, no LVI, and lower
classes of RCB (including pCR and I) were identified as in-
dependent protective factors for BC patients treated with
NAC.

A nomogram for predicting DFS was formulated by
integrating all independent prognostic factors (Figure 2A).

Internal and external validation of the nomogram. The
prognostic model-predicted DFS with 3-year and 5-year AUC
was 0.82 (95% CI, 0.78-0.86) and 0.80 (95% CI, 0.76-0.84),
respectively, in the internal validation, and 0.83 (95% CI,
0.76-0.90) and 0.82 (95% CI, 0.76-0.91), respectively, in the
external validation of independent cohort (Figure 2B and C).
Moreover, the 3-year and 5-year calibration curves of the
internal validation cohort and independent cohort further
presented excellent agreement between predictions and
observations in the probability of 3-year and 5-year DFS
(Figure 2D and E).

Comparison of the predictive performance of the current
model and other models and factors. The performance and
discrimination of the model and other models (including
Rouzier model, CPS þ EG scoring systems, Colleoni model,
4 https://doi.org/10.1016/j.esmoop.2021.100269
Keam model, and Neo-Bioscore) as well as some factors
(including RCB, AJCC, and Ki-67) were compared
(Supplementary Table S3, available at https://doi.org/10.
1016/j.esmoop.2021.100269). The 1-year, 2-year, 3-year, 4-
year, 5-year, and 6-year AUROC values and C-indexes of
the current nomogram were higher than those of other
models and factors in the training cohort and independent
cohort, indicating a favorable performance and discrimina-
tion (Figure 3A and B). The 3-year and 5-year decision curve
analysis indicated that the net benefit of the nomogram
robustly outperformed other models and single factors in
the training cohort (Figure 3C and D) and independent
cohort (Figure 3E and F).

Risk stratification of the model

We utilized X-tile software to generate two optimal cut-offs
(280 and 360, Supplementary Figure S2A-C, available at
https://doi.org/10.1016/j.esmoop.2021.100269), which
divided BC into three groups with a highly significantly
different probability of recurrence (Figure 2A): low risk
(total points �280, n ¼ 334 in the training cohort, and n ¼
102 in the independent cohort), moderate risk (280 < total
points � 360, n ¼ 167 in the training cohort, and n ¼ 65 in
the independent cohort), and high risk (total points >360,
n ¼ 62 in the training cohort, and n ¼ 19 in the indepen-
dent cohort). In the entire population, the 5-year DFS of
low-risk, moderate-risk, and high-risk groups was 89.9%
(95% CI, 87.0% to 92.8%), 56.9% (95% CI, 50.3% to 63.5%),
and 27.7% (95% CI, 17.8% to 37.6%), respectively. With the
low-risk group as reference, the hazard ratios (HRs) for
moderate-risk and high-risk groups were 5.56 (95% CI, 3.91-
7.91; P < 0.001) and 13.32 (95% CI, 9.01-19.71; P < 0.001),
respectively (Figure 4A). Similar trends were also observed
in the training cohort and independent cohort.

The cumulative incidence curves for recurrence and OS
curves were significantly different among three groups in
the training cohort and independent cohort (all with log-
rank P < 0.001, Figure 4B-E). The cumulative incidence
curves for LRR and DM of three groups are shown in
Supplementary Figure S3, available at https://doi.org/10.
1016/j.esmoop.2021.100269, and were significantly
different (log-rank P < 0.001).

The performance of risk stratification model in subtype-
specific BC cohorts. The performance and discrimination
of the model and other models as well as some factors
were compared (Supplementary Table S4, available at
https://doi.org/10.1016/j.esmoop.2021.100269). The AUROC
values and C-indexes of the risk stratification model were
higher than those of other models and factors in the
luminal BC cohort, HER2-positive BC cohort, and TNBC
cohort, which indicated good discrimination performance
(Figure 5A-C). The 3-year and 5-year calibration curves
presented good agreement between predictions and ob-
servations in the probability of 3-year and 5-year DFS
among subtype-specific cohorts (Figure 5D-F).

