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ABSTRACT Although often neglected in gut microbiota studies, recent evidence
suggests that imbalanced, or dysbiotic, gut mycobiota (fungal microbiota) commun-
ities in infancy coassociate with states of bacterial dysbiosis linked to inflammatory
diseases such as asthma. In the present study, we (i) characterized the infant gut
mycobiota at 3 months and 1 year of age in 343 infants from the CHILD Cohort
Study, (ii) defined associations among gut mycobiota community composition and
environmental factors for the development of inhalant allergic sensitization (atopy)
at age 5 years, and (iii) built a predictive model for inhalant atopy status at age 5
years using these data. We show that in Canadian infants, fungal communities shift
dramatically in composition over the first year of life. Early-life environmental factors
known to affect gut bacterial communities were also associated with differences in
gut fungal community alpha diversity, beta diversity, and/or the relative abundance
of specific fungal taxa. Moreover, these metrics differed among healthy infants and
those who developed inhalant allergic sensitization (atopy) by age 5 years. Using a
rationally selected set of early-life environmental factors in combination with fungal
community composition at 1 year of age, we developed a machine learning logistic
regression model that predicted inhalant atopy status at 5 years of age with 81% ac-
curacy. Together, these data suggest an important role for the infant gut mycobiota
in early-life immune development and indicate that early-life behavioral or therapeu-
tic interventions have the potential to modify infant gut fungal communities, with
implications for an infant’s long-term health.

IMPORTANCE Recent evidence suggests an immunomodulatory role for commensal
fungi (mycobiota) in the gut, yet little is known about the composition and dynam-
ics of early-life gut fungal communities. In this work, we show for the first time that
the composition of the gut mycobiota of Canadian infants changes dramatically over
the course of the first year of life, is associated with environmental factors such as
geographical location, diet, and season of birth, and can be used in conjunction
with knowledge of a small number of key early-life factors to predict inhalant atopy
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status at age 5 years. Our study highlights the importance of considering fungal
communities as indicators or inciters of immune dysfunction preceding the onset of
allergic disease and can serve as a benchmark for future studies aiming to examine
infant gut fungal communities across birth cohorts.

KEYWORDS asthma/allergy, atopy, fungi, infant immune development, microbiota,
mycobiota

Early infancy represents a critical window of life during which cross talk between an
infant’s developing immune system and maturing gut microbiota has important

long-term and wide-ranging consequences for host immune health (1–4). The dynam-
ics of bacterial community organization in the infant gut, environmental or develop-
mental factors contributing to this process, and the consequences of disruptions to
“normal” gut bacterial populations for infant health have been well studied (2–5). It is
known, for instance, that both immune disease risk and bacterial community composi-
tion are influenced by early-life environmental factors such as birth mode (6, 7) and
place of delivery (8), diet (9), birth order (10, 11), pet (12, 13) and/or farm (14) exposure,
antibiotic use (15, 16), and daycare attendance (17, 18). Weaning and the transition to
solid food from breast milk or formula is one of the final major milestones causing dra-
matic shifts in infant gut bacterial populations toward more adult-like states, with
implications for later immunity and health outcomes (19, 20). In contrast, despite
knowledge of their existence in the healthy infant gut (5), little is known about poten-
tial environmental sources or modifiers of members of the “rare biosphere” within the
gut microbiota, including Archaea, fungi, and other microeukaryotes, or how these
organisms interact with the host and bacteria to ultimately shape immune develop-
ment and gut microbiota communities, respectively.

Despite several unique challenges associated with the sequencing and analysis of
fungal microbiotas (21), studies have recently begun to characterize the fungal com-
munities in the human infant gut. Candida, Rhodotorula, Malassezia, Saccharomyces,
and Debaryomyces are among the most abundant fungal genera commonly identified
in infant gut mycobiota studies (22–27). However, the infant gut mycobiota exhibits a
high degree of variability both within and between individuals (22, 26), highlighting a
need for additional studies with more sample collection time points to fully character-
ize temporal trends in infant gut fungal community composition (24–30).

A lack of colonization resistance within the infant gut may render the infant intes-
tines susceptible to sporadic fungal colonization derived from early-life environmental
exposures, including diet and birth mode. Breast milk and neonatal intensive care unit
surfaces have recently been described as potential sources (31) or modifiers of the
presence (30, 32, 33) of fungi within the infant gut mycobiota. Fungi have also been
detected in breast milk of mothers in multiple studies (31, 34, 35), including the CHILD
Cohort Study (36). Diet has also been described as the primary determinant of fungal
community composition within the gut microbiota of adult humans (37, 38). Diet and
breastfeeding practices therefore have the potential to influence infant gut mycobiota
communities, but this has yet to be specifically investigated. Furthermore, it is possible
that vertical transmission of vaginal Candida (39, 40) or skin-associated Malassezia (41,
42) occurs during or after birth and that birth mode may affect the composition of the
infant gut mycobiota (22, 26, 29).

Characterizing the effects of environmental exposures on infant gut microbiota
populations has important implications for guiding human behavior, as early-life fac-
tors associated with reduced microbial exposures (hygiene and urbanization), impaired
gut microbiota maturation, and dysbiotic infant gut microbiota communities have
been implicated in a wide range of autoimmune and allergic disorders later in life (43).
Asthma and atopy are among the best-characterized diseases that have been shown in
multiple birth cohort and animal studies to be associated with a dysbiotic community
of gut microbes (bacteria) within the first 100 days of life (24, 25, 44–50). Two studies
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have recently shown that fungal communities in the infant gut differ dramatically
according to asthma and atopy risk and in association with bacterial dysbiosis (24, 25).
Notably, severe and remission-resistant asthma is often associated with sensitization to
inhaled allergens containing fungi, including house dust mites (HDM) (51, 52) and
Alternaria (53). Moreover, single nucleotide polymorphisms in the genes encoding the
fungal recognition receptors dectin-1 (CLEC7A) and mannose-binding lectin (MBL2)
have been associated with allergic asthma susceptibility (54). Thus, fungi may be a cru-
cial but overlooked piece of the puzzle linking dysbiosis in the infant gut to childhood
asthma and atopy.

Here, we describe shifts in community composition of the gut mycobiota during
the first year of life, identify environmental factors associated with variation in gut fun-
gal communities, and define the role of fungi in the dysbiosis-asthma/atopy paradigm
in a subset of children from the well-characterized CHILD Cohort Study (55).
Specifically, we profiled the fungal communities present in stool samples collected at
visits scheduled for 3 months and 1 year of age from a subset of 343 children by ampli-
fying the internal transcribed spacer 2 (ITS-2) region of fungal DNA isolated from these
samples. These data were integrated with 16S rRNA gene amplicon sequencing data
from the same samples and comprehensive prospectively collected data on environ-
mental exposures to identify factors that may shape the fungal community composi-
tion. Fungal sequencing data were also combined with health outcomes to identify
features and microbial signatures of fungal dysbiosis associated with an infants’ risk of
developing IgE-mediated allergic sensitization (or atopy) to inhalant allergens at age 5
years. Finally, we used a machine learning logistic regression model to select key early-
life environmental factors in combination with fungal community composition at 1
year of age and predict inhalant atopy status at age 5 years.

RESULTS
Cohort characteristics. This study involved 343 subjects in the CHILD Cohort Study

who had previously had 16S rRNA gene sequencing completed on stool DNA (15, 56).
Because little is known about the dynamics of fungal communities in the infant gut
across the first year of life, what early-life factors influence the composition of the
early-life mycobiota, or how bacterial and fungal communities change relative to one
another over time, we performed ITS-2 rRNA gene sequencing and quantitative PCR
(qPCR)-based total fungal load analyses on DNA isolated from fecal samples collected
at both 3 months and 1 year of age. Importantly, this subset of 343 children was repre-
sentative of the full CHILD cohort (overall cohort) and of the cohort with data available
on inhalant atopy status at age 5 years (CHILD Study) (Table 1), except that, as
expected based on preselection of samples with the goal of enriching for samples
from children with available stool and asthma at age 5 years (15), we had more sub-
jects from Vancouver and more subjects with inhalant atopy and asthma at age 5
years.

Fungal communities shift dramatically over the first year of life. After sample
and sequence filtering, we identified 1,100 unique fungal amplicon sequence variants
(ASVs) in the full data set, representing 6 phyla, 22 classes, 54 orders, 129 families, and
175 genera. The most prevalent ASVs detected included those annotated as
Saccharomyces cerevisiae (ASV1; 76% of samples), Candida parapsilosis (ASV3; 55% of
samples), an unclassified fungus (ASV2; 42% of samples), another Saccharomyces cerevi-
siae strain (ASV5; 35% of samples), a second unclassified fungus (ASV37; 32% of sam-
ples), and Rhodotorula mucilaginosa (ASV19; 28% of samples).

