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Abstract

Purpose: The authors have previously shown the feasibility of using an artificial

neural network (ANN) to eliminate the volume average effect (VAE) of scanning ion-

ization chambers (ICs). The purpose of this work was to evaluate the method when

applied to beams of different energies (6 and 10 MV) and modalities [flattened (FF)

vs unflattened (FFF)], measured with ICs of various sizes.

Methods: The three‐layer ANN extracted data from transverse photon beam pro-

files using a sliding window, and output deconvolved value corresponding to the

location at the center of the window. Beam profiles of seven fields ranging from

2 × 2 to 10 × 10 cm2 at four depths (1.5, 5, 10 and 20 cm) were measured with

three ICs (CC04, CC13, and FC65‐P) and an EDGE diode detector for 6 MV FF and

FFF. Similar data for the 10 MV FF beam was also collected with CC13 and EDGE.

The EDGE‐measured profiles were used as reference data to train and test the

ANNs. Separate ANNs were trained by using the data of each beam energy and

modality. Combined ANNs were also trained by combining data of different beam

energies and/or modalities. The ANN's performance was quantified and compared

by evaluating the penumbra width difference (PWD) between the deconvolved and

reference profiles.

Results: Excellent agreement between the deconvolved and reference profiles was

achieved with both separate and combined ANNs for all studied ICs, beam energies,

beam modalities, and geometries. After deconvolution, the average PWD decreased

from 1–3 mm to under 0.15 mm with separate ANNs and to under 0.20 mm with

combined ANN.

Conclusions: The ANN‐based deconvolution method can be effectively applied to

beams of different energies and modalities measured with ICs of various sizes.

Separate ANNs yielded marginally better results than combined ANNs. An IC‐speci-
fic, combined ANN can provide clinically acceptable results as long as the training

data includes data of each beam energy and modality.
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1 | INTRODUCTION

In the commissioning of a treatment planning system (TPS) and the

periodic quality assurance (QA) of a linear accelerator (linac), it is

essential to accurately measure the transverse photon beam profiles

produced by the linac.1 It is well‐known that the measurements, typ-

ically performed with a finite‐size ionization chamber (IC), are com-

promised by the volume averaging effect (VAE).2 The VAE, caused

by the signal averaging over the detector's active volume, can artifi-

cially broaden the penumbra of photon beam profiles by 2–3 mm,

depending on the detector's effective size. This effect has profound

implications for the planning, delivery, and QA of radiotherapy using

small beam segments, such as intensity‐modulated radiotherapy

(IMRT) and volumetric‐modulated arc therapy (VMAT).3‐7 For exam-

ple, Yan et al demonstrated that the elimination of the VAE enabled

the use of stricter criteria (from 3%/3 mm to 2%/2 mm) in patient‐
specific IMRT QA, which in turn led to higher chances of detecting

dosimetric errors arising from either treatment planning or delivery

system.4,7,8

Direct reconstruction of the “true” beam profiles from the mea-

surements is the preferred approach to address the VAE.9 A process

called deconvolution is performed where the VAE, modeled with a

detector response function, is numerically or analytically removed

from the measurement based on the convolution theorem.9‐11 Pho-

ton beam profile deconvolution is challenging for a few reasons.

First, since the penumbra of photon beam profiles is located in the

high gradient area, Fourier‐based numerical deconvolution methods

suffer from high‐frequency measurement noise. Second, each type

of IC has a unique detector response function that is hard to deter-

mine. Additionally, there is no consensus on the exact shape and

extend of the detector response function.12,13 Third, the shape of

the beam profiles varies with beam geometry (depth and field size)

and beam modality [flattening‐filter (FF) vs flattening‐filter‐free
(FFF)], which makes it difficult to fit the beam profiles with functions

that can facilitate analytical deconvolution.4,14,15

In a previous proof‐of‐principle paper, the authors investigated

the feasibility of photon beam profile deconvolution using an artifi-

cial neural network (ANN).10 The ANN used a sliding window to

extract inputs from the measurement and output of the deconvolved

value at the center of the window. It was demonstrated that the

ANN achieved great performance for 6 MV photon beam profiles

measured with a CC13 IC.

The aim of this study was twofold. First, we evaluated the per-

formance of the ANN‐based deconvolution method when applied to

photon beam profiles of different beam energies, of different beam

modalities, and measured with ICs of different sizes. The effective-

ness of the method under different scenarios needs to be exten-

sively evaluated before it can be introduced into clinical use.