The cumulative incidence curves for recurrence and OS
curves were distinctly different in the luminal BC cohort,
Volume 6 - Issue 5 - 2021
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the training cohort and independent cohort, respectively. The threshold probability represented the 3-year (C, E) or 5-year (D, F) risk of recurrence based on each
prognostic model for recommending clinical intervention. Light blue line: Assume all patients need to receive clinical intervention (all recurrence). Dotted color lines:
Patients received clinical intervention if predictions exceeded a threshold, with 3-year (C, E) and 5-year (D, F) recurrence risk predictions based on different prognostic
models. In general, the prognostic model with the highest net benefit at any threshold is deemed to have the highest clinical application value. AJCC, American Joint
Committee on Cancer; AUC, area under receiver operating characteristic curve; RCB, residual cancer burden.
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HER2-positive BC cohort, and TNBC cohort (all with log-rank
P < 0.001, Figure 5G-L). There was also statistically signifi-
cant difference among cumulative incidence curves for LRR
and DM in the three groups (both log-rank P < 0.001,
Supplementary Figure S4, available at https://doi.org/10.
1016/j.esmoop.2021.100269).
6 https://doi.org/10.1016/j.esmoop.2021.100269
DISCUSSION

Based on 749 BC patients who received NAC mainly from
Northwestern China, we created the risk stratification
nomogram that can estimate individualized survival with
better performance and the cut-off points separated three
distinct risk groups both in the overall population and the
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three subtype-specific BC cohorts. The superiorities and
innovative aspects lie in: (i) establishing the first model to
stratify recurrence risk for BC with NAC; (ii) validating the
excellent performance of the risk stratification model in the
training cohort, independent cohort, and subtype-specific
BC cohorts; (iii) incorporating RCB into predictive nomo-
gram for the first time; (iv) predictive model can be utilized
to predict DFS for all early-stage BC treated with NAC; and
Volume 6 - Issue 5 - 2021
(v) performing a continuous rather than categorized model
to predict individual survival and the risk stratification can
be used to select comparable population in trial design.

The 5-year DFS rates of 72.6% and 73.7% in the training
and independent cohorts of all early-stage BC, respectively,
were significantly higher than the 59% and 50%, respec-
tively, noted by Colleoni et al. in 2009.8 More importantly,
the 5-year DFS rates of 70.1% and 71.6% in the training and
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independent cohorts of non-pCR patients (Supplementary
Figure S5, available at https://doi.org/10.1016/j.esmoop.
2021.100269), respectively, were obviously higher than
those reported in the study by Colleoni et al., mainly
because of the continued progress in therapeutic guidelines
and fast improvement in drug of NAC in recent years and
inclusion of patients with pCR in our study. The German BC
Group reported that the 5-year DFS rate varied from 60% to
8 https://doi.org/10.1016/j.esmoop.2021.100269
85% in 2018,42 which was consistent with the present study.
Patients within the low-risk group had apparently better
prognosis, with an 8-year DFS of 89.4%, compared with a
median DFS of 23.67 months and 77.80 months in the
high-risk group and moderate-risk group, respectively
(Supplementary Figure S6, available at https://doi.org/10.
1016/j.esmoop.2021.100269). This further confirms that
the survival of BC patients who received NAC varies greatly,
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substantiating the significant implication of individualized
estimation and risk stratification in clinical trial design and
practice.

AJCC stage, grade, ER expression, HER2 status and
treatment, Ki-67 expression, and LVI have been determined
as independent predictors in BC patients who received
NAC.6-22 T stage and N stage, which indicate primary and
metastatic lymph node burden, respectively, have been
seen as predictors in several studies.15,18 The model we
constructed incorporated AJCC stage, which takes together
these two factors. Specially, ER expression was utilized as a
continuous variable similar to several pivotal studies and LVI
was classified as no, focal, and diffused by experienced
pathologists,8,43 which might be more superior than two
classifications. Furthermore, several studies consistently
confirmed that RCB is the important prognostic indicator
and outperforms other predictors. The robust predictor was
included in the present study, which partly contributes to
the favorable performance of the model. Additionally, it
seems a bit paradoxical that post-mastectomy radiotherapy
(PMRT) appears as an adverse indicator for prognosis in
univariable regression analysis, yet shows no significant
difference in the multivariable analysis. This is likely due to
the fact that patients with PMRT have a higher proportion
of high-risk group than that of non-PMRT group (15.4%
versus 5.9% of high-risk group in the PMRT cohort and non-
PMRT cohort, respectively, P < 0.001). The clinical guideline
of PMRT in BC also strongly substantiates this point.44