At both 3 months and 1 year of age, infant fungal communities contained few fun-
gal taxa overall (average number of observed ASVs in full data set, 20; at 3 months, 11;
at 1 year, 23) and were highly variable across samples. Indeed, fungal communities
within infants over time were not more similar than communities between infants
(P=0.21 [Fig. 1A]). Despite this variability, shifts in fungal community composition
from 3 months to 1 year of age were evidenced by significant increases in total fungal
load (Fig. 1B) and in the alpha (Shannon, Chao1, and Faith’s phylogenetic diversity
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TABLE 1 Cohort characteristicsa

Variable Overall CHILD CHILD study 5y P valueb ITS-2 P valuec

No. of patients 3,264 2,539 308

Institution, no. (%) ,0.001 ,0.001
Edmonton 769 (23.6) 544 (21.4) 32 (10.4)
Toronto 770 (23.6) 519 (20.4) 77 (25)
Vancouver 730 (22.4) 601 (23.7) 87 (28.2)
Winnipeg 995 (30.5) 875 (34.5) 112 (36.4)

Asthma at yr 5, no. (%) ,0.001 0.0022
Asthma 164 (5) 160 (6.3) 33 (10.7)
No asthma 2,235 (68.5) 2,138 (84.2) 239 (77.6)
No phenotype available 620 (19) 5 (0.2) 3 (1)
Possible asthma 245 (7.5) 236 (9.3) 33 (10.7)

Inhalant atopy at yr 5, no. (%) , ,0.001 0.0013
Inhalant atopy (ever) 438 (13.4) 438 (17.3) 77 (25)
No inhalant atopy 2,101 (64.4) 2,101 (82.7) 231 (75)

Antibiotic use by age 3mo, no. (%) 0.89 0.87
586 (18) 452 (17.8) 53 (17.2)

Antibiotic use by age 1 yr, no. (%) 0.065 0.75
520 (15.9) 451 (17.8) 57 (18.5)

Antifungal use by 3mo, no. (%) 0.76 1
Confirmed 24 (0.7) 24 (0.9) 24 (7.8)
Unknown 2,921 (89.5) 2,231 (87.9)

Antifungal use by age 1 yr, no. (%) 0.77 1
Confirmed 26 (0.8) 26 (1) 26 (8.4)
Unknown 2,921 (89.5) 2,231 (87.9)

Gestational age at delivery (wks) 0.67 0.47
Median (range) 39.7 (34, 42.9) 39.7 (34, 42.9) 39.9 (34.4, 42.7)
IQR (Q1, Q3) 38.9, 40.4 38.9, 40.6 38.9, 40.6
Unknown, no. (%) 154 (4.7) 127 (5) 14 (4.5)

Mode of delivery, no. (%) 0.95 0.76
Vaginal 2,408 (73.8) 1,879 (74) 228 (74)
C-section with labor 425 (13) 324 (12.8) 42 (13.6)
C-section without labor 390 (11.9) 306 (12.1) 33 (10.7)
Unknown 41 (1.3) 30 (1.2) 5 (1.6)

Having older sibling, no. (%) 0.98 0.14
Confirmed 1,548 (47.4) 1,206 (47.5) 132 (42.9)
Unknown 59 (1.8) 45 (1.8) 7 (2.3)

Male, no. (%) 0.67 0.28
1,715 (52.5) 1,350 (53.2) 174 (56.5)

Birth wt Z score 0.64 0.49
Median (range) 20.1 (25.9, 15.9) 20.1 (25.9, 15.8) 0 (22.2, 15.1)
IQR (Q1, Q3) 20.7, 0.6 20.7, 0.6 20.6, 0.6
Unknown 154 (4.7) 127 (5) 14 (4.5)

Parental atopy, no. (%) 0.81 0.31
Confirmed 2,447 (75) 1,997 (78.7) 251 (81.5)
Unknown 246 (7.5) 68 (2.7) 7 (2.3)

Duration of exclusive breastfeeding (mo) 0.32 0.56
Median (range) 4 (0, 9) 4 (0, 9) 4.5 (0, 6)
IQR (Q1, Q3) 0.5, 5 0.5, 5 0.6, 5
Unknown 209 (6.4) 62 (2.4) 1 (0.3)

Tobacco smoke exposure to age 1 yr, no. (%) 0.044 0.13
Confirmed 808 (24.8) 610 (24) 64 (20.8)
Unknown 530 (16.2) 276 (10.9) 25 (8.1)

(Continued on next page)
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[PD]) diversity of the fungal communities present (Fig. 1C; see also Table S1B in the
supplemental material). Moreover, 3-month and 1-year samples could be clearly distin-
guished in a principal-coordinate analysis (PCoA) plot based on Bray-Curtis dissimilarity
(permutational multivariate analysis of variance [PERMANOVA]; P=0.001 [Fig. 1F]).

After observing global differences in fungal communities according to infant age at
sample collection, we next examined the specific taxa making up the 3-month and 1-
year gut mycobiota communities. From 3 months to 1 year of age, fungal communities
exhibit striking differences in the taxa dominating in relative abundance (Fig. 1D and
Fig. S1). In early infancy (3 months of age), fungal communities are dominated in rela-
tive abundance by species of Candida, whereas at 1 year of age, Saccharomyces
becomes the most frequently detected fungus.

To determine whether 3-month and 1-year samples contained statistically signifi-
cant differences in the relative abundance of specific fungi, we used DESeq2 (57). The
top 20 differentially abundant (by P value) ASVs were visualized in a heat map of log2

ASV counts and confirmed the observation that whereas 3-month-old infants harbor
an increase in the relative abundance of Candida species, 1-year samples contain an

TABLE 1 (Continued)

Variable Overall CHILD CHILD study 5y P valueb ITS-2 P valuec

Season of birth, no. (%) 0.85 0.62
Spring 889 (27.2) 711 (28) 93 (30.2)
Summer 829 (25.4) 624 (24.6) 80 (26)
Fall 754 (23.1) 581 (22.9) 69 (22.4)
Winter 788 (24.1) 621 (24.5) 66 (21.4)
Unknown 4 (0.1) 2 (0.1)

Area type, no. (%) 1 0.54
Rural 83 (2.5) 74 (2.9) 22 (7.1)
Urban 870 (26.7) 775 (30.5) 272 (88.3)
Unknown 2,311 (70.8) 1,690 (66.6) 14 (4.5)

Breastfeeding status at 3mo, no. (%) 0.61 0.28
None 446 (13.7) 334 (13.2) 31 (10.1)
Partial 821 (25.2) 657 (25.9) 85 (27.6)
Exclusive 1,884 (57.7) 1,528 (60.2) 192 (62.3)
Unknown 113 (3.5) 20 (0.8)

Breastfeeding status at 12mo, no. (%) , 0.23 0.81
Confirmed 1358 (41.6) 1,164 (45.8) 141 (45.8)
Unknown 311 (9.5) 97 (3.8) 7 (2.3)

Solid food by age 3mo, no. (%) 0.22 0.91
Confirmed 243 (7.4) 173 (6.8) 22 (7.1)
Unknown 261 (8) 126 (5) 9 (2.9)

Presence of mold in home, no. (%) 0.66 0.24
Confirmed 1,238 (37.9) 979 (38.6) 130 (42.2)
Unknown 21 (0.6) 13 (0.5)

Oral thrush by age 1 yr, no. (%) 1 0.57
Confirmed 34 (1) 29 (1.1) 2 (0.6)
Unknown 675 (20.7) 345 (13.6) 23 (7.5)

Ethnicity of child, no. (%) 0.89 0.042
Caucasian 2,046 (62.7) 1,628 (64.1) 187 (60.7)
East Asian 102 (3.1) 80 (3.2) 16 (5.2)
Multiracial 745 (22.8) 582 (22.9) 72 (23.4)
South Asian 78 (2.4) 58 (2.3) 4 (1.3)
Southeast Asian 82 (2.5) 66 (2.6) 16 (5.2)
Other 140 (4.3) 94 (3.7) 11 (3.6)
Unknown 71 (2.2) 31 (1.2) 2 (0.6)

aOverall CHILD, all CHILD Cohort Study participants; CHILD Study 5y, the subset of subjects for which inhalant atopy status at age 5 years is known; ITS-2, the subset of
subjects with processed stool ITS-2 rRNA gene sequencing data; IQR, interquartile range.

bP values represent comparison between left and middle columns.
cP values represent comparison between middle and right columns. Wilcoxon rank sum test and Fisher’s exact test were used for continuous and categorical variables,
respectively.
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increased relative abundance of Saccharomyces (Fig. 1E). Multilevel pattern analysis fur-
ther confirmed these findings, identifying ASV1 (S. cerevisiae), ASV2 (unclassified fun-
gus), and ASV37 (unclassified fungus) as indicator species associated with 1-year sam-
ples. It is notable that no indicator species were identified to be specifically associated
with 3-month samples, highlighting the high interindividual variability in gut fungal
community composition at this time point.

Given the striking differences in fungal community composition observed according to
infant age at sample collection, we aimed to establish the importance of fungi in determining
a sample’s “microbial age.” To this end, we used a random forest regressor model trained
using merged bacterial and fungal sequencing data to predict microbiota age. This model
revealed that nine fungal ASVs were among the top 25 most important taxa contributing to
determining the age of an infant at the time of sample collection based on the composition
of the gut microbiota (Table 2). Notably, S. cerevisiae was the most important ASV contribut-
ing to microbiota age prediction among both bacterial and fungal ASVs, and samples on a
PCoA plot based on Bray-Curtis dissimilarity clearly separated along the first axis according to
the relative abundance of S. cerevisiae in the sample (Fig. 1F). Together, these data indicate
that S. cerevisiaemay act as a keystone or marker taxon of particular importance in determin-
ing the overall state of the gut mycobiota over time.

FIG 1 Differences in fungal diversity and total fungal load among stool samples collected at 3 months and 1 year of age from infants in the CHILD Cohort
Study determined using ITS-2 amplicon sequencing and qPCR, respectively. (A) Beta diversity within subjects over time is no more similar than beta
diversity between samples at the same time point based on Bray-Curtis dissimilarity. (B) Total fungal load in stool at 3 months and 1 year of age shown as
ITS-2 copy number on a log scale. (C) Fungal alpha diversity (top, Shannon; bottom, Chao1) at 3 months and 1 year of age. (D) Relative abundances of the
top 20 most abundant fungal ASVs annotated to genus level in stool samples collected at 3 months and 1 year of age from infants in the CHILD Cohort
Study (ASVs not annotated to the level shown were removed). (E) Heat map of top 20 differentially abundant (by P value) ASVs found between 3-month
and 1-year stool samples. Genus colors correspond to labels in the key in panel D. (F) Principal-coordinate plot of all samples based on Bray-Curtis
dissimilarity of variance stabilized ASV count data and colored according to the relative abundance of Saccharomyces cerevisiae in the sample. Shapes
indicate age at sample collection (R2 = 0.0253; P= 0.001). Dots and lines represent the sample mean and range, respectively, in all Tufte plots.
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Fungal community functions differ according to infant age. Functional redun-
dancy among bacterial taxa in the gut often results in similar functional capacities of
bacterial communities that differ in the identity and relative abundances of the specific
microbes present (58, 59). To determine whether a similar phenomenon occurs within
fungal communities, we performed a PICRUSt2 (60) analysis to infer the metagenomes
and functional capacities of the 3-month and 1-year stool sample fungal communities
using the MetaCyc database (61). Although nearest-sequenced taxon index (NSTI) val-
ues were high (maximum weighted NSTI value per sample = 1.70395 and mean =
0.50054, indicating that study sequences were highly distant from reference sequences
used in PICRUSt2), 3-month and 1-year samples differed significantly in the metabolic
pathway functions of the fungal communities based on PCoA analysis of Bray-Curtis
dissimilarity (PERMANOVA; P=0.001 [Fig. S2A]). We report that at 1 year of age, fungal
communities in the infant gut demonstrate an increased capacity for functions related
to energy metabolism and a decrease in degradation pathways relative to commun-
ities at 3 months of age. These findings may be reflective of environmental/niche-spe-
cific changes within the gut related to dietary shifts, which may be relevant to overall
gut microbiota community structures (62) but warrants further investigation using
metagenomic methods (Fig. S2B and C).

