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ABSTRACT14

Agent-based models (ABMs) have become essential tools for simulating complex biological, ecological, and social systems
where emergent behaviors arise from the interactions among individual agents. Quantifying uncertainty through global sensitivity
analysis is crucial for assessing the robustness and reliability of ABM predictions. However, most global sensitivity methods
demand substantial computational resources, making them impractical for highly complex models. Here, we introduce SMoRe
GloS (Surrogate Modeling for Recapitulating Global Sensitivity), a novel, computationally efficient method for performing global
sensitivity analysis of ABMs. By leveraging explicitly formulated surrogate models, SMoRe GloS allows for comprehensive
parameter space exploration and uncertainty quantification without sacrificing accuracy. We demonstrate our method’s flexibility
by applying it to two biological ABMs: a simple 2D cell proliferation assay and a complex 3D vascular tumor growth model.
Our results show that SMoRe GloS is compatible with simpler methods like the Morris one-at-a-time method, and more
computationally intensive variance-based methods like eFAST. SMoRe GloS accurately recovered global sensitivity indices in
each case while achieving substantial speedups, completing analyses in minutes. In contrast, direct implementation of eFAST
amounted to several days of CPU time for the complex ABM. Remarkably, our method also estimates sensitivities for ABM
parameters representing processes not explicitly included in the surrogate model, further enhancing its utility. By making global
sensitivity analysis feasible for computationally expensive models, SMoRe GloS opens up new opportunities for uncertainty
quantification in complex systems, allowing for more in depth exploration of model behavior, thereby increasing confidence in
model predictions.

15

1 Introduction16

Scientists today are generating abundant data and information as they seek to improve our comprehension of the world around17

us, revealing the inherent complexity characteristic of biological, biomedical, ecological, social, and other real-world systems.18

Agent-based models (ABMs) have emerged as a significant tool for understanding such complex systems, being particularly19

well-suited to capturing emergent phenomena1–4. ABMs are stochastic computational models that describe populations as20

individuals or agents, each with its own set of properties and behaviors that interact with their local environment to generate21

global phenomena. Such a formulation allows ABMs to capture connectivity and heterogeneity across multiple time, spatial,22

and structural scales3, 5.23

However, the use of ABMs presents significant challenges and drawbacks. For instance, the computational costs of solving24

ABMs escalate and become prohibitive when simulating millions of agents5, 6. Furthermore, there is an absence of closed-form25

expressions linking ABM output with input parameters, making it hard to assess whether the results of ABMs are robust to26

parameter perturbations7. Moreover, as ABMs are increasingly applied to model highly complex biological and environmental27

systems, the number of input parameters grows, introducing greater uncertainty in parameter values. This uncertainty in model28

inputs will necessarily propagate to model outputs, raising questions about model accuracy and reliability.29

Parameter sensitivity analysis is a common practical technique used to quantify uncertainty in model outputs as a function30

of uncertainty in the inputs, helping us better understand the limitations of the model8. This type of analysis identifies which31
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input parameters – and, by extension, the biological, physical, or real-world processes they represent – are the most critical32

determinants of an output of interest9. Sensitivity analysis can be either local, assessing the effect of individual input parameters,33

or global, evaluating the combined influence of multiple parameters varied simultaneously across their full ranges10. For highly34

nonlinear models with a large number of estimated parameters, global sensitivity analysis is essential for drawing meaningful35

conclusions. Several methods have been developed for sensitivity analysis in parametric models, including variance-based36

methods, moment-independent techniques, Monte Carlo methods, and methods using spectral analysis (for recent reviews,37

see11, 12).38

Simple global sensitivity analysis methods include one-at-a-time methods like the Morris method (MOAT), which is39

computationally efficient, having a cost scaling as ⇠ 10⇥ the number of parameters13. However, MOAT provides only limited40

information and is best suited for factor prioritization or preliminary screening of model parameters. Additionally, MOAT41

cannot account for parameter interactions, which are often expected in nonlinear models, limiting its usefulness in more42

complex systems9. For more robust insights, variance-based methods such as the extended Fourier Amplitude Sensitivity43

Test (eFAST) or Sobol indices are generally preferred. These methods are capable of both factor prioritization and factor44

fixing, where the goal is to reduce uncertainty by identifying and fixing unimportant parameters. Additionally, these methods45

can account for interactions between parameters when computing model variance. However, these techniques come with a46

much higher computational cost, scaling as ⇠ 103⇥ the number of parameters9, 14, 15. Regression-based methods, like Partial47

