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Abstract

Group A Streptococcus (GAS) is a Gram-positive human pathogen best known for causing pharyngeal and mild skin
infections. However, in the 1980’s there was an increase in severe GAS infections including cellulitis and deeper tissue
infections like necrotizing fasciitis. Particularly striking about this elevation in the incidence of severe disease was that those
most often affected were previously healthy individuals. Several groups have shown that changes in gene content or
regulation, as with proteases, may contribute to severe disease; yet strains harboring these proteases continue to cause mild
disease as well. We and others have shown that group A streptococci (MGAS5005) reside within biofilms both in vitro and in
vivo. That is to say that the organism colonizes a host surface and forms a 3-dimensional community encased in a protective
matrix of extracellular protein, DNA and polysaccharide(s). However, the mechanism of assembly or dispersal of these
structures is unclear, as is the relationship of these structures to disease outcome. Recently we reported that allelic
replacement of the streptococcal regulator srv resulted in constitutive production of the streptococcal cysteine protease
SpeB. We further showed that the constitutive production of SpeB significantly decreased MGAS5005Dsrv biofilm formation
in vitro. Here we show that mice infected with MGAS5005Dsrv had significantly larger lesion development than wild-type
infected animals. Histopathology, Gram-staining and immunofluorescence link the increased lesion development with lack
of disease containment, lack of biofilm formation, and readily detectable levels of SpeB in the tissue. Treatment of
MGAS5005Dsrv infected lesions with a chemical inhibitor of SpeB significantly reduced lesion formation and disease spread
to wild-type levels. Furthermore, inactivation of speB in the MGAS5005Dsrv background reduced lesion formation to wild-
type levels. Taken together, these data suggest a mechanism by which GAS disease may transition from mild to severe
through the Srv mediated dispersal of GAS biofilms.
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Introduction

Cellulitis is a soft tissue infection of the dermis that extends into

subcutaneous tissues and can be either non-necrotizing or more

severe and associated with tissue necrosis (abscesses or exudates)

[1–3]. This acute spreading infection can arise from a pre-existing

infection, an underlying skin condition (eczema) or a break in the

epithelium, and can occur at any site on the body [2–4]. Group A

Streptococcus (GAS) is a Gram-positive human pathogen that is

capable of causing a variety of infections in the human host, and is

often associated with cellulitis and other soft tissue infections

ranging in severity from impetigo to severe necrotizing fasciitis [5–

11]. Serotype M1 GAS strains have become the most common

cause of invasive GAS infections following their sudden increase in

frequency and disease severity in the mid-1980’s [12]. Non-

invasive GAS infections, comprised of mostly throat and skin

infections, are less severe but have a higher rate of occurence, with

over ten million cases diagnosed each year [13].

While GAS biofilms have been observed both in vivo and in vitro,

the composition and regulation of these structures during a soft

tissue infection have not been well defined [14–17]. Akiyama et al.

(2003) made some of the first observations of GAS microcolony

formation in murine tissue infections, in which the microcolony

appeared to be surrounded by glycocalyx. Similar structures were

also identified in human impetigo specimens, suggesting that GAS

biofilms play an important role in soft tissue pathogenesis and,

subsequently, treatment of these infections [14]. In vitro grown

biofilms have shown that DNA and proteins, not carbohydrates,

are necessary components for biofilm formation, suggesting that

the composition of these structures may vary between strains or in

the presence of an active immune response [16]

One GAS virulence factor, SpeB, is an extracellular cysteine

protease capable of cleaving both host and bacterial proteins and

contributing to tissue damage and dissemination [17–20]. In vitro,

SpeB has been shown to play a role in GAS evasion of the host

immune response by preventing immunoglobulin and C3b, a

component of the complement pathway, opsonization [21,22].