Secondly, we determined whether an IC‐specific combined ANN was

sufficient for clinical use. To that end, we compared the performance

of ANNs separately trained for each beam energy/modality with that

of ANNs trained by combining data of different energies and/or

modalities.

2 | MATERIALS AND METHODS

2.A | Neural network model

Here, we briefly describe the ANN model, the detail of which can be

found in our previous paper.10 The ANN consists of an input layer, a

hidden layer, and an output layer (Fig. 1). While the input and hidden

layers have multiple nodes, the output layer has a single node. A

sliding window is used to extract inputs from the measured beam

profile at 1 mm resolution. The output, corresponding to the decon-

volved value at the center of the window, is given by

O ¼ σo ∑Nhn
k¼1w

o
kσh ∑Lsw

j¼1w
h
jksj þ bhk

� �
þ bo

� �
;

where s denotes input signal from the measured profile; w repre-

sents the weight associated with the link connecting adjacent layers;

b represents the bias of the hidden or output neurons. The decon-

volved beam profile is created in a point‐by‐point fashion with the

sliding window moving across the measured beam profile. The hid-

den nodes and output node use the hyperbolic tangent sigmoid acti-

vation function (σh) and linear activation function (σo), respectively.

The number of input nodes (Lsw , i.e., the size of the sliding window)

and the number of hidden nodes (Nhn) were determined with a

parameter sweeping algorithm in our previous paper. It was found

that Lsw ¼ 15 and Nhn ¼ 5 yielded the best performance and these

parameters were used in this study.

2.B | Data collection

Transverse beam profiles produced by an Elekta linac (Versa HD,

Elekta Inc., Crawley, UK) were measured with a three‐dimensional

F I G . 1 . The three‐layer artificial neural network consists of an
input layer with 15 nodes, a hidden layer with five nodes, and an
output layer with a single node. The input signals Si (i = 1, 2, …, 15)
are extracted from the measured beam profile with a sliding
window. It outputs one deconvolved value at a time, corresponding
to the center of the sliding window.
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cylindrical water tank (Sun Nuclear Corp. Melbourne, FL). The mea-

surement geometries included seven field sizes (2 × 2, 3 × 3, 4 × 4,

5 × 5, 6 × 6, 8 × 8, 10 × 10 cm2) at four depths (1.5, 5, 10, and

20 cm), totaling 28 beam profiles. We limited our study to small

fields as the penumbra change caused by VAE is on the order of 1–
2 mm, which is more significant for small fields than for large fields

(e.g., 20 × 20 cm2). These measurements were performed for the

6 MV FF and FFF beams with three ICs (CC04, CC13, FC65‐P, IBA
Dosimetry, Schwarzenbruck, Germany) and an EDGE diode detector

(Sun Nuclear Corp. Melbourne, FL). The FFF beam was measured

with a dose rate of 600 MU/min, instead of the default high dose

rate (1400 MU/min). The beam profiles of the 10 MV FF beam were

also measured with the CC13 and the EDGE. All the measurements

were smoothed and resampled to 1 mm resolution. The CC04 has a

radius of 2 mm and an effective volume of 0.04 cm3. While the radii

of the CC13 and FC65‐P are both 3 mm, the effective volume of

FC65‐P is five times larger than that of CC13 (0.65 vs 0.13 cm3).

Compared to the ICs, the EDGE diode has significantly less VAE due

to its small effective measuring area (0.8 × 0.8 mm2).4,9

2.C | Network training

There are practical advantages of training and using as less ANNs as

possible. Therefore, it is of great interest to know whether a sepa-

rate ANN is needed for each scenario (beam energy, beam modality,

and IC). Theoretically, the “real” beam profile can be expressed as

the convolution between the measured beam profile and a deconvo-

lution kernel, and the ANN is trained to simulate the convolution

operation. The deconvolution kernel is directly related to the detec-

tor response function. ICs of different types have different detector

response functions due to their differences in radius, effective vol-

ume, and physical construction.16 Therefore, separate ANNs are war-

ranted for different types of ICs. The remaining questions are, for

the same IC, do we train one ANN for two beam energies combined

F I G . 2 . Influence of beam energy and modality on the detector response function of CC13. Using the 6 MV FF beam (5 × 5 cm2 and 10 cm
depth), the shape parameter of the detector response function was determined to be 2.61 mm. The diode‐measured, CC13‐measured and
convolved profiles are shown for 6 MV FF (a), 6 MV FFF (b), and 10 MV FF (c).
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or separate ANN for each beam energy? Do we train one ANN for

two‐beam modalities combined or separate ANN for each beam

modality? For an IC, is it feasible to train just one ANN that works

for all energies and modalities?