Rank Correlation Coefficient (PRCC), may be employed for factor mapping, which aims to identify important inputs within48

specific output domains. These methods also have high computational costs, lying somewhere between MOAT and eFAST11, 16.49

Aside from MOAT, the computational expense of simulating complex models remains a major challenge when applying global50

sensitivity methods to ABMs. Long run times often render any meaningful sensitivity analysis of such models impractical17. As51

a result, sensitivity analysis of complex, computationally expensive ABMs is frequently omitted or only partially performed7, 18.52

One approach to addressing some of the aforementioned issues is to employ surrogate models, also known as metamodels53

or response surfaces. These are computationally less expensive models designed to approximate the dominant features of a54

complex model, here, the ABM19. Widely applied across various domains, surrogate models facilitate the exploration of ABM55

parameter spaces without incurring prohibitive computational costs20–23. Notably, surrogate model generation via Machine56

Learning, where the surrogate model does not have a closed form, is becoming increasingly popular24. However, such black box57

models have limited applicability in scenarios with limited training datasets or when extrapolating across broad and uncertain58

ABM parameter space where the a priori unknown ABM output could have high variability25, 26. To mitigate these issues, we59

have proposed employing explicitly formulated surrogate models for approximating ABM behavior. Our approach has proven60

effective in parameterizing computationally complex ABMs with multi-dimensional data5, 6. This work introduces a novel61

application of this technique to address the acute shortage of fast and accurate computational techniques for performing global62

sensitivity analysis of large-scale, complex ABMs.63

Specifically, we develop a new, computationally efficient method, Surrogate Modeling for Recapitulating Global Sensitivity64

(SMoRe GloS), that uses explicitly formulated surrogate models to infer the global sensitivity of input parameters in ABMs65

describing complex real-world systems. Our method is agnostic to any specific method for global sensitivity analysis and66

is easily adapted per user specification. To demonstrate our approach, we consider two spatio-temporally resolved ABMs67

representing biological processes: (1) an easy-to-simulate ABM representing a cell proliferation assay on a two-dimensional68

grid and (2) a more complex ABM of three-dimensional vascular tumor growth. SMoRe GloS computes the global sensitivity69

indices of ABM parameter sets in both instances using two techniques, namely, the computationally efficient MOAT Method70

and the computationally expensive but more versatile eFAST method. Remarkably, our method generates global sensitivity71

indices even for those ABM parameters that represent biological processes not explicitly included in the surrogate model72

formulation. We also compute sensitivity metrics directly in both instances and compare the results with our indirect method to73

validate our approach. Finally, we demonstrate the significant computational efficiency of SMoRe GloS compared to directly74

implementing methods like eFAST.75

2 Methods76

2.1 SMoRe GloS: Surrogate Modeling for Recapitulating Global Sensitivity77

Our new method for global analysis of computationally complex models, SMoRe GloS, is implemented in five steps: (1)78

Generate ABM output; (2) Formulate candidate surrogate models; (3) Select a surrogate model; (4) Infer relationship between79

surrogate model and ABM parameters; and (5) Use relationship between surrogate model and ABM parameters to infer global80

sensitivity of ABM parameters. These are described in further detail below.81

We illustrate SMoRe GloS with two ABMs: one describing an in vitro cell proliferation assay that can be simulated easily82

and quickly; and one describing vascular tumor growth in 3-dimensions that is computationally complex and more expensive to83

simulate. These are described in further detail in subsections 2.3 and 2.4.84
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For convenience, we introduce the following notation. We will refer to the input ABM parameters to be included in the global85

sensitivity analysis as #»p ABM = hpABM,1, · · · , pABM,mi. W ✓Rm, together with a probability distribution r , will denote the mini-86

mal sample space of these parameters. Parameters appearing in the surrogate model will be denoted #»p SM = hpSM,1, · · · , pSM,ni.87

Finally, we will refer to surrogate model as SM.88

89

Step 1: Generate ABM output90

Sample ABM parameter values over W, making sure to include points along the boundary of W, together with some interior91

points. Aim for good coverage of W, bearing in mind the increased computational expense as more parameter values are92

selected. For this, choose any sampling method such as a regular grid, Latin Hypercube Sampling (LHS), random sampling,93

etc., considering each has advantages and disadvantages27, 28. Next, generate ABM output at each sampled parameter vector,94

making sure to run multiple simulations in order to get meaningful averaged behavior.95