Clearance of GAS by neutrophils and macrophages may also be

inhibited in the presence of SpeB; it has been previously shown in

vitro that SpeB can induce apoptosis in both of these phagocytic

immune cells [23,24]. SpeB activates host proteins through

cleavage, such as interleukin-1b precursor and pro-matrix
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metalloprotease-2 and -9; these mature forms are capable of aiding

in GAS dissemination from the site of infection through increased

inflammation and tissue damage, respectively [17,19]. The

cleavage and degradation of extracellular matrix proteins by

SpeB, such as tissue integrity components fibronectin and

vitronectin, also contributes to tissue damage and bacterial

colonization [18]. In addition to host proteins, SpeB degrades a

wide variety of GAS-produced proteins and virulence factors,

including M protein, protein F1, C5a peptidase, protein H and

SmeZ [18]. SpeB cleavage of the adherence factors M protein and

protein F1 is thought to reduce both bacterial and host cell-to-cell

interactions [25–27]. Cleavage-activated C5a peptidase degrades

C5a while free protein H binds C3, inhibiting opsonization by the

complement pathway [26]. Finally, proteolysis of the superantigen

SmeZ limits the immune response [18].

Recently, we have shown that allelic replacement of the

streptococcal regulator of virulence (Srv), a putative transcriptional

regulator, resulted in the constitutive production of SpeB [28,29].

While speB is highly conserved and present in almost all strains of

GAS, speB expression is variable between strains [30]. Production

of SpeB in MGAS5005 planktonic culture is detected during late

exponential and early stationary phases of growth, however, high

levels of SpeB are present in MGAS5005Dsrv culture after only

two hours of growth [29,31].

Interestingly, loss of Srv also led to a significant reduction in the

ability of GAS to form biofilms. As hypothesized by Donlan and

Costerton, a biofilm is a bacterial sessile community encased in a

matrix of extracellular polymeric substances and attached to a

substratum or interface [32]. Biofilms are believed to be inherently

tolerant to host defenses and antibiotic therapies and often linked

to chronic illness due to impaired clearance [33,34]. Some

estimates suggest that upwards of 60% of all bacterial infections

involve biofilms, including soft tissue infection and necrotizing

fasciitis [14,32,35]. There is a growing understanding of the

importance of biofilm formation in GAS disease as well [14–

16,36–40]. In our in vitro work we have shown that either allelic

replacement of SpeB in the MGAS5005Dsrv background or

chemical inhibition of SpeB with the cysteine protease inhibitor

E64 restored biofilm formation by the MGAS5005Dsrv strain to

wild-type levels [16,41].

Taken together, these observations suggest two possible

hypotheses for the fate of the MGAS5005Dsrv strain in a murine

model of soft tissue infection. One, the loss of biofilm formation by

MGAS5005Dsrv in vitro would translate into increased clearance in

vivo and decreased virulence. Two, the constitutive production of

SpeB by MGAS5005Dsrv would lead to increased virulence and

tissue damage. To test these hypotheses, we challenged mice in a

subcutaneous model of skin infection. We demonstrated that allelic

replacement of srv resulted in increased virulence. This increased

virulence was associated with increased SpeB detection and

decreased evidence of MGAS5005Dsrv biofilm formation. Allelic

replacement of speB in the MGAS5005Dsrv background reduced

virulence to wild-type levels and evidence of biofilm formation in

vivo was observed. Furthermore, local treatment of the infection

with the cysteine protease inhibitor E64 significantly reduced

virulence.

Results

Allelic replacement of srv resulted in increased virulence
in a murine subcutaneous infection model

