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The present study attempts to establish a relationship between ethnopharmacological claims and bioactive constituents present in
Pinus roxburghii against all possible targets for diabetes throughmolecular docking and to develop a pharmacophore model for the
active target.The process of molecular docking involves study of different bondingmodes of one ligand with active cavities of target
receptors protein tyrosine phosphatase 1-beta (PTP-1𝛽), dipeptidyl peptidase-IV (DPP-IV), aldose reductase (AR), and insulin
receptor (IR) with help of docking software Molegro virtual docker (MVD). From the results of docking score values on different
receptors for antidiabetic activity, it is observed that constituents, namely, secoisoresinol, pinoresinol, and cedeodarin, showed
the best docking results on almost all the receptors, while the most significant results were observed on AR. Then, LigandScout
was applied to develop a pharmacophore model for active target. LigandScout revealed that 2 hydrogen bond donors pointing
towards Tyr 48 and His 110 are a major requirement of the pharmacophore generated. In our molecular docking studies, the active
constituent, secoisoresinol, has also shown hydrogen bonding with His 110 residue which is a part of the pharmacophore. The
docking results have given better insights into the development of better aldose reductase inhibitor so as to treat diabetes related
secondary complications.

1. Introduction

Diabetes mellitus is one of the very common chronic diseases
across the world and the number of diabetic patients is on
the rise. The World Health Organization (WHO) estimates
that about 200 million people all over the globe are suffering
from diabetes and this figure is likely to be doubled by 2030.
WHO says that about 80% of the deaths occur every year
due to diabetes in middle-income countries [1]. The recently
published Indian council for medical research-India diabetes
(ICMR-INDIAB) national study reported that there are 62.4
million people with type 2 diabetes (T2DM) and 77 million
people with prediabetes in India [2]. This will be increased
to 100 million by 2030 [3]. T2DM predominantly affects
older individuals in developed countries, while in developing
nations like India, it is affecting the younger population in the
prime of their working lives and thus poses an even greater
threat to the health of these individuals [2, 4]. Many Indian
medicinal plants are being examined for their beneficial use
in diabetes and reports onmerits of using such plants occur in

numerous scientific journals. Bark of many plants along with
Pinus roxburghii has been used to treat diabetes ethnophar-
macologically [5]. Pinus roxburghii is known to be a rich
source of terpenoids, flavonoids, tannins, xanthones, steroids
[6, 7], and so forth.There ismuch interest among the scientist
to use this for therapeutic purposes. Pinus roxburghii is also
attributed to many pharmacological activities like analgesic,
anti-inflammatory [8], anticonvulsant [9], antiasthmatic [10],
hepatoprotective [11], and antidyslipidemic [12].

The receptor targets for T2DM reported by many scien-
tists till date are glycogen phosphorylase, protein tyrosine
phosphatase 1-beta (PTP-1𝛽), dipeptidyl peptidase-IV (DPP-
IV), glucokinase, peroxisome proliferator activated receptor
(PPAR-𝛾), aldose reductase (AR), insulin receptor (IR), and
so forth [13]. Protein tyrosine phosphatases are a group of
enzymes that remove phosphate groups fromphosphorylated
tyrosine residues in proteins. A large body of evidence from
a variety of experimental systems has strongly implicated a
key role for PTP1𝛽 in the regulation of the insulin signaling
pathway [14]. The insulin receptor (IR) is a transmembrane
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receptor that is activated by insulin, IGF-I (insulin-like
growth factor I), IGF-II (insulin-like growth factor II) and
belongs to the large class of tyrosine kinase receptors [15].
Metabolically, the insulin receptor plays a key role in the
regulation of glucose homeostasis, a practical process that
under deteriorate conditions may result in a range of clinical
manifestations including diabetes and cancer [16, 17]. Binding
of insulin leads to phosphorylation of several intracellular
substrates, including insulin receptor substrates (IRS1, 2, 3,
4), Casitas B-lineage (CBL), and other signaling intermedi-
ates [18]. Dipeptidyl peptidase-IV (DPP-IV), also known as
adenosine deaminase complexing protein, is a protein that,
in humans, is encoded by the DPP4 gene [19]. Inhibition
of DPP-IV has been shown to be an appropriate treatment
for T2DM [20]. DPP-IV specifically removes N-terminal
dipeptides from substrates containing proline or alanine as
the second residue, transforming them into inactive or even
antagonistic species. The most imperative DPP-IV substrates
are incretins, such as glucagon-like peptide-1 (GLP-1) and
glucose dependent insulinotropic polypeptide (GIP), which
stimulates insulin secretion [21]. Aldose reductase (AR) is the
first enzyme of the polyol pathway and is widely distributed
in mammalian tissues. Due to increased aldose reductase
activity, the accumulation of intracellular sorbitol is also
raised. It implicates the development of various secondary
complications of diabetes mellitus [22].