In both our examples, we sampled ABM parameters on a regular grid, taking an average of N = 6 runs per sampled96

parameter vector.97

98

Step 2: Formulate candidate surrogate models99

Formulate (several) candidate SMs informed by the complex system being studied, the mechanisms encoded within the100

ABM, ABM output generated in Step 1, and most importantly, the output metric of interest in which we want to quantify the101

relative influence of each ABM parameter. More details on formulating explicit SMs are available here:5, 6. Ideally, arrive at102

several candidate SMs.103

For the in vitro cell proliferation ABM, our output metric of interest was total cell number at the end of the simulation. We104

therefore chose cell numbers in G1/S and G2/M phases of the cell cycle as the SM variables, and a system of two coupled105

ordinary differential equations (ODEs) describing their temporal evolution as the SM itself (see6 for more details). For the 3D106

vascular tumor growth ABM, our output metrics of interest were: (1) final tumor volume; (2) area under the tumor volume107

time-course; and (3) time to half-maximum tumor volume. These were chosen to illustrate various features and overall108

robustness of our method. Since ABM output was being integrated over space in all three instances, we once again used109

ODEs to formulate the SM, taking total cell number as the SM variable. Three candidate SMs were formulated in this case,110

namely, exponential growth, logistic growth and von Bertalanffy growth (see5 for more details). The SMs together with the111

corresponding ABMs are listed in subsections 2.3 and 2.4.112

113

Step 3: Select a surrogate model114

Select the best candidate from the various SMs formulated in Step 2 as follows. Considering each SM in turn, begin by115

fitting the SM to ABM output generated at each sampled ABM parameter vector (Step 1). In this process, make sure to collect116

information on goodness-of-fit of, and uncertainty in, the fitted SM parameters (discussed below). For the given SM, aggregate117

this information across all ABM output. Repeat this process for every candidate SM.118

119

Goodness-of-fit criteria: Fit the SM to ABM output by maximum likelihood estimation (MLE)29, weighted least squares120

optimization30, or other method of parameter estimation. Record the quality of the fit.121

In both our examples, we used weighted Residual Sum of Squares (RSS) to quantify goodness-of-fit.122

123

Uncertainty in SM parameters: Quantify the uncertainty in SM parameters by computing confidence bounds when fitting124

the SM parameters to ABM output generated from each sampled ABM parameter vector. These confidence bounds will be used125

later, in Step 4. Several methods may be employed for uncertainty quantification (see for instance19).126

Also quantify how well constrained SM parameters are by noting the span of their confidence bounds. For this, we127

propose a metric we call the identifiability index, which is defined as follows. If both upper and lower confidence bounds128

on an SM parameter are tightly-constrained when fitting to the ABM output generated at a sampled ABM parameter vector,129

the identifiability index is assigned a value of 2. Here, tightly-constrained parameters should have confidence bounds well130

within their physically or biologically relevant ranges. Parameters with one-sided confidence bounds, constrained only at131

one end, receive an identifiability index value of 1, while a score of 0 indicates an unconstrained parameter that may assume132

any value within its overall range. Thus, as the SM is fit in turn to all ABM output, a high frequency of 2’s will suggest an133

overall well-constrained SM parameter, whereas mostly 0’s will suggest unidentifiability of that parameter, possibly due to an134

over-parameterized SM.135

In our examples, we used the profile likelihood approach31–33 to generate 95% confidence bounds on SM parameters.136

Identifiability indices were computed by graphing the likelihood curves obtained by profiling each fitted SM parameter. These137

cross the 95% confidence bound threshold never (a flat curve), once (an L-shaped curve), or twice (a U-shaped curve) times in138

the neighborhood of its best-fit value. The respective identifiability index values are 0, 1 or 2.139
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140

SM Selection: Select the best SM by considering both the goodness-of-fit and the identifiability index. The goal is to141

choose an SM that both minimizes RSS scores across ABM output, and has well-constrained SM parameters, as evidenced by a142

high frequency of 2’s in their identifiability indices. If selecting between SMs with different numbers of free parameters, model143

selection theory should be applied, for instance, by computing an Information Criterion34.144