To assess the loss of srv in an in vivo infection model, groups of 10

mice were inoculated with ,26108 CFU of either MGAS5005 or

MGAS5005Dsrv. The area of the lesion, average percentage of

weight loss, and bacterial load recovered were recorded. In

general, MGAS5005 infected animals developed a subcutaneous

abscess 1 dpi that erupted as a measurable cutaneous lesion by

2 dpi (Figure 1A). In contrast, MGAS5005Dsrv infected animals

developed readily visible lesions by 2 dpi that were significantly

larger than those observed in MGAS5005 infected animals

(Figure 1A and B). This trend continued with significantly larger

lesions observed in MGAS5005Dsrv infected animals throughout

the course of the experiment with lesions exceeding 40 mm2 in

some cases (Figure 1A and B). A similar trend was observed when

the average weight lost between the two groups of animals was

compared. Both groups of animals lost on average 10% of their

body weight by 1 dpi (Figure 2). By day 3, MGAS5005Dsrv

infected animals weighed significantly less than their wild-type

infected counterparts (Figure 2). While not always significant, the

average recorded weight of MGAS5005Dsrv infected animals was

less than MGAS5005 infected animals over the 8 day experiment

(Figure 2). To determine if this increase in virulence might be due

to increased bacterial load, three additional mice for each

experimental group were infected as described above. Lesions

and the underlying abscess were surgically excised, homogenized,

and the bacteria were enumerated. Even though larger lesions

were excised from MGAS5005Dsrv infected animals, the total

bacterial CFU recovered (Figure 3A), as well as bacterial CFU/g

(Figure 3B), was not statistically different between MGAS5005 and

MGAS5005Dsrv infected animals at 1, 3, or 8 dpi.

Figure 1. Allelic replacement of srv lead to increased lesion size
in a murine subcutaneous infection model. (A) Groups of 10 mice
(Crl:SKH1-hrBR) were challenged subcutaneously with ,2.06108 CFU
(0.1 ml) of either MGAS5005 or MGAS5005Dsrv. Representative images
of lesions formed at 1, 3 and 8 dpi are shown. (B) The area of the lesion
formed (mm2) was measured with a caliper daily. Lesions formed by
MGAS5005Dsrv were significantly larger (p#0.05) than those formed by
MGAS5005 by 2 dpi (Student’s t-test).
doi:10.1371/journal.pone.0018984.g001

GAS Biofilm Formation in Soft Tissue Infection
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Histopathology of lesion tissue sections revealed greater
necrosis in MGAS5005Dsrv infected samples

To further investigate the differences in virulence observed, 3

mice per experimental group were infected as before and

histopathology was performed using sections from MGAS5005

and MGAS5005Dsrv lesions collected at days 1, 3, and 8 post-

infection. 10 mm sections were subjected to H&E staining to

observe the infiltrate present and the extent of damage at the site

of infection (Figure 4). MGAS5005 infected samples showed the

clear development of a subcutaneous abscess, characterized by

edema well delineated by fibrin and polymorphonuclear leuko-

cytes (PMNs) (Figure 4A and B). While the extent of ulceration

varied, cutaneous lesions developed over the next three days with

some degree of epithelial reformation (healing) observed by 8 dpi

(Figure 4C). In contrast, MGAS5005Dsrv infected samples showed

evidence of edema and ulceration by 1 dpi, however, the edema

was not well delineated by fibrin accumulation and PMN influx

(Figure 4D). As recorded photographically in Figure 1, the

MGAS5005Dsrv lesions continued to develop over time with little

signs of healing or resolution (Figure 4 E and F).

SpeB detected throughout MGAS5005Dsrv infected
tissue

As mentioned previously, our in vitro work demonstrated that

allelic replacement of srv resulted in constitutive production of SpeB.

To begin to test the hypothesis that the increased virulence observed

of MGAS5005Dsrv was due to SpeB, we used immunofluorescent

microscopy to look for the presence of GAS and SpeB in the

infected tissue. Given that a significant difference in lesion size was

observed by 2 dpi, we elected to study tissue samples collected 1 dpi.

Adjacent 10 mm sections of lesion tissue to those collected for

histology and Gram-stain were obtained and stained with rabbit

anti-SpeB sera, goat anti-GAS sera, and fluorescent secondary

antibody conjugates. DIC/fluorescent images showed GAS distrib-

uted throughout MGAS5005 and MGAS5005Dsrv infected samples

(Figure 5A and B). Randomly selected areas throughout the

abscesses were chosen for closer examination at 206magnification

(Figure 5A and B i–iv). While MGAS5005 was readily detected in

the 206 images, SpeB was rarely observed (Figure 5Ai–iv).

However, SpeB was readily detected in the MGAS5005Dsrv

infected samples (Figure 5Bi–iv). In an effort to quantify the signal

observed, ImageJ (rsbweb.nih.gov) was used to calculate the pixel

area from the four representative 206images provided (Figure 5C).

While the images shown are from single mouse infections, they are

representative of the images obtained from each of the experimental

groups. While both infections showed similar staining of anti-GAS,

anti-SpeB staining was significantly increased in images collected

from the MGAS5005Dsrv infected tissue sample (Figure 5C).