Early-life environmental factors explain a small proportion of variation in fungal
community composition in 3-month and 1-year stool samples. Early-life factors have
been previously shown to influence bacterial communities within the infant gut micro-
biota. To determine whether these factors similarly explain a significant proportion of
variation in fungal communities at 3 months and 1 year of age, we used a series of
tests to initially examine whether these factors influence overall fungal community
composition (alpha and beta diversities and total fungal load) at each time point. We
then used DESeq2 to identify specific fungi that differ in relative abundance according
to environmental exposures. Early-life factors examined included antibiotic exposure in
the first year of life, birth mode (vaginal, Caesarean section [C-section] with labor, or C-
section without labor), residential area type (rural or urban), older siblings, breastfeed-
ing, perinatal pet exposure, season of birth, study center (city), visible mold exposure
in the home, the introduction of solid foods by 3 months of age, antibiotic exposure,
and antifungal exposure.

Beta diversity. PCoA plots based on pairwise Bray-Curtis dissimilarity distances at
each time point and single-exposure PERMANOVA revealed associations between older
siblings, season of birth, mold in the home at 3 months, and study center with 3-month
gut mycobiota composition, whereas breastfeeding, season of birth, household mold at
3 months, study center, and antifungal use explained a significant portion of variance in
beta diversity in 1-year samples using a P value threshold of P=0.1 (Table 3). Covariates

TABLE 2 Fungal ASVs identified to be among the top 25 most important taxa contributing to determining the age of a sample according to
the bacterial and fungal organisms present in the CHILD Cohort Studya

Fungal ASV taxonomy
Prevalence
(%)

Rank of importance
for age prediction

ASV1: k__Fungi;p__Ascomycota;c__Saccharomycetes;o__Saccharomycetales;f__Saccharomycetaceae;
g__Saccharomyces;s__cerevisiae

76 1

ASV 49: k__Fungi;p__Ascomycota;NA;NA;NA;NA;NA 28 3
ASV 52: k__Fungi;p__Ascomycota;c__Dothideomycetes;o__Capnodiales;f__Cladosporiaceae;
g__Cladosporium;s__delicatulum

24 4

ASV 37: k__Fungi;NA;NA;NA;NA;NA;NA 32 5
ASV 27: k__Fungi;p__Ascomycota;NA;NA;NA;NA;NA 23 9
ASV 7: k__Fungi;p__Ascomycota;NA;NA;NA;NA;NA 28 15
ASV 14: k__Fungi;p__Ascomycota;NA;NA;NA;NA;NA 10 22
ASV 6: k__Fungi;p__Ascomycota;c__Saccharomycetes;o__Saccharomycetales;
f__Saccharomycetales_fam_Incertae_sedis;g__Candida;s__albicans

23 23

ASV 3: k__Fungi;p__Ascomycota;c__Saccharomycetes;o__Saccharomycetales;
f__Saccharomycetales_fam_Incertae_sedis;g__Candida;s__parapsilosis

55 25

aPrevalence of each ASV among samples included in the final fungal ASV table used in the present study (filtered to remove low-abundance taxa and samples with fewer
than 1,000 reads) is also indicated (n=389 samples).
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that were significantly associated with gut mycobiota composition in individual analyses
at each time point were then included in a multicomponent PERMANOVA to investigate
their relative contribution to the fungal community at each time point. For 3-month stool
samples, birth season (R2 = 0.0451; P=0.041), study center (R2 = 0.0483; P=0.013), and visi-
ble mold in the home at 3 months (R2 = 0.0174; P=0.040) remained significant. At 1 year
of age, antifungal use in the first year of life approached significance (R2 = 0.00458;
P=0.078), and both breastfeeding at 1 year (R2 = 0.00525; P=0.020) and study center
(R2=0.00163; P=0.0010) were significantly associated with differences in mycobiota com-
munity composition. Similar effects were observed when beta diversity was examined
based on unweighted UniFrac analysis, although associations between early-life factors
and unweighted UniFrac beta diversity were generally weaker (Table S1A).

Alpha diversity and total fungal load. We next examined associations between
early-life factors and alpha diversity of the gut mycobiota at 3 months and 1 year of
age using Chao1, Shannon diversity, and Faith’s PD. At 3 months of age, birth mode
trended toward being associated with differences in Faith’s PD of the gut mycobiota
(Fig. S3A). Vaginal delivery, perinatal exposure to pets, and lack of solid foods at 3
months were associated with trends toward reduced fungal alpha diversity in the 3-
month gut mycobiota (Fig. 2 and Fig. S3B). Antifungal use was also associated with
decreased fungal alpha diversity at 3 months (Fig. 2 and Fig. S3B). At 1 year of age,
breastfeeding significantly increased the alpha diversity of fungi in the gut (Fig. 2 and
Fig. S3B), and both birth season (Fig. 2 and Fig. S3B) and study center (Fig. 2 and
Fig. S3B) were associated with gut mycobiota alpha diversity. All other early-life factors
were not significantly associated with differences in alpha diversity (Table S1B).

Similarly, total fungal load showed little variation according to early-life environmental
factors at each time point (Table S1B and Fig. S4) but was significantly increased in 3-month
stool samples in infants whose homes contained visible mold at the time of stool sample
collection and trended toward being increased in infants with older siblings. Surprisingly,
antifungal use in the first 3 months of life was also associated with increased total fungal
load in 3-month samples (Fig. S4). At 1 year, children with older siblings tended to have a
lower fungal load, whereas breastfeeding was associated with an increased fungal load
(Table S1B and Fig. S4). As expected, fungal load and fungal alpha diversity (Chao1) were
positively correlated (R2 = 0.064; P=4.1e207).

TABLE 3 Univariate analysis of differences between gut microbiota fungal community
composition at 3 months and 1 year of age according to early-life exposures based on
principal-coordinate analysis using Bray-Curtis dissimilarity and determined by
permutational analysis of variancea

Early-life exposure

3 mo 1 yr

R2 P value R2 P value
Birth mode 0.0244 0.54 0.00651 0.52
Antibiotic exposure in first 3 mo of life 0.0122 0.52
Antibiotic exposure in first yr of life 0.00326 0.44
Area type 0.0134 0.34 0.00426 0.11
Older sibling 0.0162 0.094* 0.00411 0.14
Breastfeeding at 3 mo 0.0108 0.72
Breastfeeding at 1 yr 0.00505 0.019**
Pet exposure 0.0126 0.58 0.00230 0.98
Birth season 0.0457 0.047** 0.0115 0.068*
Study center 0.0473 0.024** 0.0159 0.0010**
Mold exposure 0.0217 0.006** 0.00416 0.088*
Solid food at 3 mo 0.0131 0.47 0.00251 0.91
Bacterial microbiota Chao1 alpha diversity 0.0119 0.55 0.00493 0.034**
Antifungal use in first 3 mo of life 0.0148 0.19
Antifungal use in first yr of life 0.000459 0.040**
aR2 and P values are adjusted for sequencing batch (batch R2 = 0.00921; P=0.001 in entire data set). Single
asterisks indicate P values of,0.1, and double asterisks indicate P values of,0.05. R2 for visit = 0.0253;
P=0.0010.
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Since few differences were observed in global diversity measures of the gut myco-
biota according to environmental factors, we next used DESeq2 to identify whether
the relative abundances of specific microbes differed among groups. At both 3 months
and 1 year of age, all early-life environmental factors examined were associated with
significant differences in the relative abundances of specific taxa found in the infant
gut (Text S1). Unsurprisingly given their age-associated dominance, the most fre-
quently affected taxa were ASVs annotated as Candida, Malassezia, Debaryomyces, and
Saccharomyces. Notably, living in an urban setting was the only variable associated
almost exclusively with increases in the relative abundance of certain taxa, whereas
very few or no taxa were depleted in association with urban living at both time points.

Fungal communities in the 3-month-old infant gut associate with inhalant atopy
at age 5 years. In the case of early-onset, allergic asthma, the majority of patients with
severe disease exhibit sensitization to inhaled allergens (51). Sensitization (IgE-medi-
ated immune responses) to allergens can be objectively and quantitatively assessed by
skin prick testing (sensitization) to inhalant allergens at age 5 years, when asthma can-
not be reliably diagnosed by objective measurements of lung function, and is thus a
relevant clinical endpoint to assess when considering the relationship between fungal
community composition and atopic disease/allergic asthma. In the CHILD Cohort
Study, we observed that children with atopy (any positive skin prick test) at age 5 years
were predominantly sensitized to inhalant, rather than food, allergens. Overall, children
with inhalant atopy at age 5 years were predominantly male, more often born to
atopic mothers, exposed to antibiotics in the first year of life, and born by C-section
(Table 4 and Table S2A and B).

Beta and alpha diversities. Significant changes in beta diversity of the mycobiota
in 3-month stool samples was associated with sensitization to inhalant allergens at age
5 years (Fig. 3C and Table 5), but this relationship was not seen with 1-year samples
(Fig. 4C, Table 5, and Table S3). Gut mycobiota community alpha diversities were also
associated differently with health outcomes according to the time of fecal sample

FIG 2 Boxplots showing differences in fungal alpha diversity (Chao1) of the gut mycobiota at 3 months (top) and 1 year (bottom) of age in the CHILD
Cohort according to antifungal use, breastfeeding status, pet exposure, solid food at 3 months, birth mode, birth season, and study center. cwl, Caesarean
section with labor; cwol, Caesarean section without labor.

