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Abstract: The lensless on-chip microscope is an emerging technology in the recent decade that can
realize the imaging and analysis of biological samples with a wide field-of-view without huge optical
devices and any lenses. Because of its small size, low cost, and being easy to hold and operate, it can
be used as an alternative tool for large microscopes in resource-poor or remote areas, which is of great
significance for the diagnosis, treatment, and prevention of diseases. To improve the low-resolution
characteristics of the existing lensless shadow imaging systems and to meet the high-resolution
needs of point-of-care testing, here, we propose a high-precision on-chip microscope based on in-line
holographic technology. We demonstrated the ability of the iterative phase recovery algorithm
to recover sample information and evaluated it with image quality evaluation algorithms with or
without reference. The results showed that the resolution of the holographic image after iterative
phase recovery is 1.41 times that of traditional shadow imaging. Moreover, we used machine learning
tools to identify and count the mixed samples of mouse ascites tumor cells and micro-particles that
were iterative phase recovered. The results showed that the on-chip cell counter had high-precision
counting characteristics as compared with manual counting of the microscope reference image.
Therefore, the proposed high-precision lensless microscope on a chip based on in-line holographic
imaging provides one promising solution for future point-of-care testing (POCT).

Keywords: high-resolution; on-chip imaging; lensless holographic microscope; phase recovery; POCT

1. Introduction

Optical microscopes play a significant role in scientific study and clinical testing
in modern medicine and life sciences, as they can expand and identify morphological
features of samples (including cells, bacteria, marine microorganisms, etc.) that cannot
be enlarged and seen by the naked eyes. With the iterative upgrade of the spatial reso-
lution of optical microscopes, microscopes with various extended functions, including
scattering, absorption, refraction, phase modulation, etc., have also emerged so that the
morphological characteristics of transparent samples [1–6], the subtle internal changes of
thick samples [7–9], and structural details even smaller than the wavelength of the light
source [10,11] can be easily obtained. However, due to large size, high cost, and com-
plicated operation, these microscope detection platforms can only be used in advanced
laboratories and medical institutions. Hence, their scope and conditions of application are
limited, especially in resource-limited areas where infectious diseases such as tuberculosis,
malaria, sickle cell virus infection, and other diseases are common. Therefore, the use of
portable optical microscopes in resource-limited areas to improve detection efficiency is
vital for preventing the spread of infectious diseases [12–14].

To meet such needs, in recent years, the combination of Complementary Metal Oxide
Semiconductor (CMOS) image sensor and microfluidic technology provides an opportu-
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nity for the development of portable on-chip imaging detection systems, and significant
achievements have been made in the field of lensless microscope research in the recent
decade [15–20]. The reasons are as follows: First, with the advancement of semiconductor
processing technology and the replacement of Charge-coupled Device (CCD) image sensors
by CMOS image sensors as image capturing elements, the diameter of the pixel pitch is
getting smaller and smaller, and the pixel density on the silicon substrate of 20~30 mm2 has
become higher. The impact of lower pixel pitch (for example, Sony’s IMX586 color pixel
diameter is 0.8 µm) greatly improves the image resolution. Second, lensless microscopes
rely heavily on numerical calculations to recover high-resolution images. With the advance-
ment of semiconductor technology, the computing power of processing chips (such as
Central Processing Unit (CPU), Graphics Processing Unit (GPU), Digital Signal Processing
(DSP), Field Programmable Gate Array (FPGA), etc.) continues to increase, while prices
and power consumption continue to decline, and this is conducive to low-cost, portable
imaging systems. Third, algorithms to improve image resolution, such as compression
and decompression algorithms [21], image synthesis algorithms [22,23], as well as machine
learning algorithms to identify samples quickly [24,25], have been successfully applied in
lensless microscope systems. According to imaging principles, lensless imaging systems
can be divided into shadow imaging, fluorescence imaging, holographic imaging, etc.

The lensless shadow imaging system, which directly uses the shadow pattern of the
sample illuminated by the light source for analysis, is the most basic imaging method.
For example, our previous work proposed a lensless microfluidic miniaturized flow cy-
tometer with super-resolution processing based on shadow imaging, which uses online
machine learning to perform super-resolution reconstruction of a single frame, and com-
pared with the cytometer, the particle counting error is less than 8% [26]. Zheng et al.
proposed a sub-pixel perspective scanning microscope (SPSM), which can obtain two
shadow images with a small distance by changing the position of the light source, and then
high-resolution images are synthesized by sub-pixel shifted low-resolution pictures at a
high rate, achieving a resolution of 660 nm [27]. However, the resolution of the shadow
imaging method is still limited, and complex algorithms are required for super-resolution
reconstruction in the later stages.