Gram-staining revealed microcolonies indicative of
biofilms in MGAS5005 infected samples

Based on our in vitro data, we hypothesized that MGAS5005Dsrv

would be largely unable to form biofilms in vivo. We and other

researchers have shown that microcolonies, detected by Gram-

staining and other methods, are evidence of in vivo biofilms

[14,15,17,42]. 10 mm sections of lesion tissue collected 1, 3, and

8 dpi were subjected to Gram-staining. MGAS5005 microcolonies

were clearly observed by 3 dpi (Figure 6A). Larger microcolony

formations were observed 8 dpi in MGAS5005 infected samples

(Figure 6A). However, no comparable structures were observed in

Gram-stained MGAS5005Dsrv infected samples (Figure 6B).

Instead, MGAS5005Dsrv appeared randomly distributed through-

out the samples.

Allelic replacement of speB in the MGAS5005Dsrv
background significantly reduced lesion formation in
infected animals and restored microcolony formation

We have recently shown that allelic replacement of speB in the

MGAS5005Dsrv background restored biofilm formation and

Figure 2. Average percentage of mouse weight loss following
GAS infection. Groups of 10 mice were challenged subcutaneously
with ,2.06108 CFU (0.1 ml) of either MGAS5005 or MGAS5005Dsrv.
The percentage of weight lost was monitored for 8 dpi. Mice infected
with MGAS5005Dsrv weighed significantly less on 5/8 dpi (*p#0.05).
doi:10.1371/journal.pone.0018984.g002

Figure 3. Bacterial load recovered from excised lesions. Lesions
from mice infected with either MGAS5005 or MGAS5005Dsrv (n = 3
mice/strain) were excised at 1, 3 and 8 dpi, weighed and homogenized
for replicate plating. No significant difference in (A) total CFU recovered
or (B) CFU/g was observed at 1, 3, and 8 dpi.
doi:10.1371/journal.pone.0018984.g003

GAS Biofilm Formation in Soft Tissue Infection
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eliminated SpeB production in the MGAS5005Dsrv strain [41,42].

Based on the data presented here we hypothesize that the

MGAS5005DsrvDspeB strain would be less virulent and microcol-

ony formation in the infected lesion tissue samples would be

observed. Mice were infected as before using ,26108 CFU of

MGAS5005DsrvDspeB (n = 10). Lesion formation by the

MGAS5005DsrvDspeB strain resembled that of MGAS5005 and

was significantly less than the size of lesions observed in

MGAS5005Dsrv infected samples (Figure 7). Comparable bacterial

CFU was recovered at 8 dpi from MGAS5005, MGAS5005Dsrv,

and MGAS5005DsrvDspeB infected tissue (data not shown). Gram-

stained 10 mm sections of MGAS5005DsrvDspeB infected samples

revealed the presence of microcolonies of varying sizes 8 dpi

(Figure 8).

Chemical inhibition of SpeB in vivo during
MGAS5005Dsrv infection significantly reduces lesion
formation

Our data indicate that increased virulence of the

MGAS5005Dsrv strain is due to the constitutive production of

SpeB documented in vitro. Thus, we hypothesized that chemical

inhibition of SpeB in vivo during infection would reduce lesion

formation and virulence. To test this hypothesis, the infecting dose

of MGAS5005Dsrv was suspended in 333 mM of E64 (0.1 mL).

E64 is a commercially available inhibitor of cysteine proteases

[43,44]. Mice were infected as before and monitored for 8 days

(n = 10). The overall area of the lesions formed was reduced and

was significantly less than lesions formed by MGAS5005Dsrv

infected animals on days 4–8 post-infection (Figure 9A). To

determine if lesion size could be reduced even further, E64 was

mixed with the inoculating dose of MGAS5005Dsrv as before, and

infected mice received injections of 0.1 mL 333 mM E64 each day

post-infection. Injections were delivered directly to the subcuta-

neous abscess. Lesion formation was returned to wild-type levels

and significantly less than in untreated MGAS5005Dsrv infected

animals days 2–8 post-infection (Figure 9B). Addition of E64 to

MGAS5005 infected samples did not result in a statistically

significant change in lesion size over the course of infection (data

not shown).