The main objective of this study is to validate the
ethnopharmacological knowledge of Pinus roxburghii with
the help of modern computer aided drug designing tools and
to develop safe and more reliable treatment for diabetes.

2. Material and Methodology

2.1. Receptor. The three-dimensional crystal structure of
different receptors taken from Protein Data Bank (PDB)
(http://www.rcsb.org/) is as follows: IR (PDB ID: 1IR3),
AR (PDB ID: 1US0), PTP1𝛽 (PDB ID: 2F70), and DPP-
IV (PDB ID: 3F8S) [23]. All the PDB’s were loaded in the
Molegro virtual docker (MVD) with the removal of all water
molecules. The standard Molegro algorithm was utilized
for rendering the missing charges, protonation states, and
assigning of polar hydrogen to the receptor.

2.2. Ligands. The mol files and smile formula of ligands
were obtained fromCHEMSPIDER database [24]. Structures
of ligands were drawn using marvin sketch and energy
minimization was done using MMFF94 force field. Energy
minimization is done to help the docking programme for
identifying the bioactive conformer from the local minima.
One major advantage of MVD is that it helps in assigning the
missing bond orders, charges, bonds, and hybridization states
of the imported ligands. The 2D structures of 25 ligands are
illustrated in Table 1.

2.3. Molinspiration. Molinspiration, an online tool, was
employed to perform QSAR studies in order to identify
potential activators of biological objects. It offers free online
services for calculation of important molecular properties

(LogP, polar surface area, number of hydrogen bond donors,
and acceptors), as well as prediction of the bioactivity score
for the most important drug targets. Molinspiration tool was
used to compute properties of ligands such as molecular
weight, logP, H bond acceptors, and H bond donors [25].
These filters help in early preclinical development and could
help in avoiding costly late step preclinical and clinical failure.
Lipinski’s rule of five was applied to select probable ligands
[26]. The constituent that had more than one violation was
eliminated from the present study.

2.4. Validation and Analysis of Docked Receptor-Ligand
Complex Structures. To ensure that ligands docked using the
Molegro virtual docker represent valid score and accurate
binding with receptor, the MVD scoring algorithm was
to be validated first for the crystal structures (PDB: 1IR3,
1USO, 2F70, 3F8S). In view of this, IR (PDB ID: 1IR3) was
tasted againwithmolecule: ANP (phosphoaminophosphonic
acid-adenylate ester); AR (PDB ID: 1USO) was tested with
IDD594 (2-(4-bromo-2-fluoro-benzylthiocarbamoyl)-5-(flu-
oro-phenoxy)-acetic acid); PTP1𝛽 (PDB ID: 2F70) was
tested with UN608(3-{[3-(3-sulfoamino-phenyl)-propio-
nylamino]-methyl}-phenyl)-sulfamic acid; DPP-IV (PDB
ID: 3F8S) was tested with PF2 (2-(4-{(3S,5S)-5-[(3,3-
difluoropyrrolidin-1yl)carbonyl]pyrrolidin-3-yl}piperazin-1-
yl)pyrimidine). They served as control docking models as
illustrated in Table 2. The outcome of the docking showed
that MVD determined the optimal orientation of the internal
ligands.

2.5. Molecular Docking of Ligands. We usedMVD, which has
been recently introduced and gained attention amongmedic-
inal chemists [27]. Bench mark results of MVD software
provide very accurate predictions of ligand binding modes
(87.0%) compared with other docking software such as Glide
(81.8%), GOLD (78.2%), Surflex (75.3%), and FlexX2 (57.9%)
[28]. MVD is based on a differential evolution algorithm
called MolDock; MolDock Score energy, 𝐸score, is defined by
(1), where 𝐸inter is the ligand-receptor interaction energy and
𝐸intra is the internal energy of the ligand. 𝐸inter is calculated
according to (2):

𝐸score = 𝐸inter + 𝐸intra, (1)

𝐸inter = ∑
𝑖=ligand

∑
𝑗=protein
[𝐸PLP (𝑟𝑖𝑗) + 332.0

𝑞
𝑖
𝑞
𝑗

4𝑟2
𝑖𝑗

] . (2)

The 𝐸PLP term is a “piecewise linear potential” [29, 30]
that uses two different parameters, one for the estimate of the
steric term (van der Waals) between atoms and another for
the potential for hydrogen bonds; it describes the electrostatic
interactions between charged atoms [28]. 𝐸intra is calculated
according to (3).