The lensless fluorescence imaging system uses light waves of appropriate wavelengths
to irradiate dyed fluorescent samples and evaluates the proportion of specimens by compar-
ing different color reactions on the screen. It can be used in white blood cell classification
and the detection of rare cells in the blood, such as circulating tumor cells. For example,
Coskun and colleagues proposed a large field-of-view (FOV), dual-imaging mode lensless
fluorescent on-chip imaging system, which can achieve high-throughput detection and
detection of rare cells in a large FOV [28]. Yet, the fluorescence imaging method requires
the addition of filters and other parts to the experimental device, which increases the
complexity and system cost.

A lensless holographic imaging system uses a coherent or incoherent light source to
obtain a ring pattern formed by the interference of the reference light wave and the object
wave. Since holographic imaging contains more information about the object, the charac-
teristics of the sample can be reconstructed by the principle of Fresnel integral diffraction,
which provides excellent help for sample analysis. Seo et al. used a lensless holographic
imaging platform to implement an on-chip cell counter and used a custom pattern recogni-
tion algorithm to characterize and count the cells of interest in the sample. Their experi-
ments verified that the lensless holographic imaging not only improved the signal-to-noise
ratio but also had a good imaging ability for weakly scattered samples [29]. Vercruysse et al.
proposed a lensless online holographic microscope to realize the differential recognition of
unlabeled white blood cell subtypes (lymphocytes, monocytes, granulocytes), which was
consistent with the results obtained by conventional blood analyzers [30]. Wu et al. used
the Generative Adversarial Networks (GAN) network to reconstruct the sample patterns
at different levels in the three-dimensional (3D) sample from a single hologram, and the
results matched the slice performance of the high Numerical Aperture (NA) bright-field
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microscope [31]. Fang et al. have developed an on-chip lensless flow cytometer, which
uses the holographic imaging principle and the broad FOV of the S-shaped pipe to achieve
a cell counting error of less than 2% [32]. Since the experimental device of holographic
imaging is simple, and the resolution can be improved through phase recovery, it has been
widely studied and applied in recent years [33–35].

Therefore, to overcome the shortcomings of shadow imaging and fluorescence imag-
ing, this paper demonstrates an alternative method of lensless on-chip holographic imaging
towards telemedicine applications. It is a portable high-precision detection device based on
lensless holographic imaging to capture cells on the glass smear, and uses machine learning
to classify and count mouse ascites tumor cells and polystyrene particles in holographic
phase recovery images. Experiments show that the resolution of the platform is 1.41 times
that of the shadow imaging platform, and the accuracy of cell counting is similar to the
manual counting results of the microscope reference image. Besides, the platform has no
complex optical path system, simple operation, small size, no damage to samples, low
cost, and can be applied in resource-poor areas for point-of-care testing (POCT), which has
specific application prospects in preventing the spread of diseases and early detection.

2. Methods
2.1. System Setup

This system is built using the imaging principle of in-line holography, and the overall
structure is shown in Figure 1. The system mainly consists of a CMOS image sensor
(IMX219PQ, Sony, Tokyo, Japan, 1.12 µm pixel size, 3280 H × 2464 V), a yellow Light Emit-
ting Diode (LED) light source (LY-E65B, OSRAM Opto Semiconductors Inc., Regensburg,
Germany, λ = 587 nm), and a pinhole (100 µm in diameter). To make full use of the imaging
area of the image sensor, a cover glass (with a thickness of 0.5 mm) is directly covered on
the image sensor and glued with liquid glue to prevent misalignment due to moving the
experimental device. It not only achieves the conditions of static imaging but also controls
the distance between the cover glass and the image sensor in a small range so that the
magnification ratio of the sample imaging pattern can also be controlled to avoid imaging
distortion. In order to obtain a holographic interference pattern on the surface of the image
sensor, the LED light is controlled at a distance of 5 cm from above the image sensor. Be-
sides, the pinhole is placed under the LED to improve the coherence of the LED light source.
All the experimental structural components are finally assembled by a 3D-printed dark box
(6.5 × 6.5 × 7 cm3) to form a miniaturized on-chip lensless holographic imaging detection
system. Note that the LED is powered by an external Raspberry Pi circuit board through a
power line. The Raspberry Pi board is also connected with the CMOS image sensor board
through an Mobile Industry Processor Interface (MIPI) interface. The captured holographic
images are then transferred to the PC via the Raspberry Pi for further analysis.
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Figure 1. Schematic of the lensless on-chip microscope. (a) Photographs of the apparatus, (b) structure of in-line holographic
imaging device.