For the in vitro cell proliferation ABM, we did not need to perform model selection since we started with a single SM. For145

the 3D vascular tumor growth ABM, we reported the results of implementing SMoRe GloS with all three SMs, although a146

single SM emerged as the best overall candidate, based on our selection criterion outlined above. The Akaike Information147

Criterion (AIC) in Equation 1 below was used to aid in model selection.148

AIC = 2⇥ (# parameters) + n ln(RSS), (1)

where RSS is the average RSS taken over n data points. Models with higher DAIC scores are less likely to explain the data. To149

compare between models, we computed a relative log-likelihood (RLL), defined as150

RLL =
1
2
(AICmodel1 �AICmodel2) , (2)

where a positive value of RLL indicates that model 2 is preferable to model 1.151

152

Step 4: Infer relationship between SM and ABM parameters153

Quantify the functional relationship between ABM parameters and SM parameters as follows. View each SM parameter as154

an unknown function – or hypersurface – of the ABM parameters. The (95%) confidence bounds on SM parameters inferred in155

Step 3 then correspond to discrete points on upper and lower (95%) confidence hypersurfaces ‘above’ the given ABM parameter156

vector, yielding a range of values for all SM parameters corresponding to each ABM parameter vector. These ranges are usually157

an interval for each SM parameter. The Cartesian product of these intervals – a hyperrectangle – defines the region of SM158

parameter space that best fits ABM output at that ABM parameter vector. These Cartesian products quantify the ‘stiff and159

sloppy’ nature of SM parameters35, providing information about the directions of SM parameter space that produce small160

(sloppy) or large (stiff) changes in model behavior. In particular, as the ABM parameter vector is varied, the deformations161

of these hyperrectangles give rise to variations in ‘stiffness and sloppiness’, which are used to determine ABM parameter162

sensitivities in Step 5. For more details on how to generate SM parameter hypersurfaces, refer to5.163

164

Step 5: Use relationship between surrogate model and ABM parameters to infer global sensitivity of ABM parameters165

Select an output metric of interest, say f , on the ABM and a method for computing the global sensitivity of f to changes in166

ABM parameters. f is a real-valued function on ABM parameter space, that is, f : W ! R. The global sensitivity, GS, is then a167

function of f and the probability distribution on ABM parameter space, r . Denote by GS( f (·);r) 2 Rm the sensitivity of f168

to each of the m varied ABM parameters. The fundamental concept of SMoRe GloS is that an SM is used to estimate f in169

computing GS. Specifically, the value of f at an ABM parameter vector, #»p ABM, is approximated by sampling uniformly over170

the hyperrectangle in SM parameter space in Step 4 above. That is,171

f ( #»p ABM)⇡
Z

WSM( #»p ABM)
f̃ ( #»p SM)dµ ( #»p SM; #»p ABM) , (3)

where WSM( #»p ABM) is the hyperrectangle in SM parameter space corresponding to #»p ABM, f̃ is the functional on SM parameter172

space to match f , and µ(·, #»p ABM) is the uniform probability distribution on WSM( #»p ABM). For notational simplicity, we will173

use f for f̃ and µ for µ(·, #»p ABM) going forward. Putting this together with global sensitivity yields the following:174

GS( f (·);r)⇡ GS
✓Z

WSM(·)
f ( #»p SM)dµ ; r

◆
. (4)

In our illustrative examples, we employ two methods for global sensitivity: the Morris Method and eFAST (see next175

section).176

2.2 Global Sensitivity Analysis Methods177

In this manuscript, we will illustrate how SMoRe GloS works using two global sensitivity methods: the Morris Method and178

eFAST (extended Fourier amplitude sensitivity test). The Morris Method is a one-step-at-a-time method that uses elementary179

effects (the effect of perturbing a single parameter) to compute a global sensitivity measure for each parameter13, 36. This180