To rule out the possibility that the reduced lesion size was due to

the therapeutic effects of lavage, animals were infected

MGAS5005Dsrv as before and receive daily 0.1 mL injections of

saline directly to the abscess. While lesion size was reduced, it was

not reduced to the extent of the E64 treated animals (Figure 10).

Thus, while lavage has a therapeutic effect, chemical inhibition of

SpeB by E64 in vivo significantly reduces the virulence of

MGAS5005Dsrv.

Discussion

Previously, we have shown that the loss of the stand-alone

response regulator Srv in MGAS5005 resulted in significant

reduction of in vitro biofilm formation in both static and flow biofilm

assays [16,41]. Furthermore, MGAS5005Dsrv exhibited reduced

biofilm formation in vivo in a chinchilla model of otitis media [42].

The loss of biofilm formation by MGAS5005Dsrv was attributed to

constitutive production of the cysteine protease SpeB, as biofilm

formation was restored through either chemical inhibition of SpeB

in vitro or allelic replacement of speB in the MGAS5005Dsrv

background in both in vitro and in vivo biofilm models [16,41,42].

One long term goal of our laboratory is to understand the role of the

GAS biofilm in disease. In our recent work utilizing a chinchilla

model of otitis media, we hypothesized that the biofilm deficient

MGAS5005Dsrv strain would be readily cleared from the site of

infection due to the lack of the protective properties afforded by the

biofilm. However, we found that MGAS5005Dsrv persisted at the

site of infection for the duration of the experiment [42].

Furthermore, higher bacterial loads of MGAS5005Dsrv were

observed in middle ear effusions throughout the course of infection

compared to MGAS5005, and, while not statistically significant, the

mortality rate of MGAS5005Dsrv infected animals was higher [42].

Taken together, this data supports a hypothesis that dispersal of the

GAS biofilm by SpeB results in increased virulence. Here, we chose

to further explore this hypothesis in a murine soft tissue model of

infection. Based on our hypothesis, one of two outcomes was likely.

One, lack of biofilm formation in the soft tissue model would result

in the accelerated clearance of GAS from the site of infection.

Alternatively, dispersal of the GAS biofilm and the constitutive

production of SpeB would result in increased virulence and tissue

Figure 4. Histopathology of excised lesions from MGAS5005 and MGAS5005Dsrv infections. Lesions were surgically excised at days 1, 3,
and 8 post infection. 10 mm sections were subjected to H&E staining. Representative low-magnification images (26) from each time point are shown.
(A,B) Infection with MGAS5005 resulted in the formation of a subcutaneous abscess (arrow) that was well delineated by fibrin (pink border) and PMNs
(purple border). (C) By 8 dpi, the abscess had ruptured and formed a cutaneous lesion that showed signs of healing (arrow). (D) MGAS5005Dsrv
infection resulted in a cutaneous lesion (arrow). (D & E) Note the subcutaneous abscess was less contained by colocalized fibrin and PMNs (dashed
arrows). (E) The cutaneous lesion grew in size and did not show any appreciable healing by 8 dpi (F).
doi:10.1371/journal.pone.0018984.g004

GAS Biofilm Formation in Soft Tissue Infection
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damage. The results presented here clearly support the latter

outcome.

The association of SpeB and increased lesion development has

been previously reported in other GAS infection models

[10,20,45–48]. For example, SpeB production was found to be

essential for establishing a murine skin infection that ultimately

resulted in systemic infection, reduced clearance by the innate

immune response, and increased mortality [10,20]. More recently,

Figure 5. Immunofluorescent antibody staining revealed detectable levels of SpeB throughout MGAS5005Dsrv infected tissue as
compared to MGAS5005 infected tissue. Subcutaneous abscesses from (A) MGAS5005 and (B) MGAS5005Dsrv infections were excised 1 dpi,
sectioned, and stained with rabbit anti-SpeB sera and goat anti-GAS sera, and the appropriate fluorescent secondary antibody conjugate. (A, B) DIC/
fluorescent images (46) from an MGAS5005 infected animal (A) and an MGAS5005Dsrv infected animal (B) show the distribution of GAS (red)
throughout the abscess. Randomly selected areas throughout the abscesses were examined for the colocalization of GAS and SpeB (206, i–iv).
MGAS5005 was readily detected (Ai–iv), but SpeB (green) was rarely detected in MGAS5005 infected samples (arrows, Aiii). In contrast, SpeB was
detected in the presence of MGAS5005Dsrv throughout the infected samples (Bi–iv). Colocalized SpeB and GAS appear yellow. Representative images
are shown. (C) Average total area of pixels (pixels2) was calculated for anti-GAS and anti-SpeB staining in the representative images shown of
MGAS5005 and MGAS5005Dsrv. Comparable amounts of anti-GAS staining was observed, however, there is significantly more anti-SpeB staining in
MGAS5005Dsrv images compared to MGAS5005 (* p,0.01).
doi:10.1371/journal.pone.0018984.g005