Infant Gut Mycobiota and Atopy in the CHILD Cohort ®

May/June 2021 Volume 12 Issue 3 e03396-20 mbio.asm.org 9

https://mbio.asm.org


TABLE 4 Demographic and clinical characteristics of CHILD cohort subjects with and without inhalant atopy (inhalant allergen sensitization)
at age 5 yearsa

Variable Cohort Inhalant atopy No inhalant atopy P value
No. of patients 2,539 438 2,101

Institution, no. (%) ,0.001
Edmonton 544 (21.4) 89 (20.3) 455 (21.7)
Toronto 519 (20.4) 136 (31.1) 383 (18.2)
Vancouver 601 (23.7) 147 (33.6) 454 (21.6)
Winnipeg 875 (34.5) 66 (15.1) 809 (38.5)

Antibiotic use by age 3mo, no. (%) 0.055
452 (17.8%) 64 (14.6%) 388 (18.5%)

Antibiotic use by age 1 yr, no. (%) 0.039
451 (17.8) 93 (21.2) 358 (17)

Antifungal use by 3mo, no. (%) 0.22
Confirmed 24 (0.9) 3 (0.7) 21 (1)
Unknown 2,231 (87.9) 361 (82.4) 1,870 (89)

Antifungal use by age 1 yr, no. (%) 0.15
Confirmed 26 (1) 3 (0.7) 23 (1.1)
Unknown 2231 (87.9) 361 (82.4) 1,870 (89)

Gestational age at delivery (wks) 0.76
Median (range) 39.7 (34, 42.9) 39.7 (34.3, 42) 39.7 (34, 42.9)
IQR (Q1, Q3) 38.9, 40.6 38.9, 40.4 38.9, 40.6
Unknown, no. (%) 127 (5) 16 (3.7) 111 (5.3)

Mode of delivery, no. (%) 0.0011
Vaginal 1,879 (74) 294 (67.1) 1,585 (75.4)
C-section with labor 324 (12.8) 69 (15.8) 255 (12.1)
C-section without labor 306 (12.1) 70 (16) 236 (11.2)
Unknown 30 (1.2) 5 (1.1) 25 (1.2)

Having older sibling, no. (%) 0.34
Confirmed 1,206 (47.5) 198 (45.2) 1,008 (48)
Unknown 45 (1.8) 9 (2.1) 36 (1.7)

Male, no. (%) ,0.001
1,350 (53.2) 285 (65.1) 1,065 (50.7)

Birth wt Z score 0.17
Median (range) 20.1 (25.9, 15.8) 20.1 (25.9, 14.9) 20.1 (23.1, 15.8)
IQR (Q1, Q3) 20.7, 0.6 20.7, 0.5 20.7, 0.6
Unknown, no. (%) 127 (5) 16 (3.7) 111 (5.3)

Parental atopy, no. (%) ,0.001
Confirmed 1,997 (78.7) 384 (87.7) 1,613 (76.8)
Unknown 68 (2.7) 11 (2.5) 57 (2.7)

Duration of exclusive breastfeeding (mo) 0.33
Median (range) 4 (0, 9) 4 (0, 6) 4 (0, 9)
IQR (Q1, Q3) 0.5, 5 0.5, 5 0.5, 5
Unknown, no. (%) 62 (2.4) 7 (1.6) 55 (2.6)

Tobacco smoke exposure to age 1 yr, no. (%) 0.029
Confirmed 610 (24) 89 (20.3) 521 (24.8)
Unknown 276 (10.9) 43 (9.8) 233 (11.1)

Season of birth, no. (%) 0.89
Spring 711 (28) 118 (26.9) 593 (28.2)
Summer 624 (24.6) 108 (24.7) 516 (24.6)
Fall 581 (22.9) 106 (24.2) 475 (22.6)
Winter 621 (24.5) 106 (24.2) 515 (24.5)
Unknown 2 (0.1) 2 (0.1)

Area type, no. (%) ,0.001
Rural 74 (2.9) 3 (0.7) 71 (3.4)

(Continued on next page)
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collection (Fig. 3 and 4, Table 6, and Fig. S5 and S6). At 3 months of age, increased
alpha diversity trended toward being associated with inhalant atopy (Chao1, P=0.16;
Shannon, P=0.21) (Fig. 3A and B and Table 6), whereas decreased alpha diversity in 1-
year samples was associated with inhalant atopy (Fig. 4A and B). Total fungal load was
not significantly associated with health outcomes (Fig. 3B, Fig. 4B, and Table 6).

Differentially abundant ASVs. To next identify specific ASVs associated with inhal-
ant atopy and/or asthma at age 5 years, we performed an indicator species analysis
and identified S. cerevisiae (ASV1) as an indicator of all 1-year samples and 3-month
samples from infants who developed inhalant atopy at age 5 years (stat = 0.882;
P=0.005), atopy at age 5 years (stat = 0.879; P=0.005), or asthma at age 5 years
(stat = 0.892; P=0.005). DESeq2-determined taxa that differed significantly in relative
abundance between cases and controls with or without inhalant atopy at age 5 years,
respectively, were consistent with and extended these findings (Fig. 3D and Fig. 4D).
Specifically, for inhalant atopy at age 5 years, taxa typically associated with 1-year sam-
ples were increased in relative abundance in cases relative to controls at 3 months of
age, and vice versa. Decreases in the relative abundance of Malassezia were especially striking
in cases of inhalant atopy relative to controls at 3 months of age, whereas ASVs annotated as
Rhodotorula and a non-albicans Candida were increased in relative abundance in 3-month
stool samples from infants who developed inhalant atopy at age 5 years relative to those who
did not (Fig. 3D). Furthermore, ASV124 (Cladosporium) was consistently increased in relative
abundance across atopic outcomes (Fig. 3D and Fig. S5 and S6). At 1 year of age, 168 ASVs dif-
fered in relative abundance between samples from children with inhalant atopy at age 5
years and controls and included increases in allergy-associated fungi such as Alternaria and
decreases in the relative abundance of Debaryomyces, Saccharomyces, and Candida in cases
relative to controls (Fig. 4D).

TABLE 4 (Continued)

Variable Cohort Inhalant atopy No inhalant atopy P value
Urban 775 (30.5) 171 (39) 604 (28.7)
Unknown 1,690 (66.6) 264 (60.3) 1,426 (67.9)

Breastfeeding status at 3mo, no. (%) 0.72
None 334 (13.2) 60 (13.7) 274 (13)
Partial 657 (25.9) 118 (26.9) 539 (25.7)
Exclusive 1,528 (60.2) 256 (58.4) 1,272 (60.5)
Unknown 20 (0.8) 4 (0.9) 16 (0.8)

Breastfeeding status at 12mo, no. (%) 0.42
Confirmed 1,164 (45.8) 195 (44.5) 969 (46.1)
Unknown 97 (3.8) 13 (3) 84 (4)

Solid food by age 3mo, no. (%) 0.92
Confirmed 173 (6.8) 29 (6.6) 144 (6.9)
Unknown, n (%) 126 (5) 20 (4.6) 106 (5)

Presence of mold in home, no. (%) ,0.001
Confirmed 979 (38.6) 214 (48.9) 765 (36.4)
Unknown 13 (0.5) 2 (0.5) 11 (0.5)

Oral thrush by age 1 yr, no. (%) 0.81
Confirmed 29 (1.1) 4 (0.9) 25 (1.2)
Unknown 345 (13.6) 53 (12.1) 292 (13.9)

Ethnicity of child, no. (%) ,0.001
Caucasian 1,628 (64.1) 236 (53.9) 1,392 (66.3)
East Asian 80 (3.2) 28 (6.4) 52 (2.5)
Multiracial 582 (22.9) 128 (29.2) 454 (21.6)
South Asian 58 (2.3) 12 (2.7) 46 (2.2)
Southeast Asian 66 (2.6) 21 (4.8) 45 (2.1)
Other 94 (3.7) 12 (2.7) 82 (3.9)
Unknown 31 (1.2) 1 (0.2) 30 (1.4)

aWilcoxon rank sum test and Fisher’s exact test were used for continuous and categorical variables, respectively.
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Environmental factors associated with gut mycobiota composition and fungal
communities in the infant gut help to predict infants who develop inhalant atopy
at age 5 years. Finally, to determine whether fungal community composition along
with other known factors is associated with atopic outcomes and/or microbiota com-
position can be used to predict which infants will go on to develop inhalant atopy at age 5
years, we used the fungal ASV table to perform partitioning around medoids (PAM) clustering
on all of the samples using Jensen-Shannon distances and the Calinski-Harabasz (CH) index to
select the optimum number of clusters (63). Using these methods, samples clustered into four
different groups according to their fungal community composition.

We then used recursive feature selection and machine learning logistic regression
models trained on 70% of the data to determine whether the early-life environmental
factors (bacterial Chao1 alpha diversity, antibiotic exposure in the first year of life, birth
mode, area type, older siblings, breastfeeding, perinatal pet exposure, season of birth,

FIG 3 Differences in gut mycobiota communities in stool samples collected at 3 months of age among infants in the CHILD Cohort Study who developed
inhalant atopy at age 5 years or remained healthy. (A) Fungal alpha diversity (top: Shannon; bottom: Chao1). (B) Total fungal load shown as ITS-2 copy
number on a log scale. (C) Principal-coordinate plot of samples based on Bray-Curtis dissimilarity of variance stabilized ASV count data. (D) Log fold change
of fungal ASVs identified to show significant (false-discovery rate, 0.05) differences in relative abundance according to inhalant atopy status at age 5 years
determined using DESeq2. Error bars indicate standard errors, and taxonomic annotations of ASVs are shown on the y axis. Positive numbers indicate that
ASV was increased in abundance in cases relative to controls. Dots and lines represent the sample mean and range, respectively, in all Tufte plots.
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study center [city], mold exposure in the home, and solid foods at 3 months of age) in
combination with knowledge of a subject’s 1-year stool sample PAM cluster could be
used to predict whether an infant developed inhalant atopy at age 5 years. This analy-
sis revealed PAM cluster (clusters 2 and 4), antibiotic use, older siblings, season (spring,
summer, and winter), and study center (Winnipeg) to be the most important factors for
predicting inhalant atopy status at age 5 years. As a predictive model, a logistic regres-
sion classifier trained using this information classified samples into the correct class
with 80% accuracy (average AUC for 5� cross-validation= 0.80 [Fig. 5]).