method has a low computational cost and its output is in the same units as that of the metric, making the sensitivity indices181
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Figure 1. Schematic representation of the SMoRe GloS framework for sensitivity analysis of ABMs. For simplicity, two
ABM parameters, A1 and A2, and one surrogate model (SM) parameter, S1, are depicted. The first row shows Steps 1-4 of
SMoRe GloS, where S1 is constrained as a function of A1 and A2. The black dots represent sampled ABM parameters, the gray
bars indicate uncertainty in S1 and the blue planes represent the reconstructed parameter surfaces for S1. The salmon region
denotes the interior of the ABM parameter space, defined by the convex hull of the sampled points. The second row illustrates
Step 5, where any global sensitivity method can be applied. The white dots represent points in ABM parameter space sampled
for computing global sensitivity, and the dashed black lines show the corresponding ranges of S1. The third row illustrates the
implementation of the MOAT method in this framework. Points p0 and p1 are examples of white dots from the second row that
represent points in ABM parameter space used to compute an elementary effect in A1. These points correspond to regions R0
and R1 in SM parameter space. The time series curves are the trajectories sampled from these regions. The purple and yellow
distributions denote the output metric of interest calculated from each trajectory. The elementary effect is approximated by the
difference between the means of these distributions. The fourth row, with a dark background, illustrates the direct
implementation of MOAT. Here, multiple ABM trajectories are generated at both p0 and p1, and the elementary effect of A1 is
computed as before, using the difference between the means of the ABM output distributions.
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readily interpretable. Its main limitations are its inability to capture higher order interactions between model parameters and182

the fact that it does not yield a definitive boundary separating the important parameters from less influential ones. eFAST is a183

variance decomposition method that can efficiently handle models with nonlinear responses and complex interactions, and is184

model independent14. eFAST estimates the variance of the chosen model output, and the contribution of input parameters as185

well as their interactions to this variance. The algorithm then separates the output variance into the fraction of the variance that186

can be explained by variation in each input parameter. The result of this analysis is the main effect and total effect sensitivity187

indices.188

2.3 Simple ABM of an In Vitro Cell Proliferation Assay189

We consider the easy-to-simulate ABM presented in6, 37, which describes a 2-dimensional on lattice birth-death-migration190

model of tumor cell proliferation. Briefly, cell division occurs as cell progress through four stages of the cell cycle in order:191

G1, S, G2, and M with transition rates, rG1!S,rS!G2,rG2!M,rM!G1, respectively. When a cell advances from M back to192

G1, it can proliferate into an unoccupied neighboring lattice site, provided the strength of contact inhibition on it is below193

a threshold Tcon. Otherwise, the cell returns to G1 without undergoing mitosis. Cells move to neighboring lattice sites at a194

constant migration rate, s, provided a randomly selected neighboring lattice site is unoccupied. If not, cells remain stationary.195

The growth culture is assumed to have a carrying capacity KA. For complete details on ABM formulation and simulation196

method, see37.197

We infer global sensitivity of the seven ABM parameters mentioned above with respect to total cell number at the end of198

the simulation. These parameters are summarized in Table 1, and were varied across three values each, for a total of 37 = 2187199

ABM parameter vectors. At each of these, six replicates were simulated.200

Following6, an ODE formulation for the SM was chosen, with the numbers of cells in G1/S phase (N1S) and G2/M phase201

(N2M) as model variables. The following governing equations comprise the SM:202

dN1S

dt
= �lCN1S +aC

✓
2� N1S +N2M

KC

◆
N2M, (5)

dN2M

dt
= lCN1S �aCN2M, (6)

where lC is the rate of transition from G1/S to G2/M, aC is the maximum rate of proliferation of cells in G2/M and KC is the203

growth culture’s carrying capacity. For more details on how this SM was derived, see6. These parameters are summarized in204

Table 1.205

Table 1. List of ABM and surrogate model (SM) parameters

Simple ABM Parameters SM Parameters (equations (5)-(6))
Parameter Meaning Parameter Meaning

KA Carrying capacity lC G1/S ! G2/M transition rate
Tcon Contact inhibition aC G2/M ! G1/S transition rate

s Migration rate KC Carrying capacity
rG1!S G1 ! S transition
rS!G2 S ! G2 transition
rG2!M G2 ! M transition
rM!G1 M ! G1 transition

Complex ABM Parameters SM Parameters (equations (7)-(9))
Parameter Meaning Parameter Meaning

pdiv Progenitor cell proliferation rate l Exponential growth rate
sdiv Stem cell proliferation rate r Logistic growth rate
rmig Tip cell migration rate K Logistic carrying capacity
plim Progenitor cell division limit a vB growth rate

b vB death rate
n vB exponent
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2.4 Complex ABM of Vascular Tumor Growth in 3D206

We consider the computationally complex model of vascular tumor growth in 3 dimensions presented in38. This on-lattice207

ABM consists of two modules that communicate with each other: a cancer cell module; and a vascular module.208