To answer these questions, we compared the detector response

function of an IC under different beam energies and different beam

modalities. The measured beam profile Pm xð Þ is the result of con-

volving the “true” beam profile Pt xð Þ with the detector response

function Kσ xð Þ, which is typically approximated using a Gaussian

function with a shape parameter σ.7,11 Given a pair of Pm xð Þ and

Pt xð Þ, σ can be determined through iterative optimization,

σ ¼ argminσ Pm xð Þ � Pt xð Þ � Kσ xð Þð Þ2

where � denotes the convolution operation. Practically, for Pm xð Þ
and Pt xð Þ, we use the same beam profile measured with the IC and

the EDGE, respectively.11,17,18 The EDGE‐measured beam profile can

be regarded as the “true” beam profile due to its negligible VAE.19‐21

Here, we determined σ for CC13, the most commonly used scanning

IC, for the 6 MV FF beam, the 6 MV FFF beam, and the 10 MV FF

beam. For each beam energy/modality combination, we calculated σ

for each geometry (field size and depth) separately, resulting in 28

shape parameters.

Our study revealed that there were subtle differences in the

shape parameters for different beam energies and modalities. The

impact of the differences on the ANN performance could not be

understood unless separate and combined ANNs were compared

directly. Therefore, we trained separate ANNs as references, then

trained combined ANNs for comparison. A separate ANN was

trained for each beam energy, modality, and measuring IC combina-

tion. The 28 beam profiles were divided into non‐overlapping train-

ing, validation, and test datasets. The training and validation datasets

included 12 profiles for the 2 × 2, 4 × 4, 6 × 6, and 10 × 10 cm2

F I G . 3 . Performance of the artificial neural network for a 6 FF beam, separately trained for each of the three ionization chambers (CC04,
CC13, and FC65‐P). The diode‐measured beam profiles were used as references. The results on training data are shown in (a); the results on
test data are in (b–d).

56 | MUND ET AL.



fields at 1.5, 10, and 20 cm depths; the test dataset consisted of the

remaining 16 beam profiles (the beam profiles at 5 cm depth for all

seven fields and the ones at the other three depths for 3 × 3, 5 × 5,

and 8 × 8 cm2). The training and validation datasets were used to

train and optimize the weights and biases of the ANN, which mini-

mized the mean square error (MSE)

MSE ¼ 1
N
∑N

i¼1 Oi � Pið Þ2

between the predicted output Oi and the desired value Pi taken

from the EDGE‐measured profile (N is the length of the profile). The

standard Levenberg–Marquardt backpropagation algorithm was used

in the training. The network was initialized with random weights and

biases and the training was repeated 10 times with each attempt

involving 400 epochs. The network with the smallest MSE was

selected for evaluation. The test dataset, unseen by the ANN, was

used to test its generalization ability. In addition to MSE, another

metric called PWD (penumbra width difference) was used in the

evaluation. The PWD was calculated as the difference in the penum-

bra width (distance between 20% and 80% intensity)

PWD ¼ Wo �Wrj j

where Wo and Wr were the penumbra width of the deconvolved

and the reference profile, respectively. While the MSE evaluates the

overall agreement between two profiles, the PWD focuses on the

penumbra area where the VAE is most prominent. Note that, in this

work, the EDGE‐measured profiles are used as references in PWD

calculation by virtue of the negligible VAE associated with the

EDGE.

Three combined ANNs were also trained for comparison. We

firstly trained an ANN for two‐beam modalities (6 MV FF and 6 MV

FFF) combined. The training, validation, and test datasets were

formed by combining the profiles from the 6 MV FF beams and the

6 MV FFF beams. Similarly, an ANN was trained for two beam ener-

gies (6 and 10 MV) combined. Finally, an ANN was trained by com-

bining all the CC13‐measured profiles from the 6 MV FF, 6 MV FFF,

F I G . 4 . Similar to Figure 3, but with the 6 FFF beam. The results on training data are shown in (a); the results on test data are in (b–d).
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and 10 MV FF beams. The performance of the combined ANNs was

compared with that of the separate ANNs.