To determine whether information on the 3-month stool sample PAM cluster could
be used to predict health outcomes despite our small sample size at this time point,
we next performed the same modeling approach using only fungal microbiota
sequencing information (no environmental or bacterial sequencing data) to determine
whether a subject’s PAM cluster at 3 months could be used to predict inhalant atopy
status at age 5 years. Using only the 3-month stool sample cluster, we found that the
PAM cluster (cluster 1) was associated with inhalant atopy status at age 5 years
(P=0.027) and a logistic regression classifier including only information on a sample’s
PAM cluster classification (cluster 1) had an accuracy of 78%. Future work should con-
sider imputing missing values, thereby increasing the number of sample points, which
would allow us to consider more independent variables as well as PAM cluster at both
3 months and 1 year of age.

DISCUSSION
Fungal community composition over the first year of life. To date, only a limited

number of studies have begun to characterize the infant gut mycobiota (22–25, 27,
28), and even fewer studies have examined the bacterial and fungal communities of
the gut microbiota simultaneously at multiple time points within the first year of life.
Given the instability of the gut microbiota in early life, the importance of colonization
succession in determining how this microbial community becomes established (64),
and the “critical window” of development during which the composition of the micro-
biota is suggested to have important consequences for immune development (1), we
sought to address some of these unknowns. Our aim was to use data from the CHILD
Cohort Study to characterize the composition of the normal and disease-associated
infant gut mycobiota at 3 months and 1 year of age.

Despite the high inter- and intraindividual variability observed in gut fungal com-
munities, fungi appear to exhibit an age-dependent shift in community composition in
these infants born in Canada. Fungal load and alpha diversity were overall lower than
those of infant gut bacteria, but they increased over the first year of life in parallel to
bacterial communities. These changes were associated with increases in the relative
abundance of S. cerevisiae, which ultimately replaced Candida parapsilosis and Candida
albicans as the dominant fungi detected in relative abundance in stool samples from 3
months to 1 year of age. For the first time, we have also observed that shifts in fungal
community composition over the first year of life are associated with potential concur-
rent shifts in fungal community functional capacities.

TABLE 5 Univariate analysis of differences between gut microbiota fungal community
composition at 3 months and 1 year of age according to health outcomes assessed at age 5
years based on principal-coordinate analysis using Bray-Curtis dissimilarity and determined
by permutational analysis of variancea

Health outcome

3 mo 1 yr

R2 P value R2 P value
Inhalant atopy 0.0215 0.024** 0.00425 0.19
Atopy 0.0232 0.0070** 0.00444 0.13
Asthma 0.0120 0.71 0.00512 0.040**
aR2 and P values are adjusted for sequencing batch (batch R2 = 0.00921; P=0.001 in entire data set). Single
asterisks indicate P values of,0.1, and double asterisks indicate P values of,0.05.
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Similar to a study conducted using data from a birth cohort in Norway (27), we
found that a greater proportion of samples collected at 3 months of age had undetect-
able levels of fungi relative to 1-year samples and that fungal alpha diversity increased
over the first year of life. Overall, our findings of ;20 ASVs per sample, high inter- and
intraindividual variabilities in fungal communities, an increased relative abundance of
Candida at 3 months of age, and dominance of Saccharomyces at 1 year of age are con-
sistent with findings in other studies from birth cohorts in industrialized regions such
as Norway (27), the United States (24), and Italy (28). However, in contrast to the infants
from Norway, for whom 3-month samples were dominated by Debaryomyces hansenii,
we found that this organism was increased in relative abundance at 1 year of age rela-
tive to 3 months of age, and infants in Italy had a much higher overall relative abun-
dance of Penicillium and Aspergillus in the gut than we observed (28). Among other fac-
tors, these differences may be due to differences in study sample sizes, the ITS region
sequenced, and country-specific breastfeeding practices or other early-life factors.
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FIG 4 Differences in gut mycobiota communities in stool samples collected at 1 year of age among infants in the CHILD Cohort Study who developed
inhalant atopy at age 5 years or remained healthy. (A) Fungal alpha diversity (top: Shannon; bottom: Chao1). (B) Total fungal load shown as ITS-2 copy
number on a log scale. (C) Principal coordinate plot of samples based on Bray-Curtis dissimilarity of variance stabilized ASV count data. (D) Log fold change
of fungal ASVs identified to show significant (false-discovery rate, 0.05) differences in relative abundance according to inhalant atopy status at age 5 years
determined using DESeq2. Error bars indicate standard errors, and taxonomic annotations of ASVs are shown on the y axis. Positive numbers indicate that
ASV was increased in abundance in cases relative to controls. Dots and lines represent the sample mean and range, respectively, in all Tufte plots.
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Notably, the overall fungal community profiles in samples from the first 100 days of
life from infants in the CHILD Cohort Study were similar to those in the WHEALS cohort
based in Detroit, MI (24), but differed quite strikingly from those of infants in Ecuador.
In fact, Candida organisms were relatively minor members of the gut mycobiota and
Malassezia organisms were not even detected among the top 100 operational taxo-
nomic units (OTUs) in Ecuadorian infants when gut mycobiota profiles were character-
ized using 18S rRNA gene sequencing methods (25). Although sequencing primers and
other factors likely played a role in driving these differences between studies, geo-
graphical location has been found to be an important factor affecting the presence
and composition of breast milk mycobiota (including in the CHILD study) (34, 36), and
differences in gut mycobiota composition according to country are consistent with our
findings that study center, season of birth, and mold exposure were associated with
significant differences in the beta diversity of fungal communities in the guts of
Canadian children. Study center, population density, and birth season were also identi-
fied to be major factors associated with fungal community presence and composition
in human milk samples in the CHILD cohort (36). Climate, time spent outdoors, diet,
and cultural practices are likely some of the factors associated with geographical loca-
tion that influence both what types of microbes are found in certain regions and how
infants are exposed to them.

Fungal communities and early-life environmental exposures/factors. In addi-
tion to geography-related variables, we found that antibiotic exposure in the first year
of life, perinatal pet exposure, and breastfeeding were associated with differences in
gut mycobiota alpha and/or beta diversity at 3 months and/or 1 year of age. Possibly
owing to the low diversity of the samples and highlighting the particular vulnerability
of the unstable gut microbiota during the first 100 days of life to environmental influ-
ences, all early-life factors examined explained a greater portion of variation (R2) in
beta diversity in 3-month relative to 1-year samples. All early-life factors examined
were also associated with differences in the relative abundance of specific fungal taxa
at each time point, indicating that environmental exposures may be sources of specific

TABLE 6 P values of univariate analysis of differences between gut microbiota fungal community alpha diversity and total fungal load at 3
months and 1 year of age according to health outcomes assessed at age 5 years and determined by Wilcoxon rank sum testa

Health outcome

Chao1 Shannon
Faith’s phylogenetic
diversity Total fungal load

3 mo 1 yr 3 mo 1 yr 3 mo 1 yr 3 mo 1 yr
Inhalant atopy 0.16 0.20 0.21 0.66 0.87 0.63 0.10 0.46
Atopy 0.53 0.028** 0.78 1 0.89 0.28 0.32 0.22
Asthma 0.32 0.07* 0.80 0.43 0.69 0.99 0.40 0.27
aSingle asterisks indicate P values of,0.1, and double asterisks indicate P values of,0.05.

FIG 5 Representative ROC curve of the logistic regression model developed using machine learning
for predicting a subject’s inhalant atopy status at age 5 years using information on environmental
factors and the composition of the fungal microbiota at 1 year of age.
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fungi that seed the infant gut. Consistent with studies suggesting vertical transmission
of C. albicans from the vaginal tract to the infant gut during vaginal delivery (65), we
observed persistent increases in the relative abundance of this microbe in vaginally
delivered infants relative to infants delivered by C-section without labor over the first
year of life. Although preliminary, these data suggest that early exposure to C. albicans
at birth may play an important role in determining the trajectory of gut fungal (and
potentially overall gut microbiota) community composition. Indeed, precolonization of
the gut with Candida has been shown to promote subsequent colonization by certain
bacteria (62), and early colonization by these fungi may therefore contribute to the
establishment of gut niches necessary for the normal early-life temporal succession of
microbial communities necessary for infant health.

Notably, the influences of many of the factors identified to associate with differen-
ces in overall fungal community alpha and beta diversities, including having older sib-
lings, often differed according to the age of the infant at the time of sample collection.
These results highlight the need to precisely define the age-related immunological
consequences of both specific and overall communities of gut fungi over the course of
the first year of life. Associations between breastfeeding and gut mycobiota alpha di-
versity and total fungal load also differed according to an infant’s age at the time of
sample collection; at 3 months, breastfeeding decreased alpha diversity and had no
effect on total fungal load, whereas at 1 year, breastfeeding increased alpha diversity
and total fungal load. Overall and in contrast to many of the other early-life environ-
mental factors examined, breastfeeding was more significantly associated with gut
mycobiota communities at 1 year of age, when more dietary heterogeneity existed
among subjects, in line with studies showing diet to be a major driver of gut fungal
communities (37, 38). These results were further corroborated by observation of a
trend toward increased alpha diversity and increased relative abundance of S. cerevi-
siae in 3-month samples from infants who had already begun to consume solid food.
Consistent with our findings, breastfeeding and weaning have been associated in
other cohorts with a transition from a Debaryomyces hansenii-dominated mycobiota to
a mycobiota dominated by Saccharomyces cerevisiae (27). In piglets, weaning is also
associated with an expansion of Saccharomycetaceae (66). Given that breast milk myco-
biota has been found to be primarily composed of C. albicans, C. parapsilosis, and S.
cerevisiae (31), three of the most dominant members of the 3-month (C. albicans and C.
parapsilosis) and 1-year (S. cerevisiae) samples in the present study and among that
taxa found to differ in relative abundance according to breastfeeding status, it is
tempting to speculate that breast milk (or the skin contact involved in the act of
breastfeeding) may be an important source of fungi that seed the infant gut. This
occurred in the case of bacteria for infants in the CHILD Cohort Study (67) and also for
fungi (especially Candida, Alternaria, and Rhodotorula) which were detected in breast
milk at 3 months postpartum (36). Whether these breast milk fungi transfer to the
infant gut, however, will need to be rigorously tested in future work. Further work is
also needed to determine if feeding mode influences gut mycobiota communities, as
has been seen in breast milk (36).