2.2. Sample Preparation

In order to evaluate the imaging effect of the holographic imaging platform, we pre-
pared two different experimental samples. One is the optical positive film resolution plate
(USAF-1951, Yaopu Optics, Chengdu, China), which is used to measure the resolution of
the imaging system. There are some particular patterns on the resolution board, and its
line width and interval have been precisely set. By identifying the most indistinguishable
reference line, the resolution capability of the system can be determined. The resolution
board was cleaned by wipe and placed above the CMOS image sensor for testing. Another
is the mixed solution of mouse ascites tumor cells and polystyrene particles (15 µm). First,
some suspended malignant tumor cells were inoculated into the abdominal cavity of mice.
A few days later, the cells proliferated in the abdominal cavity of the mice to produce a
large number of offspring to form mice with ascites tumors, and ascites were drawn for
later use. In order to ensure that clear wavefront information was observed in the coaxial
holographic experiment, we diluted the mixed solution, extracted 1 µL of mouse ascites
and 1 µL of polystyrene particles to mix, and then extracted 200 µL of phosphate buffered
solution (PBS) and mixed with 2 µL of the cell solution. The diluted solution was made
into a glass smear for testing.

2.3. Imaging Principle

In the on-chip lensless holographic imaging detection system, a translucent sample is
placed above the image sensor, usually z2 (<1 mm) from the image sensor. An incoherent
light source is fixed at a distance z1 from the sample, and a pinhole is set directly below
the light source so that the sample is irradiated by the light source and instantly forms a
holographic pattern on the image sensor, and the image sensor encodes the holographic
pattern by intensity.

The on-chip lensless holography is derived from the holography invented by Gabor in
1948 [36]. This method not only records the amplitude information of the light field but also
records the phase information. Therefore, holography records the complete information of
an object. In the holographic recording process, the recording medium records the complex
amplitude, that is, simultaneously records the amplitude and phase information of the
original object light wave. The intensity change recorded in this way is called a hologram.

In in-line holography, assuming that the object t is semi-transparent, it can be approxi-
mated as:

t(x0, y0) = 1 + ∆t(x0, y0) (1)
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Here, ∆t is the transmittance fluctuation and ∆t<<1. When an object is locally illumi-
nated by plane wave A, it will coherently propagate z2 distance (distance from the sample
to the image sensor):

P[z2]{A·t(x0, y0)} = P[z2]{A}+ P[z2]{A·∆t(x0, y0)} = A′ + a(x, y) (2)

Here, P[z2]{∗} is the transfer function acting on z2, ε and η are frequency domain
coordinates, and λ is the wavelength of the light source.

Pz2(ε, η) =

 exp
[

j·z2· 2π
λ ·
√

1− (λε)2 − (λη)2
]

, ε2 + η2 < 1
λ2

0
(3)

On the image sensor plane, the object light wave a(x, y) passing through the object in-
terferes with the reference light wave A′ to form a hologram, and the intensity information
I(x, y) is recorded:

I(x, y) =
∣∣A′ + a(x, y)

∣∣2 =
∣∣A′∣∣2 + A′∗·a(x, y) + A′·a∗(x, y) + |a(x, y)|2 (4)

In (4), the second and third items are related to the reconstruction of object information.
The first item is the reference light information, which can be removed by a sample-free
background image, the fourth item is the object self-interference information, it can be
ignored when ∆t<<1, because for holography, it does not include any useful information,
and during the holographic reconstruction process, the focused image of the object and the
out-of-focus image will overlap, and the twin image will form. In the on-chip holographic
imaging, z2 is usually very small. The twin image has a severe impact on the image of the
actual object, so it needs to be removed by related methods.