3 | RESULTS

The average shape parameter of the CC13's detector response func-

tion for 6 MV FF, 6 MV FFF, and 10 MV FF beam was 2.56 ± 0.06,

2.93 ± 0.10, and 2.70 ± 0.07 mm, respectively. Figure 2 illustrates

the difference with the beam profile of a 5 × 5 cm2
field at 10 cm

depth. In Fig. 2(a), the shape parameter of the detector response

function for the 6 MV FF beam was determined to be 2.61 mm. The

detector response function was then used to convolve the diode‐
measured profile of the 6 MV FFF and 10 MV FF beam. While the

convolved result agreed with the CC13 measurement pretty well for

the 10 MV FF beam [Fig. 2(c)], the difference was noticeable for the

6 MV FFF beam [Fig. 2(b)]. The difference between the penumbra

width of the convolved profile and that of the CC13 measured‐pro-
file was 0.04 mm for the 10 MV FF beam and 0.41 mm for the

6 MV FFF beam.

Figures 3 shows the performance of the three ANNs separately

trained for CC04, CC13, and FC65‐P for the 6 MV FF beam with a

few examples. Figures 3(a)–3(d) shows the results for training data

and test data, respectively. Excellent agreement between the decon-

volved and the diode‐measured profile was achieved for all three ICs

at all studied geometries. After deconvolution, the mean PWD for

CC04, CC13, and FC65‐P was reduced from 0.98 ± 0.13,

1.90 ± 0.11, and 2.23 ± 0.13 mm to 0.09 ± 0.07, 0.05 ± 0.04, and

0.07 ± 0.06 mm, respectively.

Figure 4 shows similar results, except for the 6 MV FFF beam.

Generally, good agreement between the deconvolved and the diode‐
measured profiles was observed for all three ICs. The ANN for

FC65‐P showed slightly larger deviations at large field sizes

(8 × 8 cm2). After deconvolution, the mean PWD was reduced from

1.31 ± 0.23, 2.46 ± 0.23, and 2.55 ± 0.20 mm to 0.15 ± 0.09,

0.10 ± 0. 08, and 0.13 ± 0.12 mm, respectively, for the CC04, CC13,

and FC65‐P.
Table 1 details the PWD before and after deconvolution for a

few selected beam geometries (both 6 MV FF and 6 MV FFF) with

examples for all three ICs. In general, the ANN trained for the 6 MV

FF beam had slightly better performance than that for the 6 MV

FFF beam. After deconvolution, the maximum PWD was 0.32 mm

for the 6 MV FF beam (8 × 8 cm2 at 1.5 cm depth with CC04) and

0.52 mm for the 6 MV FFF beam (8 × 8 cm2 at 20 cm depth with

FC65‐P, shown in Fig. 4(d)).

Figure 5 shows the results of the ANN for the 10 MV FF beam

measured with CC13. Fig. 5(a) shows the results for the training data

and Figs. 5(b)–5(d) shows the results for the test data. Excellent

agreement was also achieved for all the studied beam geometries.

The mean PWD decreased from 1.99 ± 0.15 mm to 0.07 ± 0.05 mm

after deconvolution. The reduction of PWD is detailed in Table 2.

After deconvolution, the PWD was under 0.20 mm for all studied

beam geometries.

Table 3 compares the performance of the combined ANNs with

that of the separate ANNs. Listed in the table are the mean PWDs

of all the 28 beam profiles either measured with IC or deconvolved

with separate or combined ANNs. Wherever data is not available

(the 10 MV FF data were only measured with CC13 and EDGE), it is

TAB L E 1 Penumbra width difference (PWD) of the ionization chamber‐measured beam profiles and the artificial neural network‐deconvolved
beam profiles with respect to the diode‐measured profiles for 6 MV FF and FFF beams.