Breastfeeding may also promote the growth of certain fungi, as we found that
CHILD participants breastfeeding at 1 year of age exhibited an increase in the relative
abundance of D. hansenii, a food-associated microbe frequently found on dairy prod-
ucts (68) and also found to be associated with breastfeeding in other cohorts (27). In
contrast, certain milk components, such as human milk oligosaccharides (HMOs), may
inhibit the growth of certain gut fungi, as has been suggested following observations
of negative associations between breast milk fungal presence and certain HMOs in
breast milk from mothers in the CHILD study (36). These data, together with findings of
associations among fungal community composition and both health-associated bacte-
rial community compositions and inflammatory health outcomes, suggest an impor-
tant role for breastfeeding and/or nutritional practices in determining gut fungal com-
munity profiles, with possible consequences for health outcomes.
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Three-month fungal communities and atopic outcomes. Identifying the makeup
of gut mycobiota communities over the first year of life, putative sources of gut fungi,
and early-life factors with the potential to shape infant gut mycobiota communities
has important therapeutic implications for diseases associated with early-life fungal
dysbiosis. Recently, two studies in infant birth cohorts have identified fungal dysbiosis
to be an important feature of the dysbiosis-asthma paradigm in nonindustrialized and
socioeconomically diverse populations (24, 25). Moreover, antibiotic use is often associ-
ated with fungal overgrowth and increased atopy/asthma risk, indicating that inter-
kingdom interactions in the gut may have an underappreciated role in the dysbiosis-
asthma/atopy paradigm and that fungal dysbiosis may represent an easily detectable
“universal” feature of dysbiosis associated with negative long-term immune conse-
quences. In support of this idea, fungal community beta diversity at 3 months and 1
year was significantly associated with inhalant atopy and asthma, respectively, at age 5
years in the CHILD cohort, whereas such dramatic differences in community beta diver-
sity according to health outcomes have not been observed in the case of bacterial
beta diversity in this cohort (44).

A role for fungal dysbiosis in inhalant atopy and allergic asthma is especially intrigu-
ing given that fungi are important allergens and share within their surface structures
many immunogenic antigens with common inhaled allergens (69–73). Tantalizingly,
human Th17 cells generated against common gut commensals were recently shown to
be able to cross-react with unrelated fungi in the lungs, causing allergic inflammation
(74). Furthermore, we identified several allergy-associated taxa to be enriched in the
gut mycobiota of infants with inhalant atopy, including ASVs annotated as Alternaria
(enriched at 1 year) and Cladosporium (enriched at 3 months).

Although our sample size was small and restricts us from drawing broad conclu-
sions, our data suggest that a reduction of the relative abundance of the dominant
age-associated fungal genus and/or an increase in fungal diversity in the first 3 months
of life increases an infant’s risk of atopic sensitization to inhalant allergens at age 5
years. Notably, infants who developed inhalant sensitization at age 5 years also dem-
onstrated an increase in the relative abundance of S. cerevisiae in 3-month stool sam-
ples relative to non-inhalant-atopic controls. S. cerevisiae was also the dominant
microbe in 1-year stool samples and was an indicator species associated with micro-
biota communities from all 1-year-old infants and 3-month-old infants with inhalant
sensitization at age 5 years. Surprisingly, knowledge of a subject’s fungal community
composition (PAM cluster) at 3 months alone was sufficient to predict inhalant atopy
risk at age 5 years with an accuracy of 78%. In stark contrast to bacteria, for which
decreased microbiota maturity for age, decreased diversity, and a reduction in the rela-
tive abundance of “beneficial” microbes are associated with atopic disease, together
these data suggest that premature age-dependent shifts in fungal communities might
have negative effects on host immune development. These findings call for a review of
the dominant dogma that gut microbiota diversity is widely beneficial; in the case of
nonbacterial components of the gut microbiota, the situation may be more nuanced.
Moreover, often-overlooked fungi may be especially pertinent early markers of a larger
state of gut microbial dysbiosis, including reduced bacterial diversity, occurring prior
to the onset of allergic disease manifestations.

In line with our findings of overall gut fungal community composition, we found
that features of inhalant atopy-associated fungal dysbiosis before 1 year of age were
similar to those identified in the only other study done looking at associations between
the mycobiota and childhood atopy in North America (24) but differed from those
observed in Ecuadorian infants. In contrast to the increased total fungal load and dra-
matically increased abundance of Pichia kudriavzevii observed in the 3-month myco-
biota of Ecuadorian infants who developed atopy and wheeze at age 5 years, we found
that fungal load trended toward being decreased in association with inhalant atopy
and that two ASVs annotated as P. kudriavzevii (Issatchenkia orientalis) showed different
patterns of association with inhalant atopy at age 5 years in 3-month stool samples.
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These subtle differences between studies could be due to geographical factors as dis-
cussed above, different underlying biological mechanisms driving these associations,
or differences in sequencing techniques and phenotype definitions, among other fac-
tors. Regardless, findings of different signatures of dysbiosis in different regions of the
world highlight the need for population-specific studies when designing putative
microbiota-based therapeutics or behavioral interventions.

Many of the fungal taxa found to exhibit differential abundances in the 3-month
gut microbiota of infants who developed inhalant allergen sensitization at age 5 years
relative to controls were also differentially affected by early-life exposures with the
potential to influence a child’s contact with microbes. These findings may be used to
inform future studies aimed at identifying at-risk infants and testing underlying mecha-
nisms through the use of interventions with potential for therapeutic benefit, and they
also suggest that an infants’ risk of atopic disease can be modified by simple, inexpen-
sive behaviors. Introduction of solid foods by 3 months, for instance, was associated
with an increase in alpha diversity and the relative abundance of S. cerevisiae in the
gut, whereas breastfeeding was associated with trends toward reduced alpha diversity.
Exclusive breastfeeding for the first 6 months of life is currently the recommended
“gold standard” suggested by the World Health Organization, and modulation of fun-
gal community composition may be a mechanism by which breastfeeding confers
health benefits and specifically protects against asthma and allergies, as has been
shown previously (75, 76).

One-year fungal communities and atopic outcomes. Although many studies
have suggested a “critical window” within the first 100 days of life during which the
gut microbiota has a unique ability to influence immune-mediated health outcomes,
our data suggest a more complex picture when fungi are considered. At 1 year of age,
features of fungal dysbiosis were evident in association with inhalant atopy and
asthma at age 5 years but differed from the signature of dysbiosis observed at 3
months. Increased fungal load and fungal alpha diversity at 1 year trended toward
being protective against atopic disease. Highlighting the importance of precisely defin-
ing temporal associations of dysbiosis with health outcomes, the signature of dysbiosis
observed at 1 year supports the “hygiene” (43, 77) and “microflora” (78, 79) hypotheses
suggesting that reduced microbial exposures (including the microbiota) in early life are
associated with atopic disease. Similarly, reduced bacterial alpha diversity was signifi-
cantly associated with asthma at age 5 years at 1 year, but not 3 months, of age (15).
Interventions beyond the first 3 months of life may therefore remain a viable option
for meaningfully altering the composition and associated immunomodulatory proper-
ties of the gut microbiota.

A primary goal of this work was to determine whether knowledge of fungal com-
munity composition and early-life environmental factors associated with both fungal
community composition and health outcomes could be used to identify at-risk patients
prior to the onset of allergic symptoms. We addressed this question using 1-year sam-
ples and a machine learning approach, and we were able to identify 5 features (inde-
pendent of maternal factors) that predicted an infant’s inhalant atopy status at age 5
years with an accuracy of 81%. Consistent with our findings of early-life factors explain-
ing a significant portion of fungal beta diversity and differences in fungal alpha diver-
sity, an infant’s birth order, breastfeeding status at 1 year, and season and location of
birth remained key factors associated with health outcomes at age 5 years in the mod-
els. Notably, fungal community composition (PAM cluster), but not bacterial alpha di-
versity, in the first year of life was a key factor associated with having an allergic diag-
nosis at age 5 years. Early-life gut fungal community composition may therefore serve
as a novel biomarker of later disease onset that can be used to identify at-risk infants
and also inform the development of microbiota-based preventative asthma/allergy
therapeutics or lifestyle recommendations. Our machine learning model, by taking an
unbiased approach, underscores the importance of considering the often-overlooked
fungal communities within the infant gut. Fungi may be especially important in the
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dysbiosis-asthma/atopy paradigm on account of both the robust fungal community at
this age and the immunological mechanisms underlying atopic disease.

Conclusions and future directions. While our study provides unprecedented
insights into fungal communities in the infant gut and how these relate to both health
outcomes and bacterial communities, it also has limitations. Some of these limitations are
inherent to working with fungi, and others should be addressed in future work. We can-
not exclude the possibility that some fungi were not sampled due to their tough cell walls
resistant to the DNA extraction method used in this study, primer bias, ITS-2 rRNA gene
region length variation, and other methodological factors (21). Some detected fungi were
also likely transient passengers in the gut, rather than true colonizers.

Early-life biomarkers of allergy and asthma are currently lacking, preventing the
administration of therapeutics or recommendations for lifestyle modifications with the
potential to prevent the onset of disease. Future studies in humans with additional
and earlier sampling time points, with larger sample sizes, and from populations with
diverse demographics are needed to determine whether our findings can be replicated
in other cohorts, more precisely define the role of fungal dysbiosis in health and dis-
ease, and characterize the timing of important age-dependent shifts in mycobiota
community composition. External validation of our machine learning model in other
birth cohorts will be essential to determining the generalizability of our findings. With
larger sample sizes and metagenomic sequencing, future work should also focus on
using more highly sophisticated definitions of “cases” and “controls” for atopic disease
that consider the full atopic and genetic history of a subject (56) and specific disease
endotypes, as well as whether fungal dysbiosis differentially is associated with sensiti-
zation to specific inhaled allergens. Finally, future work using metagenomics sequenc-
ing and culture-based methods is needed to validate and further characterize the clas-
sification of infant gut fungi at the species and strain levels.