𝐸intra = ∑
𝑖=ligand

∑
𝑗=protein
[𝐸PLP (𝑟𝑖𝑗)]

+ ∑
flexible bond

𝐴 [1 − cos (𝑚𝜃 − 𝜃
∘
)] + 𝐸clash.

(3)
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Table 1: 2D structures of 25 chemical constituents from Pinus roxburghii.
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Table 1: Continued.
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The first term in (3) calculates all the energies involving
pairs of atoms of the ligand, except those associated with
two bonds. The second term represents the torsional energy,
where h is the torsional angle of the bond. The average of the
torsional energy bond contributions is used if several torsions
can be determined. The last term, 𝐸clash, assigns a penalty
of 1,000 kcal/mol if the distance between two heavy atoms
(more than two bonds apart) is smaller than 2.0 Å, ignoring
infeasible ligand conformations [28].

The molecular docking was performed for all the con-
stituents with the predicted cavities of the receptor. The

MolDock score (GRID) function was used with a grid
resolution (Å) of 0.30 and a binding site radius of 12 Å with
respect to the origin of the respective cavities. The “MolDock
SE” searching algorithm 10 runs using a maximum of 1500
iterations with a total population size of 50 was applied. The
energy threshold used for the minimized final orientation
is 100. The simplex evaluation with 300 maximum steps of
neighbor distance factor 1 was completed.

2.6. Pharmacophore Modeling. The structure-based phar-
macophore model was generated using the LigandScout
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Table 2: MolDock score of internal ligand and extracted internal
ligand of docked receptor-ligand complex structures.

PDB I.D Internal
ligand

MolDock score
(internal ligand)

MolDock score
(extracted internal ligand)

1IR3 ANP −268.525 −268.525
1US0 IDD594 −155.639 −155.639
2F70 UN608 −70.6666 −70.6666
3F8S PF2 −107.94 −107.94

software package [31], which uses an algorithm that studies
and interprets ligand-receptor interactions such as charge
transfer, hydrogen bonds, and hydrophobic regions of their
macromolecular environment from PDB files, allowing the
automatic building of the pharmacophore model. The gen-
erated pharmacophore model included the excluded volume
spheres, which represents the inaccessible areas along any
potential ligand [32].

3. Result and Discussion

Out of 25 constituents on which docking was performed,
only 15 constituents passed the Lipinski rule of five (see
Table 1 in Supplementary Material available online at http://
dx.doi.org/10.1155/2014/903246). Docking results obtained
for each ligand with the receptors were analyzed apart from
docking energy, and binding modes and interaction of each
ligand with the functional residues of IR (PDB ID: 1IR3),
AR (PDB ID: 1USO), PTP1B (PDB ID: 2F70), and DPP-
IV (PDB ID: 3F8S) were analyzed in detail by visually
inspecting the docked complexes using MVD. The hydrogen
bonds involved with bond length were also considered in
docking results. Docking result of our constituents against
each PDB structure is given in Supplementary Tables 2–5. On
comparing the value of logP with docking score on different
PDB, it is concluded that there is no relation between logP
and docking score. Constituents having high logP value did
not show good docking score on any PDB and constituents
having intermediate logP value showed good docking score.
H-bond acceptor can be seen as a tie-in with a docking
score of constituents. The constituents having intermediate
value of H-bond acceptor with intermediate value of logP
may be considered as good antidiabetic constituents. The
constituents having high value of H-bond acceptors also did
not show good activity.

3.1. Insulin Receptor (IR). The internal ligand ANP showed
MolDock score value −268.525 on PDB ID: 1IR3, while
three constituents, namely, secoisoresinol, pinoresinol, and
cedeodarin showed maximum value of −123.346, −122.854,
and −173.749, respectively. Amino acid residues, namely, Ser
1006, Lys 1030, Asp 1083, Met 1079, and Glu 1077, were the
main amino acid residues involved in the interaction of
internal ligand and most of the active constituents in 1IR3.