For digital holographic imaging, according to the angular spectrum theory, sample
information, including amplitude and phase, can be decoded by back propagation:

P[−z2]{A∗·I(x, y)} = |A|2·[1 + ∆t(x, y) + P[−2z2]{∆t∗(x, y)}] + P[−z2]{|a(x, y)|2} (5)

In (5), A∗ is the conjugate of the plane wave and I(x, y) is the recorded hologram.
On the right side of the Equation (5), the first term is the background light, the second term
is the actual sample, the third term is the twin image interference, and the fourth term
is the self-interference term backpropagation interference. For smaller or more scattered
samples, the twin image interference will not cause interference to the reconstructed
image, and routine analysis can be satisfied by simple backpropagation. For other samples,
the existence of the twin image will interfere with the analysis of the results, making the
recovered sample information unclear. Therefore, proper methods are needed to reduce
the influence of the twin image, such as the phase iterative recovery method.

Regarding the recorded hologram as just ordinary diffraction field intensity informa-
tion, the phase information is lost. Mudanyali et al. proposed a phase iteration method,
which uses a threshold definition method to determine the boundary of the sample ob-
ject [37]. After backpropagation, the twin image interference information which is outside
the edge of the object can be removed iteratively by imposing constraints. The method
consists of the following steps:

1. The root mean square of the holographic image information I(x, y) recorded by the
image sensor is propagated back to the object surface, the phase information on
the object surface is assumed to be zero at this time, and the phase information
is finally restored on the object surface through an iterative method. At the same
time, the threshold segmentation method is used to determine the boundary of the
sample object.

U1
−z2

(x, y) = P−z2

[√
I(x, y)

]
(6)
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In Equation (6), U1
−z2

represents the real image field distribution after the first iteration.
2. The information inside the boundary of the object is retained, and the information

outside the boundary is replaced by the information after the backpropagation of the
sample-free background image:

Ui+1
−z2

(x, y) =
{

m·D−z2(x, y), x, y /∈ S
Ui
−z2

(x, y), x, y ∈ S
(7)

In Equation (7), D−z2(x, y) is obtained by backpropagating the root mean square
of the background image without samples, m is the iteration coefficient, and Ui

−z2
represents the real image field distribution after the ith iteration.

m = mean

(
Ui
−z2

(x, y)
mean(D−z2(x, y))

)
(8)

3. The reconstructed field after being constrained in the second step is propagated
forward to the surface of the image sensor. At this time, the phase value is no longer
zero, and the phase value is retained. The amplitude value is determined by the root
mean square band of the original recorded holographic image, U0

0(x, y), amplitude.
The diffraction field, Ui

0(x, y), after the ith iteration is expressed as follows:

Ui
0(x, y) =

∣∣∣U0
0(x, y)

∣∣∣· exp
(

j·φi
0(x, y)

)
(9)

where φi
0(x, y) denotes the phase of the field after the ith iteration.

Steps 1 to 3 can be iterated until the phase recovery converges. Typically, the results
are obtained with less than 15 iterations, and the results are shown in Figure 2b.
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3. Experiments and Results
3.1. Image Quality Assessment

In order to test the performance of the algorithm, we used two imaging methods,
shadow imaging and holographic imaging, to shoot experiments on the United States
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Air Force (USAF) resolution plate. The experimental conditions were set with the same
parameters. The center wavelength of the light source is 587 nm, the distance between
the USAF resolution plate and the image sensor is 0.5 mm, and the pixel size is 1.12 µm.
In addition, we also used a 10× objective microscope to photograph the same area of the
USAF resolution plate as a comparison image. The comparison of the holographic image
after iterative phase recovered, shadow image, and 10× ocular lens is shown in Figure 3.

In order to more intuitively evaluate the image quality of different imaging methods,
we introduced image quality evaluation algorithms, which are divided into non-reference
image quality evaluation algorithm [38] and reference-quality evaluation algorithm [39].

• Non-reference image quality evaluation

In the non-reference image quality evaluation, we used the Brisque algorithm to
perform global scoring and evaluation on the holographic restored image and the shadow
image. The overall principle of the algorithm is to extract the MSCN (Mean Subtracted
Contrast Normalized) coefficients from the normalized image and fit the MSCN coefficients
to an asymmetric generalized Gaussian distribution, extract the fitted Gaussian distribution
feature, then input it into the support vector machine (SVM) for regression calculation,
thereby obtaining the image quality evaluation result, and the score results are shown in
Figure 3a,b. Based on the Brisque algorithm, lower score indicates better quality.