Depth (cm)
PWD OF 6 MV FF BEAMS PWD OF 6 MV FFF BEAMS

Training data Testing data Training Data Testing data

6 × 6 cm2 3 × 3 cm2 8x8 cm2 6x6 cm2 3x3 cm2 8x8 cm2

CC04 Deconv CC04 Deconv CC04 Deconv CC04 Deconv CC04 Deconv CC04 Deconv

1.5 1.00 0.08 0.85 0.08 1.23 0.32 1.37 0.13 1.10 0.04 1.60 0.30

5 1.09 0.10 0.88 0.04 1.19 0.21 1.43 0.06 0.96 0.19 1.63 0.26

10 0.98 0.00 0.87 0.05 1.08 0.09 1.46 0.04 1.04 0.24 1.69 0.25

20 1.21 0.19 0.90 0.07 1.10 0.00 1.58 0.13 1.00 0.27 1.78 0.38

CC13 Deconv CC13 Deconv CC13 Deconv CC13 Deconv CC13 Deconv CC13 Deconv

1.5 2.00 0.09 1.87 0.00 2.04 0.10 2.46 0.08 2.37 0.18 2.74 0.23

5 2.07 0.16 1.88 0.00 2.08 0.09 2.47 0.06 2.26 0.11 2.77 0.09

10 1.94 0.04 1.81 0.01 2.03 0.04 2.40 0.13 2.38 0.15 2.67 0.06

20 1.96 0.02 1.75 0.04 1.96 0.01 2.73 0.08 2.39 0.15 2.7 0.08

FC65‐P Deconv FC65‐P Deconv FC65‐P Deconv FC65‐P Deconv FC65‐P Deconv FC65‐P Deconv

1.5 2.23 0.00 2.20 0.05 2.53 0.29 2.66 0.09 2.50 0.03 2.98 0.36

5 2.34 0.04 2.19 0.04 2.40 0.14 2.66 0.05 2.33 0.13 2.85 0.21

10 2.26 0.08 2.11 0.03 2.35 0.07 2.62 0.04 2.38 0.16 2.85 0.36

20 2.31 0.11 1.98 0.08 2.23 0.04 2.67 0.25 2.25 0.14 2.92 0.52
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flagged with “n/a.” The results indicated that the separate ANNs had

slightly better performance than the combined ANNs. With separate

ANNs, the mean PWD of deconvolved profiles was within 0.15 mm

for all beam energies, modalities, and ICs; with combined ANNs, the

mean PWD was under 0.20 mm, except the CC13‐measured 6 MV

FFF data, where the ANN trained for combined modalities had a

mean PWD of 0.24 mm. Figure 6 illustrates the difference using

CC13‐measured data. In Figs. 6(a)–6(b), the combined ANN was

trained for two modalities combined (6 MV FF and 6 MV FFF). Com-

pared with separate ANNs, the combined ANN slightly overesti-

mated or underestimated the penumbra. However, the clinical

impact should be insignificant given that the magnitude of difference

is negligible. In Fig. 6(c), the combined ANN was trained for two

energies combined (6 MV FF and 10 MV FF). In this example, the

separate ANN and the combined ANN had nearly identical perfor-

mance. In Fig. 6(d), the combined ANN was trained with data com-

bined from 6 MV FF, 6 MV FFF, and 10 MV FF beams measured

with CC13. It achieved satisfactory results for both beam energies

and modalities.

4 | DISCUSSIONS

There has been a recent surge in applying machine learning tech-

niques to address challenges in medical physics.22 Powerful and inno-

vative neural network models have been proposed to assist tumor

detection,23 image segmentation,24,25 treatment planning,26,27 and

treatment outcome prediction28 with success. In our work, we suc-

cessfully trained simple ANNs to mitigate the VAE associated with ICs

that are commonly used for transverse beam profile scanning. We

evaluated the performance of the method when applied to beams of

different energies or modalities and measured with ICs of various

sizes. Satisfactory results were achieved for each studied beam

energy, modality, and IC with both separate and combined ANNs.

F I G . 5 . Performance of the artificial neural network for the 10 MV FF beam measured with CC13. The training data is in (a); the test data in
(b‐d). The diode‐measured beam profiles are used as references.
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Artificial neural networks excel at a variety of tasks, thanks to the rep-

resentation power associated with the hidden neurons in the hidden

layers, which enables well‐trained ANNs to closely approximate any

continuous functions. We have shown that, in the deconvolution

problem, the desired outcome (“true” beam profile) is essentially a

function of the measured beam profile.10 Therefore, we can expect

that ANN is suitable for the deconvolution problem even the function

involves a complex, not well‐defined deconvolution kernel.

The successful training of an ANN relies on the abundancy of

training data, especially for fully connected, large‐scale ANN.22 In this

work, the three‐layer ANN has 15 input nodes and 5 hidden nodes,

totaling 86 parameters (80 weightings and 6 biases). We used only 12

beam profiles to train the ANN and found that it generalized well on

the unseen test data. The success could be attributed to the relatively

simple architecture of the ANN and the similarity in the data. For IC‐
measured data (input to the ANN) and diode‐measured data (desired

output of the ANN), the difference only lies in the penumbra area as

characterized using PWD. For the 6 MV FF beam data measured with

the same IC, the mean PWDs were within 0.3 mm across all the stud-

ied field sizes (ref Table 1); for the 6 MV FFF and 10 MV FF data,

they were within 0.6 and 0.4 mm of each other, respectively. For the

same field size, the PWD varied <0.3 mm from 1.5 to 20 cm depth.