3.2. Aldose Reductase (AR). MolDock score value of internal
ligand IDD594 was −156.549, while pinoresinol constituents,
namely, secoisoresinol, pinoresinol, and cedeodarin, showed

maximum value of −173.78, −146.801, and −198.027, respec-
tively. Amino acid residues, namely, Tyr 48, Ser 210, and Tyr
209, were having interaction with internal ligand, whereas
constituents mainly interact with Trp 111, His 110, Asn 160,
Cys 298, Asp 216, Leu 212, Asp 43, Thr, 199, and Trp 20 of the
said receptor.

3.3. Dipeptidyl Peptidase-IV (DPP-IV). In case of PDB
ID: 2F70 internal ligand UN608 showed MolDock score
value-70.6666 while three constituents, namely, caffeic acid,
kaempferol, and cedeodarin showed maximum value of
101.897, −104.744, and −95.3797, respectively. Amino acid
residues of PDB ID: 2F70 involved interactions with the
internal ligand and constituents were Arg 221, Ser 216, Gly
218, Ile 219, Gly 220, Asp, 181, Gly 86, and His 214.

3.4. Protein Tyrosine Phosphatase 1-Beta (PTP-1𝛽). The inter-
nal ligand PF2 showed MolDock score value of −107.94 on
PDB ID: 3F8S, while three constituents, namely, catechin,
secoisoresinol, and pinoresinol showed maximum value of
−112.972, −106.909, and −114.634, respectively. Constituents
showed the least interaction with this receptor. Still Asn
710, Tyr 662, and Ser 630 were key amino acid residues for
forming hydrogen bonds.

From the results of docking score values on different
receptors for antidiabetic activity, it is observed that con-
stituents, namely, secoisoresinol, pinoresinol, and cedeodarin
showed the best docking results on almost all the receptors,
while most significant effects were observed on PDB ID:
1US0 against internal standard IDD594.The interaction of the
standard and secoisoresinol is given in Figures 1(a)-1(b).

The traditional medicinal system has plenty of oppor-
tunities, which are however needed to be explored till date
for the treatment of many ailments [33]; if one can employ
the modern computational chemistry tools for exploring the
potential of the traditional medicinal system, then aston-
ishing results can be received. Similar studies have been
taken away in the past by many scientists where bioactive
compounds are docked on particular receptor to evaluate its
affinity [34–36]. In our work, we used two approaches of
structure based drug designing, namely, molecular docking
and pharmacophore modeling for measuring the potential
antidiabetic components and their mechanism of activity.
The primary aim of selecting the four different receptors was
to distinguish the major pathway through which Pinus rox-
burghii exhibits its antidiabetic potential. From our docking
results we found that it was aldose reductase on which active
constituents from Pinus roxburghii were found to be most
active. The role of aldose reductase inhibitors in diabetes has
been corroborated by many researchers [37]. Further, our
docking on the enzyme 1US0 (aldose reductase) revealed that
secoisoresinol, pinoresinol, and cedeodarin have the highest
affinity for AR. Our results were validated by generations of
the pharmacophore model which predicts Tyr48 and His 110
as an indispensable essential for the formation of H-bonding
with ligand (Figure 2). In our molecular docking simulation
on 1US0, we found that internal ligand is interacting with Tyr
48 whereas secoisoresinol which has the highest MolDock
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Ser 210

Tyr 209

3.30 Å
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Figure 1: (a) Binding mode of secoisoresinol (green) into the binding site of aldose reductase receptor (PDB ID: 1US0). (b) Binding mode of
IDD594 (green) into the binding site of aldose reductase receptor (PDB ID: 1US0).
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Figure 2: Pharmacophore model of 1US0.

score has interaction with His 110; this data is well correlated
with the pharmacophore model.

4. Conclusion

17 constituents from Pinus roxburghii were docked on differ-
ent receptors out of which secoisoresinol, pinoresinol, and
cedeodarin showed the highest affinity for the AR. Phar-
macophore model developed with the help of LigandScout
predicts that Tyr 48 and His 110 are needed for the formation
of H-bonding with ligand. Secoisoresinol which has highest
MolDock score showed interaction with His 110. Moreover,
antidiabetic effect of secoisoresinol has been shown in animal

model also [38]. This clearly indicated that secoisoresinol
from Pinus roxburghii can be utilized to care for diabetes.
Our studies may lay the base of further exploration of the
Pinus roxburghii for its antidiabetic potential. The above
findings also validate the ethnopharmacological knowledge
on this plant. Hence, it can be concluded that Pinus roxburghii
has high potential as antidiabetic especially against aldose
reductase pathway in diabetes.
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