• Reference image quality evaluation

In the reference image quality evaluation, we used two evaluation parameters, namely
the blur coefficient (Kblur) and quality index (Q). The 10× microscope image is used as the
reference image, and the holographic recovered image and shadow image are used as the
images to be evaluated. Among them, the blur coefficient is defined as follows:

Kblur =
Si,out

Si,in
(10)

Among them, the energy characteristic of the oblique edge, Si, is

Si = ∑
i

∑
j

∣∣∣yi
f (i, j, k)

∣∣∣ (11)

In (11), yi
f (i, j, k) is the value obtained after the brightness value of the kth frame,

the ith row, and the jth column, which are processed by an oblique space differential filter.
It can be seen that Kblur is the ratio of the output edge energy to the input edge energy.

Assuming that the image sequence has no other distortion, the range of value Kblur is
generally between 0 and 1. The closer the Kblur value is to 1, the higher the image clarity.
The result of Kblur is shown in Table 1. The Kblur value 0.9738 of the recovered hologram is
between 0 and 1 and is closer to 1, so the quality is better.

The quality index is defined as follows:

Q =
4σxyxy(

σ2
x + σ2

y

)
[(x)2 + (y)2]

(12)

In (12), where x and y are the reference image and the image to be tested respectively,
x and y are pixel mean value, σ2

x and σ2
y are pixel variance, and σxy is the standard deviation.

The value range of the quality index Q is usually between [−1, 1], the closer to 1, the higher
the image quality. The result of Q is shown in Table 1. The Q value of the shadow image
and the recovered hologram image are both between −1 and 1, but the Q value of the
recovered hologram image 0.2174 is closer to 1, so the quality of the holographic restored
image is higher.
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Table 1. The results of reference image quality evaluation.

Image Kblur Q

Shadow 2.1841 0.1648
Recovered hologram 0.9738 0.2174

3.2. Cell Analysis

In the miniaturized on-chip biological detection equipment, the cell solution was
dropped on a cover glass with a thickness of 0.5 mm through a pipette, and a glass smear
was made and placed above the image sensor. Under the irradiation of an incoherent LED
light source, the holographic diffraction pattern of the cells was recorded by the image
sensor. In order to reduce the volume and cost of the equipment, we used ordinary yellow
LED as the light source, and used 3D printing technology to build a dark box with a volume
of 6.5 × 6.5 × 7 cm3. The light source was fixed to the pinhole, and the image sensor was
placed at the bottom of the box. The smear was attached to the image sensor by liquid glue.
After iteratively recovering the captured cell holographic image using the above image
recovery algorithm, the Fiji tool is introduced to classify, identify, and count the cells.

Classification and recognition are performed by taking an image containing different
cells and use the Trainable Weka Segmentation tool to mark the different cells in color [40].
Trainable Weka Segmentation is a plug-in of Fiji that combines a set of machine learning
algorithms and a set of selected image features to generate pixel-based segmentation.
Weka includes a set of visualization tools and algorithms for data analysis and predictive
modeling and a graphical user interface (GUI) for easy access to this feature. Next, the cell
images are binarized, the adhered cells are segmented using the watershed segmentation
method, and then the Cell Counter plug-in is used to count the cells of the entire image
and display the counting results.

3.3. Discussion

In order to test the imaging performance of the designed holographic imaging sys-
tem, we captured the holographic images of mixed solution of mouse ascites tumor cells
and polystyrene particles (15 µm). The same chosen area was shown for comparison.
Figure 4a is a microscopic image under 10× objective. In this figure, the arrows point to the
polystyrene particles, and the dotted circles indicate the cells. The holographic imaging ex-
periment process was as follows: First, a background image was taken without any sample
solution to use the phase recovery algorithm to remove the background, second, a pipette
was used to drop 10 µL of the mixed solution onto a cover glass with a thickness of 0.5 mm
and generate the cell smears, from which the holographic imaging device would capture
the images of mixed sample solution (Figure 4b). Third, the self-designed holographic
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phase recovery algorithm based on Matlab was employed to reconstruct the captured
holographic image (Figure 4c). The results show that in the cell image after holographic
phase recovery, the gray value of the low refractive index cells is generally higher than that
of the high refractive index polystyrene particles, and the contour and sharpness of the
cell edges is better recovered. The inset in Figure 4d, enclosed with the dashed rectangle,
shows the polystyrene particle and cells after iterative phase recovery algorithm, further
validating the imaging performance of our holographic microscope.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 12 
 