GAS Biofilm Formation in Soft Tissue Infection
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SpeB levels positively correlated with the severity of tissue damage

observed following a GAS skin infection in a humanized mouse

model [49]. Furthermore, addition of purified SpeB with either a

wild-type or DspeB M1 strain into a mouse air sac model of

infection led to accelerated and increased tissue necrosis, as well as

Figure 6. Gram-staining of lesion tissue sections revealed the
presence of MGAS5005 microcolonies (biofilms). 10 mm sections
of lesion tissue collected 1, 3, and 8 dpi were subjected to Gram-
staining. (A) MGAS5005 infected samples contained microcolonies of
adherent GAS which were visible by 3 dpi (arrows). These microcolonies
are reminiscent of biofilms and appeared to increase in size by 8 dpi. (B)
MGAS5005Dsrv infected samples contained randomly dispersed GAS
throughout the field of view. Microcolonies were largely absent. The
same view of single day images are shown at 606 and 1006
magnification. Representative images are shown.
doi:10.1371/journal.pone.0018984.g006

Figure 7. Allelic replacement of speB in the MGAS5005Dsrv
background resulted in significantly decreased lesion size.
Representative images of lesions formed in mice at 1, 3 and 8 days
following subcutaneous infection with ,26108 CFU (0.1 ml) of
MGAS5005DsrvDspeB. Lesion development (mm2) was monitored over
8 days using a caliper (n = 10 mice/strain). A significant reduction in
lesion size was observed in MGAS5005DsrvDspeB infected mice
(p,0.05). The size of lesions observed in MGAS5005 infected mice vs.
MGAS5005DsrvDspeB was not significantly different.
doi:10.1371/journal.pone.0018984.g007

Figure 8. Microcolony formation is observed in MGAS-
5005DsrvDspeB infected tissue. Representative images of Gram-
stained sections (10 mm thick) collected from two MGAS5005DsrvDspeB
infected mice at 8 dpi. MGAS5005DsrvDspeB microcolonies (arrows)
were present in the edema at the site of infection.
doi:10.1371/journal.pone.0018984.g008

GAS Biofilm Formation in Soft Tissue Infection
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dissemination of the organism away from the initial site of

infection [47]. The DspeB M1 strain alone did not form a lesion of

any significance [47]. Thus, SpeB is a well appreciated and

increasingly understood virulence factor of GAS. However, there

are several observations presented here that provide new insight

into the biology of GAS and its pathogenesis.

Figure 9. Use of the chemical inhibitor of cysteine proteases E64 significantly reduced lesion size in MGAS5005Dsrv infected
animals. Representative images of lesions formed in mice at 1, 3 and 8 days following subcutaneous infection with ,26108 CFU of MGAS5005Dsrv.
(A) The infecting dose of MGAS5005Dsrv was suspended in 333 uM E64 (0.1 ml), and lesion development (mm2) was monitored over 8 days (n = 10
mice). A significant reduction in lesion formation was observed when E64 was inoculated with the infecting dose of MGAS5005Dsrv compared to
inoculation with MGAS5005Dsrv alone (p,0.05). (B) Following inoculation of animals with E64+MGAS5005Dsrv as before, an additional inoculation of
333 mM E64 (0.1 mL) was injected directly into the abscess each day following infection (n = 10). A significant reduction in lesion size was observed
with E64 treated animals forming lesions roughly equivalent in size to untreated MGAS5005 infected animals.
doi:10.1371/journal.pone.0018984.g009