This similarity was also reflected in the shape parameters σ of the

detector response function. Between different energies and modali-

ties, the mean σ varied <0.4 mm. For the same energy and modality,

the standard deviation of σ across all studied geometries was within

0.1 mm. This came as no surprise for two reasons. First, it is well

known that IC has nearly no energy dependence.1 Second, as far as

the impact of beam modality on IC response is concerned, it has been

reported that ICs may be subject to excessive ion recombination in

the high dose rate mode (e.g., 1400 MU/min) of FFF beams.29 How-

ever, since our data for the FFF beams were collected in the normal

dose rate mode (600 MU/min), the beam modality had no influence

on the detector response. Note that we were not concerned with the

penumbra of beam profiles, which varied as beam energy, modality,

and geometry (field size and depth) changed. Instead, we were inter-

ested in the difference in the penumbra of the same beam profile,

measured with different detectors (IC vs diode). The difference was

mainly attributed to the response difference of the IC, dominated by

the VAE. The high‐level similarity in the training, validation and test

data contributed to the success of the ANNs, which were trained to

mitigate the difference.

We can also use the variation of the detector response func-

tion’s shape parameter to explain the comparison between separate

and combined ANNs. Separate ANN was trained for specific beam

energy and modality, where the shape parameters had very little

variations; combined ANN was trained for mixed beam energies or

modalities, where the shape parameters had slightly larger variations.

Therefore, while separate ANN had excellent performance, combined

ANN performed slightly worse. However, since the overall variation

in σ was limited, the performance of combined ANNs was still

acceptable. The clinical implication is that, for a particular IC, it is

sufficient to train just one combined ANN, which works for all beam

energies and modalities. It is worth pointing out that the training

TAB L E 2 Penumbra width difference (PWD) of the CC13‐measured
beam profiles and the artificial neural network‐deconvolved beam
profiles with respect to the diode‐measured profiles for the 10 MV
FF beam.

Depth (cm)

PWD OF 10 MV FF BEAMS

Training data

6 × 6 cm2 3 × 3 cm2 8 × 8 cm2

CC04 Deconv CC04 Deconv CC04 Deconv

1.5 1.82 0.09 2.09 0.05 2.24 0.10

5 1.73 0.19 2.17 0.15 2.18 0.09

10 1.72 0.05 2.03 0.02 2.11 0.01

20 1.69 0.04 1.94 0.04 2.12 0.07

Depth (cm)

Testing data

CC13 Deconv CC13 Deconv CC13 Deconv

1.5 1.90 0.11 2.11 0.14 2.18 0.04

5 1.94 0.06 1.98 0.01 2.14 0.04

10 1.91 0.03 1.93 0.00 1.96 0.15

20 1.81 0.01 1.98 0.00 2.08 0.06

TAB L E 3 Comparison between separate and combined artificial neural networks (ANNs). Shown in the table are the penumbra width
difference (PWD) before and after deconvolution. Separate ANNs are trained for each beam energy, modality, and ionization chamber
combination. Combined ANNs are trained for two modalities combined (6FF + 6FFF), two energies combined (6FF + 10FF), or two modalities
and energies combined (6FF + 6FFF + 10FF). “n/a” indicates that the data is not available (10 MV FF beam was only measured with CC13).

Energy/modality IC PWD — IC PWD — separate ANN

PWD — combined ANN

6 FF + 6 FFF 6 FF + 10 FF 6 FF + 6 FFF + 10 FF

6 MV FF CC04 0.98 ± 0.13 0.09 ± 0.07 0.11 ± 0.07 n/a n/a

CC13 1.90 ± 0.11 0.05 ± 0.04 0.10 ± 0.07 0.06 ± 0.04 0.11 ± 0.06

FC65‐P 2.23 ± 0.13 0.07 ± 0.06 0.11 ± 0.06 n/a n/a

6 MV FFF CC04 1.31 ± 0.23 0.15 ± 0.09 0.19 ± 0.12 n/a n/a

CC13 2.46 ± 0.23 0.10 ± 0.08 0.24 ± 0.14 n/a 0.19 ± 0.12

FC65‐P 2.55 ± 0.20 0.13 ± 0.12 0.16 ± 0.12 n/a n/a

10 MV FF CC13 1.99 ± 0.15 0.07 ± 0.05 n/a 0.08 ± 0.06 0.12 ± 0.07
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data must include data from each energy and modality. This is

because ANNs can interpolate but cannot extrapolate. When the

input is outside the scope defined by the training data, the output of

the ANN is not reliable.