The C-index values of the novel model for predicting
prognosis are superior to those previously reported in other
models (0.73 and 0.67 of training and test cohorts in Colleoni
model, respectively; 0.71 and 0.72 of training and test cohorts
in Rouzier model, respectively; 0.78 of training in Keam model
with only 2 years of follow-up). The possible explanations are
that we considered RCB as a predictor and identified rational
criteria for the target population in the current study.45

Recently, Laas et al. reported that Neo-Bioscore had better
performance in the overall population compared with RCB,
but that RCB showed better performance in subtype-specific
groups, especially for luminal BC and TNBC.16 However, a
study conducted by Dana-Farber Cancer Institute showed that
RCB is superior to the Neo-Bioscore for stratifying patients
into different survival outcomes.17 Intriguingly, the AUROC
values of five models applied to the patients in our center
were inferior to those of the model. This is likely because of
the distribution difference of heterogeneity in different races,
the discrepancy of NAC therapeutic guidelines in different
countries, and the predictive improvement of our model after
including RCB and LVI.16,17

The optimal target population for NAC has been explored
and determined in several randomized clinical trials, but
verification regarding its prognostic difference is deficient.
This may produce unrecognized confounding which might
potentially affect the results of these studies, therefore a
risk stratification model for discriminating and diminishing
heterogeneity is urgently needed.46 In particular, as is pre-
sented in Figure 5 and Supplementary Figures S3, S4, and
Volume 6 - Issue 5 - 2021
S6, available at https://doi.org/10.1016/j.esmoop.
2021.100269, the model can separate BC patients who
received NAC into different risk stratums. Especially, median
DFS of the high-risk group for BC patients who received NAC
is <2 years, which would severely affect the quality of life of
patients in this cohort. Fortunately, the model could help
clinicians to select potential high-risk cohort of recurrence
and conduct clinical trials to decrease the incidence of
relapse.

There are several limitations in the study: (i) The study
was limited by its selective bias in retrospective study, yet
this shortcoming has been diminished in identifying popu-
lation based on strict criteria. (ii) Several studies have
identified tumor-infiltrating lymphocytes on residual dis-
ease after NAC as an independent prognostic predictor,27,40

but tumor-infiltrating lymphocytes on residual disease were
not evaluated in our study. (iii) Fine-needle aspiration for
metastatic axillary nodes before NAC and/or evaluation of
fibrosis status in resected specimens were not routinely
carried out. We were unable to compare the performance
of the risk stratification nomogram with other models (e.g.
NRI and NPRI), while the model was compared with most
predictive models using the data in our center. (iv) Although
our team considered HER2 status and treatment, not all
HER2þ BC patients received HER2-targeted therapy. In fact,
there do exist cases, where a predictive prognostic esti-
mation of an HER2þ without trastuzumab BC patient is
required, particularly in the developing countries. The risk
stratification model we developed can also be applied in
this population. (v) The newest National Comprehensive
Cancer Network guidelines recommend six to eight cycles of
NAC in BC patients (https://www.nccn.org/patients/guide
lines/cancers.aspx). However, the study population
received a median of four cycles of NAC (range, two to eight
cycles) according to the Chinese Anti-Cancer Association
guidelines for the treatment of BC in 2012-2015. Shorter
cycle of NAC compared to the current guidelines may have
an effect on the precise assessment of RCB. Given these
drawbacks, the application of risk stratification nomogram
needs to be further verified.

In conclusion, deriving from a large sample of 749 patients,
the prognostic model established is the first risk stratification
nomogram for predicting individual prognosis.With excellent
performance and discriminative ability, the model can divide
patients treated with NAC into three stratums with obviously
different survival both in overall cohort and subtype-specific
groups. Therefore, the risk stratification nomogram might be
useful for estimating potential high-risk population of BC
treated with NAC and identifying comparable candidates in
clinical trials. Further verification in patients of different races
remains urgently needed.
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