Fungi likely represent an underappreciated component of the microbial biomass
within the gut, as tools limited to DNA quantification do not factor total cell size, which
are up to 100-fold greater than for bacteria (80). Fungi may affect host immune health
either through direct fungal surface antigen- or metabolite-mediated interactions with
host immune cells or via indirect effects on immunomodulatory gut bacterial popula-
tions. Furthermore, interactions between bacteria and fungi in the gut may have im-
portant consequences for successional community dynamics in the infant gut (64) as
well as for known time-dependent immune-bacterial microbiota interactions that ulti-
mately determine immune calibration relevant to allergic disease outcomes. Here, we
have demonstrated the existence of a dynamic fungal community in the gut micro-
biota of infants from an industrialized country. We have also shown that fungi influ-
enced by early-life factors, such as diet and mold or antifungal exposure, are associated
with inhalant atopy outcomes later in life. Going forward, this raises the exciting possi-
bility of designing/implementing inexpensive behavioral and/or dietary interventions
with the potential to influence gut microbiota community composition and long-term
health. Altogether, this work lays the foundation for future studies looking to compare
gut mycobiotas across birth cohorts and indicates a critical role for fungi as mediators
of microbiota-associated changes in immune function. Future work in vivo and in vitro
will seek to validate our findings in animal models, establish a causal role for early-life
gut fungal dysbiosis in atopic outcomes, and identify the mechanisms mediating asso-
ciations between fungal dysbiosis and atopic health outcomes.

MATERIALS ANDMETHODS
Study population. The CHILD Cohort Study recruited 3,621 pregnant women from four sites

(Vancouver, Edmonton, Winnipeg, and Toronto) across Canada (55, 81). Of the 3,621 pregnant mothers
recruited to the CHILD study, 216 in a Vanguard cohort were excluded from this analysis due to the
change of data collection method. Of the 3,405 recruited to the general cohort, 3,264 eligible infants
stayed in the study at birth, had no congenital abnormalities, and were born at a minimum of 34weeks
of gestation. CHILD Cohort Study children were followed prospectively, and detailed information on
environmental exposures and clinical measurements and assessments were collected using a combina-
tion of questionnaires and in-person clinical assessments at 11 time points from birth until age 5 years.
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Definitions of early-life factors and health outcomes. (i) Antibiotic and antifungal use. Medication
data were obtained from questionnaires completed by study families. Drugs were manually curated,
assigned standardized generic names, and then linked to ontology terms in the Chemical Entities of
Biological Interest database (82, 83). Antibacterial drugs were also linked to high-level antimicrobial re-
sistance ontology drug classes at the Comprehensive Antibacterial Resistance Database (84). Antibiotic
use was defined as at least one antibiotic course within the first year of life after hospital discharge, with
the exclusion of topical antibiotics (e.g., eye drops, ear drops, and ointment). Antifungal use was defined
as at least one systemic antifungal drug use (assessed at the 3-month, 6-month, and 1-year visits).
Amoxicillin represented 55% of prescriptions, and the most common antifungal used by study partici-
pants was nystatin, at 75% of all systemic antifungals used.

(ii) Birth mode. Delivery type was recorded on the birth chart and used to define three modes: vagi-
nal, planned C-section (i.e., without labor), and C-section with labor.

(iii) Residential area type. A dichotomous variable for area type, defined as “urban” or “rural” and
assigned at the postal code level of each participant residential home, was derived from the 2011
Statistics Canada census following its validated definition whereby all territory within a census metropol-
itan area (CMA) or census agglomeration (CA) that is not classified as a core (minimum of 50,000 people
in CMA) or fringe (minimum of 10,000 people in CA) is classified as rural.

(iv) Older siblings. Each mother’s parity was determined from the birth chart and used to determine
the birth order of the child. “Yes” was defined as having one or more older siblings.

(v) Breastfeeding (at 3 months and 1 year of age). Breastfeeding was defined as none, partial, or
exclusive as previously described (75). For the present study, breastfeeding was defined as a dichoto-
mous variable of “any” or “none” by combining partial and exclusive breastfeeding as “any.”

(vi) Pets. Pet exposure was defined as “yes” if a child was exposed to either a cat or a dog in preg-
nancy and/or in the first year of life.

(vii) Season. Season was defined based on the date of birth of the child. Spring was defined as
March to May, summer was June to August, fall was September to November, and winter was December
to February (inclusive).

(viii) Mold exposure. Mold exposure (yes/no) was determined from home environment inspection
completed by CHILD study staff at the 3-month home visit. Specifically, children were considered to have
been exposed to mold if visible mold was recorded anywhere in the home. If no data were collected on
mold in the home, exposure was treated as “no” to provide a conservative estimate without losing power.

(ix) Solid food at 3 months. Introduction of solid foods (yes/no) by 3 months of age was deter-
mined from a nutrition questionnaire administered at 3 months of age.

(x) Skin prick test (atopy) outcomes. Children were diagnosed with atopy (IgE-mediated allergic
sensitization) based on standardized skin prick testing to food and environmental inhalant allergens at
age 5 years. Average wheal sizes of$2mm relative to the negative control (glycerin) were considered to
represent a positive test, and histamine was used as a positive control. Inhalant allergens tested included
fungi (Alternaria alternata, Aspergillus fumigatus, Cladosporium, and Penicillium), house dust mites
(Dermatophagoides pteronyssinus and Dermatophagoides farinae), cat hair, dog epithelium, pollens (tree
mix, grass mix, weed mix and ragweed mix), and German cockroach. Food allergens tested included cow’s
milk, peanut, egg white, and soybean. Atopic burden was defined as the weighted average of the skin prick
test wheal sizes to inhalant allergens (total sum of all wheal sizes/total number of positive tests).

(xi) Asthma at age 5 years. Asthma was diagnosed at age 5 years based on a study subspecialist
pediatrician response to the question “In your opinion, does this child have asthma? (Yes/Possible/No)”
as previously described (56). This decision was based on a structured interview with the accompanying
parent or guardian. Definite asthma (“yes”) was recorded if the parent reported physician-diagnosed
asthma, use of a bronchodilator prescribed for episodes of coughing or wheezing, use of a prescribed
daily controller medication, or frequent wheezing (three or more distinct episodes over the previous
year) with no alternative diagnosis. Possible asthma (“possible”) was recorded if there were less frequent
episodes of wheeze or coughing without colds and no report of medication use. In the present study,
“no” and “possible” asthma were grouped as noncases.

Sample collection. Soiled diapers from infants were collected at a home visit by CHILD Cohort
Study staff scheduled at 3months of life, and an additional stool sample was obtained at the clinical
assessment scheduled at age 1 year, as previously described (81).

DNA extraction and 16S rRNA gene amplicon sequencing and processing. DNA extraction from
stool samples from the CHILD Cohort Study and 16S rRNA gene amplicon sequencing were performed
as previously described (15, 56). Sequencing was performed using primers F515/R806 targeting the V4
hypervariable region of the 16S rRNA gene. Paired-end sequencing reads were processed using DADA2
(85) within QIIME2 v.2018.6 (86). Taxonomy was assigned and aligned to the Greengenes reference data-
base (2013 release) (87) at 99% sequence similarity. Downstream filtering and processing of the ASV ta-
ble was done in R. Filtering steps included removal of samples containing fewer than 1,000 sequences
and taxa present at ,0.5% relative abundance in at least three samples or ,5% relative abundance in at
least one sample.

DNA extraction and ITS-2 rRNA gene amplicon sequencing. Five hundred forty-five stool samples
from 343 subjects were selected for DNA isolation and ITS-2 rRNA gene sequencing based on 16S rRNA
gene sequencing data availability from the same sample or subject and stool availability. All samples
had a minimum DNA yield of 8 ng/ml following the DNA extraction. Where possible, samples collected at
both 3 months (n= 206 samples) and 1 year (n= 339 samples) of age from the same subject were cho-
sen. DNA was extracted from frozen stool samples using the Qiagen QIAamp PowerFecal DNA extraction
kit according to the manufacturer’s instructions, with minor modifications. Briefly, approximately 250mg
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of frozen stool was used for each extraction and samples were homogenized twice using an MP
Biomedicals FastPrep machine at speed 5.5 for 60 s. DNA from was subjected to 300-bp paired-end
sequencing on an Illumina MiSeq using the ITS3/ITS4 primer pair (ITS3, 59-GCATCGATGAAGAACGCAGC-
39; ITS4, 59-TCCTCCGCTTATTGATATGC-39) and V3 chemistry.

ITS-2 rRNA gene sequencing processing. Cutadapt was used to trim primers from the sequences
and then the DADA2 ITS pipeline workflow (https://benjjneb.github.io/dada2/ITS_workflow.html) was
used to process raw sequences from forward reads into amplicon sequence variants (ASVs) within R
Studio (88) (v.1.2.5019) and R (v.3.5.1) (89). In order to use a paired-end error model, forward reads were
electronically reverse transcribed (preserving the adapters and ensuring that the quality scores were
maintained). Sequences with ambiguous bases were removed and the remaining sequences were qual-
ity filtered (maximum of expected errors = 2; minimum sequence length = 50 bp) and denoised to gener-
ate ASVs. Reads were not trimmed to a fixed length in order to accommodate differences in amplicon
length of the ITS-2 region (21). Chimeras were removed in DADA2 and ASV taxonomy was assigned
using the UNITE (release_dynamic_02.02.2019) database (90, 91) and a naive Bayesian classifier. The
resulting ASV tables and representative sequences from each run were then merged and duplicate sam-
ples were removed, generating an ASV table containing 4,221 features in 520 samples (3 months,
n=193; 1 year, n=327). Representative sequences were also searched in the SILVA database to ensure
that ASVs annotated only to kingdom level did not match to prokaryotic organisms. Key ASVs lacking
annotation below kingdom level were further searched using BLAST to improve taxonomic resolution
where possible. Extraction and PCR controls contained only 48 to 129 total reads across 7 ASVs and
were filtered out of the analysis during subsequent filtering steps.