Note that the combined model was trained with combined data

from different beam energies and modalities, but no information

regarding the energy and modality was used as input to the ANN. In

this sense, the combined model acted more like an averaged model,

which treated beam profiles from different energies and modalities

in the same way. Adding energy or modality information to the ANN

input may improve its performance. The model could learn to handle

different beam setup distinctively through the learning process with

the involvement of data from different setups. However, since the

performance of the combined ANN was deemed satisfactory, the

improvement may be marginal. Therefore, such attempt was not

made in this study.

To our knowledge, this is the first report studying the mitigation

of VAE in FFF photon beam profiles. The unique shape of

unflattened beam profiles presents challenges to analytical deconvo-

lution methods. These methods use analytical functions such as the

difference of error functions to fit the beam profiles,4,15,30 which is

feasible for flattened beam profiles but challenging for unflattened

beam profiles. However, it does not pose a problem for our ANN‐
based method. It learns how to mitigate the difference between IC‐
measured data and diode‐measured data, which occurs mainly in the

penumbra area even for unflattened beams. Both separate and com-

bined ANNs achieved excellent results for FFF beams. Not only was

the penumbra area restored, the unflattened shape of the beam pro-

files was also well preserved.

5 | CONCLUSIONS

We evaluated the robustness of an ANN‐based photon beam decon-

volution method when applied to photon beams of different ener-

gies, of different modalities, and measured with ICs of various sizes.

F I G . 6 . Comparison between separate artificial neural networks (ANNs) and combined ANNs. The combined ANN was trained by combining
data from 6 MV FF and 6 MV FFF in (a) and (b), combining data from 6 MV FF and 10 MV FF in (c), and combining data from 6 MV FF, 6 MV
FFF and 10 MV FF in (d).
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For each IC, excellent results were achieved with ANNs separately

trained for each energy and modality combination. Clinically accept-

able results were also achieved with ANNs trained by combining

both beam energies and modalities. Therefore, for a given IC, an IC‐
specific, combined ANN is sufficient for clinical use as long as the

training data includes beam profiles from each energy and modality.

CONFLICT OF INTEREST

The authors have no conflicts to disclose.

REFERENCES

1. Das I, Cheng C, Watts R, et al. Accelerator beam data commissioning

equipment and procedures: report of the TG‐106 of the Therapy

Physics Committee of the AAPM. Med Phys. 2008;35:4186–4215.
2. Low D, Parikh P, Dempsey J, Wahab S, Huq S. Ionization chamber

volume averaging effects in dynamic intensity modulated radiation

therapy beams. Med Phys. 2003;30:1706–1711.
3. Laub W, Wong T. The volume effect of detectors in the dosimetry

of small fields used in IMRT. Med Phys. 2003;30:341–347.
4. Yan G, Fox C, Liu C, Li J. The extraction of true profiles for TPS

commissioning and its impact on IMRT patient‐specific QA. Med

Phys. 2008;35:3661–3670.
5. Herrup D, Chu J, Cheung H, Pankuch M. Determination of penum-

bral widths from ion chamber measurements. Med Phys.

2005;32:3636–3640.
6. Parwaie W, Refahi S, Ardekani MA, Farhood B. Different dosimeters/

detectors used in small‐field dosimetry: pros and cons. J Med Signals

Sens. 2018;8:195–203.
7. Li J, Yan G, Liu C. Comparison of two commercial detector arrays for

IMRT quality assurance. J Appl Clin Med Phys. 2009;10:2942.

8. Yan G, Liu C, Simon T, Peng L, Fox C, Li J. On the sensitivity of

patient‐specific IMRT QA to MLC positioning errors. J Appl Clin Med

Phys. 2009;10:2915.

9. Barraclough B, Li JG, Lebron S, Fan Q, Liu C, Yan G. A novel convo-

lution‐based approach to address ionization chamber volume averag-

ing effect in model‐based treatment planning systems. Phys Med Biol.