Figure 10. Daily wound irrigation not responsible for the reduction in lesion size observed in E64 treated animals. Lesion size in saline
treated animals (n = 3) was significantly reduced at 5 and 6 dpi compared to MGAS5005Dsrv infected animals (p,0.05), however, lesions in saline
treated animals were statistically larger than those in E64 treated animals at 2–8 dpi (p,0.05).
doi:10.1371/journal.pone.0018984.g010

GAS Biofilm Formation in Soft Tissue Infection
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First, we clearly show that allelic replacement of srv in the

MGAS5005 background leads to increased virulence coupled with

increased production of SpeB in vivo. Previously, regulation of speB

has been linked to several regulatory factors, including the two

component signal transduction system CovRS (also referred to as

CsrRS) [50–53]. This is particularly interesting because

MGAS5005 has been shown to produce a truncated, functionally

inactive CovS protein, which results in a loss of the histidine kinase

domain and the ability to phosphorylate CovR [48,54,55]. It

should be noted that this does not invalidate MGAS5005 as a

strain worthy of study. MGAS5005 was isolated from a patient

suffering from invasive disease. In fact, several recent studies have

shown evidence of GAS with covS non-functional mutations

isolated from in vivo systemic infections, suggesting that covS

mutants posses a selective advantage during invasive infections

[48,54,56–61]. Normally, CovS can also help to relieve CovR

repression and increase speB expression in response to stress

[62,63]. Complementation of MGAS5005 in trans with a

functional covS restored SpeB production [48]. Here, SpeB

production is restored through the allelic replacement of srv

suggesting that Srv is involved in the CovR mediated repression of

speB. Efforts are underway to understand this mechanism as are

studies to explore the function of Srv in strain backgrounds with a

functional CovS.

Second, loss of srv also results in a loss of biofilm formation in

vivo. This is observed in our Gram-stained sections which revealed

that MGAS5005 aggregated into microcolonies while

MGAS5005Dsrv was dispersed throughout the infected samples.

This change in phenotype is also due to the restored production of

SpeB as microcolony formation was observed in

MGAS5005DsrvDspeB infected samples. These results mimic what

we have recently observed in a chinchilla model of GAS otitis

media [42]. Thus, we now have evidence that biofilm formation is

not required for infection at two distinct host sites (skin and middle

ear), or at least not required given the means of inoculation used.

However, our data also suggests that MGAS5005 would naturally

form a biofilm upon infection. We envision a model where biofilm

formation is used for colonization of a host site and protection

from the innate immune response. Coordinate regulation of speB

by both CovR and Srv (and perhaps other regulators) would allow

for the controlled production of SpeB that would facilitate

dispersal of some portion of GAS from the biofilm to achieve

spread to another host site or susceptible host. Under this model,

loss of regulation of this system would lead to severe disease. It has

been hypothesized that downregulation of SpeB in DcovS strains

would prevent cleavage and degradation of virulence factors that

may aid in GAS transitioning from a localized to a systemic

infection [45,54,56,57,64,65]. It is interesting to speculate that the

selective advantage provided by natural mutations in covS is an

increase in the ability to form biofilms and a resulting increase in

the ability to colonize a host site. We have begun to test this

hypothesis and have found that allelic replacement of srv in a

normally CovS+ background in serotypes M1, M3, M12 and M18

resulted in decreased biofilm formation in vitro (data not shown).

Finally, we demonstrated that chemical inhibition of SpeB in vivo

resulted in a significant reduction in lesion formation. We utilized

the specific inhibitor of cysteine proteases E64, which irreversibly

binds the active thiol group of SpeB [43,44,66]. E64 is commonly

used as a cysteine protease inhibitor during in vitro assays, but this

is the first study to our knowledge to demonstrate the effects of E64

treatment on GAS infection in vivo [11,16,65,67,68]. Addition of

E64 to the MGAS5005Dsrv inoculum immediately prior to

infection significantly reduced lesion development, suggesting that

halting SpeB activity early during the course of infection may be

the most useful. Daily treatment of MGAS5005Dsrv infections with

E64 further reduced lesion development. Of course E64 may be

inhibiting other inflammatory elements at the site of infection

which contribute to lesion development. Taken together, this data

provides further support for therapeutics designed to modulate

SpeB and the host immune response to streptococcal infection.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Animal Care and Usage Committee

of the Wake Forest University School of Medicine (Animal

Welfare Assurance #A3391-01). All procedures were performed

under isoflurane anesthesia, and all efforts were made to minimize

suffering.