The cancer cell module comprises cancer progenitor cells, which make up the bulk of the tumor, and cancer stem cells.209

The proliferation rate pdiv of progenitor cells is greater than the proliferation rate sdiv of cancer stem cells. Progenitor cells210

can divide a limited number of times, plim, before they become senescent. On the other hand, cancer stem cells have limitless211

replicative potential. Progenitor cells reproduce symmetrically to produce two daughter progenitor cells, whereas cancer stem212

cells can reproduce asymmetrically or symmetrically, producing a progenitor daughter cell and a stem cell, or two stem cells.213

Both types of cancer cells migrate or proliferate only if there is space in an adjacent lattice site (Moore’s neighborhood). Both214

cell types are assumed to have a common migration rate, mig. A second factor governing the ability of a cancer cell to migrate215

or divide is its oxygen status, which could be normoxic (maximum migration and proliferation rates) or hypoxic (minimum216

migration and proliferation rates). This oxygen status is determined by the cell’s distance from a mature, blood-borne vessel.217

The second module comprises endothelial cells and simulates angiogenesis: the formation of new blood vessels within218

the tumor. The tumor initially starts with a mature vasculature along its boundaries. As the tumor grows past the diffusion219

threshold of oxygen, the cancer cells become hypoxic. This triggers an ‘angiogenic-switch’ and cancer cells begin secreting220

Vascular Endothelial Growth Factor (VEGF), initiating angiogenesis. In response to this chemical stimulus, mature vessels near221

a hypoxic cancer cell can sprout, forming a new (non-mature) vessel. This sprout proliferates, extends, and migrates up the222

gradient of VEGF towards the nearest hypoxic cells until it anatamoses (fuses with) another sprout or with a nearby mature223

vessel. Once anastamosis occurs, the sprouts involved become blood-borne (mature) and nearby cancer cells become normoxic.224

We refer the reader to5 for complete details on this ABM and how to simulate this ABM.225

We infer global sensitivity of the four ABM parameters mentioned above with respect to: (1) final tumor volume; (2) area226

under the tumor volume time-course; and (3) time to half-maximum tumor volume. These parameters are summarized in227

Table 1, and were varied across three values each, for a total of 34 = 81 ABM parameter vectors. At each of these, six replicates228

were simulated.229

An ODE formulation for the SM was chosen, with the total number of tumor cells (N) as the model variable. Three possible230

formulations were chosen for the SM, since each of these is a well-established model for tumor growth39, 40:231

Exponential Growth :
dN
dt

= lN, (7)

Logistic Growth :
dN
dt

= rN
✓

1� N
K

◆
, (8)

von Bertalanffy Growth :
dN
dt

= aNq �bN, q = 1� 1
n
, n > 1, (9)

where l is the exponential growth rate of tumor cells, r and K are the intrinsic growth rate and carrying capacity for the logistic232

model, respectively, and a , b and n are the growth rate, death rate and exponent in the von Bertalanffy model, respectively.233

These parameters are summarized in Table 1.234

3 Results235

In this section, we demonstrate the accuracy of SMoRe GloS in computing the global sensitivity indices for ABM parameter236

sets through two distinct test cases. First, we explore an easy-to-simulate ABM that models an in vitro cell proliferation assay237

in two dimensions. Then, we apply our method to compute the global sensitivity of parameters in a more complex ABM that238

simulates three-dimensional vascular tumor growth.239

3.1 Global Sensitivity of Parameters in ABM Representing Cell Proliferation Assay240

We begin by generating output for the easy-to-run ABM of a two-dimensional cell proliferation assay, described in Section 2.3.241

Figure 2A presents a storyboard depicting a typical simulation at various time points, illustrating the spatial distribution and242

cell cycle phase distribution of cells from Day 0 to Day 3. Figure 2B shows time series data of cell numbers in G1/S and G2/M243

phases of the cell cycle from a typical ABM simulation, highlighting the accumulation of cells in G1/S as the total number of244

cells approaches the carrying capacity and the virtual cell culture exhausts available space. ABM parameters, together with the245

biological processes they regulate, are illustrated in Figure 2C. Parameters that represent spatial processes are highlighted in246

yellow and include the rate of cell movement, s, and the contact inhibition parameter, Tcon. We note that the surrogate model247

chosen for this ABM, specified in equations (5) and (6), is independent of local spatial considerations and, therefore, does not248