2015;60:6213–6226.
10. Liu H, Li F, Park J, et al. Feasibility of photon beam profile deconvo-

lution using a neural network. Med Phys. 2018;45:5586–5596.
11. García‐Vicente F, Delgado J, Peraza C. Experimental determination

of the convolution kernel for the study of the spatial response of a

detector. Med Phys. 1998;25:202–207.
12. Bednarz G, Saiful Huq M, Rosenow U. Deconvolution of detector

size effect for output factor measurement for narrow Gamma Knife

radiosurgery beams. Phys Med Biol. 2002;47:3643–3649.
13. Fox C, Simon T, Simon B, et al. Assessment of the setup depen-

dence of detector response functions for mega‐voltage linear accel-

erators. Med Phys. 2010;37:477–484.

14. Tahmasebi Birgani MJ, Chegeni N, Arvandi S, Razmjoo Ghalaee S,

Zabihzadeh M, Khezerloo D. Analytical approach for determining

beam profiles in water phantom of symmetric and asymmetric fields

of wedged, blocked, and open photon beams. J Appl Clin Med Phys.

2013;14:4424.

15. García‐Vicente F, Delgado J, Rodríguez C. Exact analytical solution

of the convolution integral equation for a general profile fitting func-

tion and Gaussian detector kernel. Phys Med Biol. 2000;45:645–650.
16. Poppinga D, Meyners J, Delfs B, et al. Experimental determination

of the lateral dose response functions of detectors to be applied in

the measurement of narrow photon‐beam dose profiles. Phys Med

Biol. 2015;60:9421–9436.
17. Barraclough B, Li JG, Lebron S, Fan Q, Liu C, Yan G. Technical note:

impact of the geometry dependence of the ion chamber detector

response function on a convolution‐based method to address the

volume averaging effect. Med Phys. 2016;43:2081.

18. Pönisch F, Titt U, Vassiliev ON, Kry SF, Mohan R. Properties of

unflattened photon beams shaped by a multileaf collimator. Med

Phys. 2006;33:1738–1746.
19. Bouchard H, Lacroix F, Beaudoin G, Carrier JF, Kawrakow I. On the

characterization and uncertainty analysis of radiochromic film

dosimetry. Med Phys. 2009;36:1931–1946.
20. Létourneau D, Sharpe MB, Owrangi A, Jaffray DA. Automated beam

model optimization. Med Phys. 2010;37:2110–2120.
21. Papaconstadopoulos P, Tessier F, Seuntjens J. On the correction,

perturbation and modification of small field detectors in relative

dosimetry. Phys Med Biol. 2014;59:5937–5952.
22. Sahiner B, Pezeshk A, Hadjiiski LM, et al. Deep learning in medical

imaging and radiation therapy. Med Phys. 2019;46:e1–e36.
23. Melendez J, van Ginneken B, Maduskar P, et al. A novel multiple‐in-

stance learning‐based approach to computer‐aided detection of tuber-

culosis on chest x‐rays. IEEE Trans Med Imaging. 2015;34:179–192.
24. Hu P, Wu F, Peng J, Liang P, Kong D. Automatic 3D liver segmenta-

tion based on deep learning and globally optimized surface evolu-

tion. Phys Med Biol. 2016;61:8676–8698.
25. Zhuge Y, Krauze AV, Ning H, et al. Brain tumor segmentation using

holistically nested neural networks in MRI images. Med Phys.

2017;44:5234–5243.
26. Zhu X, Ge Y, Li T, Thongphiew D, Yin FF, Wu QJ. A planning quality

evaluation tool for prostate adaptive IMRT based on machine learn-

ing. Med Phys. 2011;38:719–726.
27. Guidi G, Maffei N, Meduri B, et al. A machine learning tool for re‐

planning and adaptive RT: a multicenter cohort investigation. Phys

Med. 2016;32:1659–1666.
28. El Naqa I, Bradley JD, Lindsay PE, Hope AJ, Deasy JO. Predicting

radiotherapy outcomes using statistical learning techniques. Phys

Med Biol. 2009;54:S9–S30.
29. Lang S, Hrbacek J, Leong A, Klöck S. Ion‐recombination correction

for different ionization chambers in high dose rate flattening‐filter‐
free photon beams. Phys Med Biol. 2012;57:2819–2827.

30. Cho P, Kuterdem H, Marks RJ. A spherical dose model for radio-

surgery plan optimization. Phys Med Biol. 1998;43:3145–3148.

62 | MUND ET AL.