Bacterial strains and growth conditions
MGAS5005 is a M1T1 serotype strain isolated from a case of

invasive GAS disease and has previously been used in several

studies of GAS pathogenicity [16,69]. The isogenic mutants

MGAS5005Dsrv and MGAS5005DsrvDspeB were generated by

allelic replacement as previously described [69–71]. Overnight

cultures grown in Todd Hewitt broth (Becton-Dickinson) supple-

mented with 2% yeast extract (THY) (Fisher Scientific) at 37uC,

5% CO2 were diluted into fresh THY and allowed to reach

logarithmic phase. Logarithmic cultures were washed 3 times in

16Dulbecco’s Phosphate Buffered Saline (DPBS) before infection.

Initial CFU of infectious dose was confirmed by serial dilutions

plated onto THY agar plates.

Murine subcutaneous infections
Studies were approved by the Animal Care and Use Committee

of Wake Forest University Health Sciences. Five-week-old,

outbred, immunocompetent, hairless female Crl:SKH1-hrBR mice

(Charles River) received subcutaneous injections of

,2.06108 CFU (0.1 ml) of either MGAS5005, MGAS5005Dsrv

or MGAS5005DsrvDspeB at the base of the neck. Mice that

received L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane

(E64) (Sigma) treatment were given ,2.06108 CFU

MGAS5005Dsrv resuspended in 333 mM E64 (0.1 ml) at the time

of infection. Those that were given daily treatments of E64

received 333 mM E64 (0.1 ml) injected at the site of infection

beginning 24 hours post infection. Area of the lesion formed at the

site of infection was measured daily using a caliper. The weight of

each mouse was recorded daily for up to 8 days following

infection, at which point the mice were euthanized and tissue at

the site of infection was excised. A random subset of lesions were

homogenized to determine the bacterial load (CFU/g) at 1, 3 and

8 days following infection. Tissue samples were also fixed for

paraffin embedding or snap frozen in liquid nitrogen and stored at

280uC.

Microscopy
Tissue samples were fixed in fresh 1% paraformaldehyde for

24 hours at 4uC and then stored in 70% ethanol at room

temperature until paraffin embedding. Adjacent 10 mm thick

sections were collected and used for hematoxylin and eosin

staining (H&E), Gram-staining, or immunofluorescence. Sections

were collected on positively charged slides and heat fixed at 85uC
for 10 minutes. Paraffin was removed from the tissue sections by

xylene and ethanol washes before samples were stored in 16
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DPBS. Sections were stained using Harris’s hematoxylin formula,

eosin-phloxine and a standard H&E protocol. Taylor’s Brown-

Brenn modified Gram-stain was used for Gram-staining tissue

sections.

Immunofluorescence utilized double staining with the primary

antibodies rabbit anti-SpeB (1:100) (Toxin Technology, Inc.) and

goat anti-GAS (1:500) (US Biologicals); rabbit anti-Borrelia

burgdorferi (1:500) (US Biologicals) was used as a negative control.

Secondary antibodies used for double staining were Alexa Fluor-

488 donkey anti-rabbit (1:500) and Alexa Fluor-568 donkey anti-

goat (1:500) (Invitrogen). Samples were blocked in 1% bovine

serum albumin (BSA)-DPBS for 1 hour at room temperature.

Primary antibodies in 1% BSA-DPBS were applied to the samples

and incubated for 30 minutes at 37uC in a humidified chamber;

these same conditions were repeated for addition of the secondary

antibodies. A glass coverslip was fixed with ProLong Gold antifade

reagent (Invitrogen) and prepared samples were allowed to cure

overnight in the dark at room temperature. Images were captured

using a Nikon Eclipse TE300 Light Microscope (Nikon) and

QImaging Retiga-EXi camera (AES). ImageJ v1.43 software

(rsbweb.nih.gov) was used to analyze total pixel counts and store

images.
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