All subsequent filtering steps were done in R to generate the final table used in downstream analy-
ses. Filtering steps included removal of samples containing fewer than 1,000 sequences and taxa present
at ,0.05% relative abundance in at least three samples or ,0.5% relative abundance in at least one
sample. The final table contained 1,100 taxa in 389 samples (3 months, n= 81; 1 year, n= 308).

Ghost-tree was used for computing phylogeny-based diversity metrics for fungal amplicon sequenc-
ing data (92) (https://forum.qiime2.org/t/q2-ghost-tree-plugin-community-tutorial-for-creating-hybrid
-gene-phylogenetic-trees/6139). Briefly, closed-reference clustering of DADA2-generated ASVs at 99%
identity to the UNITE developer reference database (ver8_99_02.02.2019) was done using VSEARCH (93)
within QIIME2 (86) v.2019.10 and the resulting table was filtered to contain feature identifiers (IDs) pres-
ent in the tree ghost_tree_100_qiime_ver8_99_02.02.2019. Clustering was performed against a reference
database clustered at the same percent identity according to the QIIME2 developer recommendations. The
resulting ASV table was then filtered to remove samples with fewer than 1,000 features and ASVs present in
fewer than two samples (112 ASVs in 304 samples retained). The ghost_tree_100_qiime_ver8_99_02.02.2019
was then used for computing phylogenetic metrics after being midpoint rooted in QIIME2.

ITS-2 and 16S rRNA gene sequencing analysis. Faith’s phylogenetic diversity (PD), a measure of
alpha diversity that reflects the sum of the branch lengths of a phylogenetic tree containing the ASVs
found in a sample (94), was computed using the picante package (95) in R. Additional alpha (Shannon
and Chao1) and beta (unweighted UniFrac [96] and Bray-Curtis) diversities were computed in R using
the phyloseq (97) and vegan (98) packages, respectively. Shannon diversity incorporates information on
ASV richness and evenness (99), whereas Chao1 is a nonparametric estimate of community richness that
accounts for rare taxa (100). Beta diversities were visualized in principal-coordinate analysis (PCoA) plots
based on Bray-Curtis dissimilarity or unweighted UniFrac after variance stabilizing the filtered ASV tables
to generate a count matrix of values with constant variance around mean values using DESeq2 (57, 101).
Bray-Curtis dissimilarity considers differences between samples based on the relative abundance of
ASVs, whereas unweighted UniFrac uses a phylogenetic tree to determine dissimilarities between sam-
ples based on the presence/absence of ASVs.

Pattern analysis of associations between “indicator” fungal ASVs and environmental variables or
health outcomes were determined using the “multipatt” function in the indicspecies package (102), the
Indval.g association function (to correct for unequal sample sizes), a significance level of 0.05, and a min-
imum indicator statistic value cutoff 0.6, as has been used previously (103, 104). Indicator species are
used in ecology studies to identify species whose abundance reflects particular community states and
can be measured in lieu of measuring the abundance of all species in a community (102). The indicator
value is computed by estimating the specificity (i.e., whether a sample belongs to a specified group if
the species is found in that sample) and the sensitivity of an indicator species (i.e., most samples in the
specified group will contain that species).

Merging bacterial and fungal sequencing data to predict microbial age. Filtered bacterial and
fungal ASV tables were merged in phyloseq and then imported into QIIME2 v.2019.10 to identify bacte-
rial and fungal ASVs contributing most significantly to determining the “age” of an infant according to
the composition of the gut microbiota. Samples with fewer than 1,000 ASVs and ASVs present fewer
than three times in the merged data set were removed from the analysis. Using the exact date of stool
sample collection for each sample (75 to 594 days of life), 60-day bins were then created and passed
with the ASV table to the qiime sample-classifier (105, 106). This method uses a supervised random forest
learning regressor to predict the age of a sample according to the composition of the gut microbiota
and provides information on the importance of each ASV to determining a sample’s “microbial age.”
Half of the samples were used for training, and 100 estimators were used.

PICRUSt2 analysis of ITS rRNA gene sequencing data. The functional capacities of the fungal com-
munities in stool samples collected at 3 months and 1 year of age from infants in the CHILD cohort were
investigated using PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States) (60) (https://github.com/picrust/picrust2/wiki/Full-pipeline-script). Within PICRUSt2,
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HMMER (http://hmmer.org/) is used for reference sequence alignment, and then EPA-NG (107) maps
sequences to a reference phylogeny. The final object is converted to newick format using GAPPA (108),
and the castor R package (109) is used for hidden-state prediction of gene family abundances. Finally,
MetaCyc (61) and MinPath (110) are used to predict metabolic pathway functions based on enzyme
commission numbers.

Quantitative PCR. Total fungal load was assessed using the FungiQuant quantitative PCR (qPCR)
assay on all samples submitted for ITS-2 rRNA gene sequencing (111). Specifically, sample DNA concen-
trations were determined by Qubit analysis and concentrations were normalized to 1 ng/ml, 10 ng/ml, or
100 ng/ml. Two microliters of template DNA was added to a reaction mixture containing iTaq universal
probe supermix (Bio-Rad), H2O, 6-carboxyfluorescein (FAM) probe (1mM; Applied Biosystems), forward
primer (10mM; GGRAAACTCACCAGGTCCAG), and reverse primer (10mM; GSWCTATCCCCAKCACGA) for a
total reaction volume of 10 ml in 100-ml MicroAmp 96-well plates (Applied Biosystems). This assay uses
primers specific for the more highly conserved 18S rRNA gene of the fungal genome, which exhibits less
length variability than the ITS-2 region and is therefore more suitable for qPCR assays. Reactions were
run in duplicate at standard ramp speed, and qPCR was performed on a 7500 fast real-time system
(Applied Biosystems, Foster City, CA) machine using the following cycling protocol: an initial enzyme
activation step at 95°C for 2min followed by 45 cycles of a denaturation (95°C for 15 s) step and then a
combined annealing/extension step (60°C for 1min). Amplicon DNA concentration was determined
using a standard curve generated using 10-fold dilutions of a 0.1-ng/ml stock of 18S rRNA gene ampli-
cons purified from a PCR completed using the FungiQuant primers and purified C. parapsilosis template
DNA. C. parapsilosis template DNA was extracted from a pure culture of C. parapsilosis (ATCC 22019)
grown at 30°C for 24 h using the Quick-DNA fungal/bacterial microprep kit (Zymo Research) kit. Using
the calculated DNA concentration, 18S rRNA gene copy number was determined based on the antici-
pated size of the PCR amplicon (311 bp) and the following formula:

number of copies ðmoleculesÞ ¼ X ng� 6:0221 � 1023 molecules=mole
ðN � 660 g=moleÞ 1 � 109ng=g

where X is amount of amplicon, N is length of double-stranded DNA (dsDNA) amplicon, and 660 g/mole
is average mass of 1 bp of dsDNA.

Any samples with a large discrepancy between duplicate readings were rerun in triplicates. All sam-
ples were standardized to 10 ng/ml of total DNA for final comparative analysis. If DNA was not detected
or the threshold value (CT) was above the negative controls, a value of 10211 ng/ml of DNA was used (the
limit of detection of the qPCR assay). Any quantity of DNA detected in the negative controls was sub-
tracted from all samples of the corresponding plate.

Predicting health outcomes using fungal ASV and environmental data. Fungal ASV data were
used to cluster samples based on Jensen-Shannon distance and partitioning around medoids (PAM)
clustering using previously described methods (63). The Calinski-Harabasz (CH) index was used to select
the optimum number of clusters (63). Recursive feature elimination and machine learning logistic regres-
sion models were then used to identify the most important features for predicting a subject’s inhalant
atopy or asthma status at age 5 years using the scikit learn machine learning library within Python (106,
112, 113). We also visually inspected the independent variables by plotting their relative frequencies in
the sample. Specifically, using PAM cluster at 1 year of age, sample bacterial alpha diversity (Chao1), sex,
and the early-life factors of antibiotic exposure in the first year of life, birth mode, area type, older sib-
lings, breastfeeding status, perinatal pet exposure, season of birth, study center (city), mold exposure in
the home, and the introduction of solid foods at 3 months of age, the Synthetic Minority Oversampling
Technique (SMOTE) (114) algorithm was used for mitigating the imbalance of sample point with respect
to the values of the dependent variables. Antifungal use was not included in the model, as only four chil-
dren with inhalant allergen sensitization and asthma at age 5 years were exposed to antifungals within
the first year of life. Due to the limited number of samples available, which was less than 500, compared
with the large number of candidate explanatory variables, we applied an algorithmic method to pick the
most essential (predictive) variables. Recursive feature elimination, using the feature selection submod-
ule in the scikit learn library, was used to select features that best predicted health outcomes, and 70%
of the data were used as the training set. The model accuracy was then calculated using the remaining
30% of the data as the test set and visualized in a receiver operating characteristic (ROC) curve with 5-
fold cross-validation, using the roc_curve function in the metrics submodule in the scikit learn library.
Using only information on PAM clusters, the same methods were used to determine whether PAM cluster at
age 3 months was associated with inhalant atopy at age 5 years.

Statistical analyses. Statistical tests were performed in R (version 3.5.1). Alpha diversity metrics
were tested for normality using the Shapiro-Wilk normality test, and pairwise group comparisons were
then done using a Wilcoxon rank sum test. Multiple-group comparisons were done using a Kruskal-
Wallis test based on the distribution of the data.

Associations between environmental factors and health outcomes with fungal beta diversity were
compared by permutational analysis of variance (PERMANOVA) using the adonis function from the pack-
age vegan (98) with 999 permutations, and all results are reported as marginal effects after controlling
for batch effects.

Differential abundance tests were done using DESeq2 (57), correcting for batch and using a signifi-
cance threshold of a P value of ,0.05 after false-discovery rate (FDR) correction. Differences in total fun-
gal load between groups were calculated using the Wilcoxon rank sum (Mann-Whitney) or Kruskal-
Wallis test. Only samples used in the final fungal ASV table were used for total fungal load comparisons.
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