 

device would capture the images of mixed sample solution (Figure 4b). Third, the 319 

self-designed holographic phase recovery algorithm based on Matlab was employed to 320 

reconstruct the captured holographic image (Figure 4c). The results show that in the cell 321 

image after holographic phase recovery, the gray value of the low refractive index cells is 322 

generally higher than that of the high refractive index polystyrene particles, and the 323 

contour and sharpness of the cell edges is better recovered. The inset in Figure 4d, en- 324 

closed with the dashed rectangle, shows the polystyrene particle and cells after iterative 325 

phase recovery algorithm, further validating the imaging performance of our holo- 326 

graphic microscope. 327 

 
(a)  (b)  

 
(c)  (d)  

Figure 4. Results of the holographic imaging experiment process. (a) Microscope image, (b) raw holographic image, (c) 328 

iteratively recovered image, (d) insets of the iteratively recovered image. 329 

The image processing flow consists of two steps: The first step is cell identification 330 

and segmentation. We used Fiji’s Trainable Weka Segmentation plug-in to train the clas- 331 

sifier. A small number of cells, particles, and backgrounds in Figure 4c are first selected 332 

and set into three different labels. Each label generally contains sampling information of 333 

3–4 different positions. The classification results can be obtained through training, as 334 

shown in Figure 5a. Among them, the red parts represent polystyrene particles, the green 335 

parts represent mouse ascites tumor cells, and the purple parts represent the background. 336 

The second step is the cell counting. First, the particles and cells with incomplete edges in 337 

Figure 5a were removed by setting a threshold, then we binarized the image and filled in 338 

the holes, then broke the adherent cells, and finally counted the remaining cells in the 339 

image. The counting result is shown in Figure 5b. It can be seen from the results that the 340 

number of cells is 62, and the count value is marked inside the cell edge. The count result 341 

and manual count result of reference are similar to each other, which preliminarily veri- 342 

fies the accuracy of the on-chip holographic microscope. 343 

Figure 4. Results of the holographic imaging experiment process. (a) Microscope image, (b) raw holographic image,
(c) iteratively recovered image, (d) insets of the iteratively recovered image.

The image processing flow consists of two steps: The first step is cell identification and
segmentation. We used Fiji’s Trainable Weka Segmentation plug-in to train the classifier.
A small number of cells, particles, and backgrounds in Figure 4c are first selected and set
into three different labels. Each label generally contains sampling information of 3–4 differ-
ent positions. The classification results can be obtained through training, as shown in Fig-
ure 5a. Among them, the red parts represent polystyrene particles, the green parts represent
mouse ascites tumor cells, and the purple parts represent the background. The second step
is the cell counting. First, the particles and cells with incomplete edges in Figure 5a were
removed by setting a threshold, then we binarized the image and filled in the holes, then
broke the adherent cells, and finally counted the remaining cells in the image. The counting
result is shown in Figure 5b. It can be seen from the results that the number of cells is 62,
and the count value is marked inside the cell edge. The count result and manual count
result of reference are similar to each other, which preliminarily verifies the accuracy of the
on-chip holographic microscope.
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4. Conclusions

In this paper, we demonstrated a lensless on-chip holographic imaging platform
using in-line holography technology and used an iterative phase recovery algorithm to
achieve the phase recovery of the holographic image. The resolution of the reconstructed
hologram image was improved by 1.41 times compared with the traditional shadow
imaging method, and the image sharpness was also improved. In the reconstructed
hologram (Figure 3a), all the bars of group 6, element 4, can be identified (90.5 Line
Pairs/mm), but in the traditional shadow image (Figure 3b), only group 6, element 1,
can be completely identified (64 Line Pairs/mm), and the edge is out of focus. Moreover,
compared with the traditional manual counting of blood smears, this paper realizes the
function of automatically identifying and counting cells. Finally, because the system is
small in size and low in price, it can be promoted and used in poor and remote areas and
has the application prospect of point-of-care testing (POCT).
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