explicitly incorporate the processes represented by these parameters.249
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Figure 2. SMoRe GloS recapitulates global sensitivity of cell culture ABM. A) ABM storyboard showing cells by location
and cell-cycle phase. B) Time series of the G1/S and G2/M cell-cycle phases. C) ABM parameters included in the sensitivity
analysis. The yellow box highlights local spatial parameters that are not explicitly captured by the surrogate model (SM). D)
RSS distribution of SM fits to all ABM parameter vectors. Orange line indicates the log-normal distribution that best fits this
distribution. E) Profile likelihoods of SM parameters at four randomly selected ABM parameter vectors. F) Identifiability
wheels of SM parameters where color indicates the identifiability index, and area the proportion of ABM parameter vectors for
which the given SM parameter had that index. G) MOAT sensitivity analysis results using the ABM (Direct, black bars) and
SMoRe GloS (Indirect, blue bars), ranked by decreasing sensitivity using the direct method. H) Normalized MOAT sensitivity
values for each ABM parameter using the direct (left) and indirect (right) methods. Spatial parameters not not explicitly
captured by the SM are highlighted in yellow.
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3.1.1 Surrogate Model Accurately Matches ABM Output with Minimal Uncertainty in Parameter Values250

After selecting the best surrogate model, we fit it to the ABM output and calculate the residual sum of squares (RSS) to assess251

the goodness-of-fit (Step 3 of SMoRe GloS). The resulting distribution of RSS values is summarized in Figure 2D. The RSS252

values appear log-normally distributed with a very low mean (⇡ 1), indicating an overall excellent fit quality. We also apply the253

profile-likelihood method, as described in Step 3 of SMoRe GloS, to quantify the uncertainty in surrogate model parameter254

estimates. Figure 2E shows sample profile likelihood curves for three surrogate parameters: lC (G1/S to G2/M transition rate),255

aC (G2/M to G1/S transition rate), and KC (carrying capacity), for four representative sets of ABM parameters. All likelihood256

profiles for lC and aC are U-shaped and intersect the 95% confidence interval thresholds (dashed lines) twice. Consequently,257

their identifiability indices are 2 in each case. In contrast, the sample profile likelihoods for KC can be L-shaped, intersecting258

the 95% confidence interval thresholds (dashed lines) only once. Thus, the identifiability index for KC is 2 in the top and bottom259

cases shown, and 1 in the middle cases.260

Aggregating across all ABM outputs, lC and aC have consistently well-constrained upper and lower 95% bounds, with261

100% of their identifiability indices having a value of 2 (Figure 2F, first two donuts). KC exhibits some profiles identifiable262

from only one side, resulting in 73% of its indices being 2 and 27% being 1 (Figure 2F, bottom donut).263

3.1.2 SMoRe GloS Accurately Computes Global Sensitivity of 2D Cell Culture ABM Parameters, Including Those Not264

Explicitly Represented in the Surrogate Model265

We next implement Steps 4 & 5 of SMoRe GloS to infer the global sensitivity of ABM parameters using two distinct methods:266

the Morris method and eFAST. In each case we also infer the sensitivity of ABM parameters directly using these methods,267

to evaluate the efficacy of SMoRe GloS. Fig 2G contrasts the global sensitivity of ABM parameters inferred directly (black268

bars) and indirectly using SMoRe GloS (blue bars) with the Morris method. Both approaches yield similar rankings for the269

importance of each parameter. The direct method suggests a higher sensitivity for carrying capacity compared to contact270

inhibition, though both were deemed highly sensitive by the indirect method as well. The direct and indirect methods are in271

excellent agreement on the insensitivity of transition rates between cell cycle phases and the intermediate sensitivity of cell272

migration rates. Fig 2H normalizes and stacks these sensitivities for clearer comparative visualization, reaffirming the ability273

of SMoRe GloS to accurately recapitulate the global sensitivity of ABM parameters using the Morris Method. Our method274

performs similarly well when using the eFAST method to infer global sensitivity of ABM parameters (see SI Figure S1).275

These results showcase the capability of our method to infer the sensitivity of ABM parameters. Remarkably, this includes276

parameters representing local spatial processes (highlighted in yellow), such as cell movement and contact inhibition, which are277

beyond the scope of the surrogate model. It also extends to processes not explicitly included in the surrogate model, such as the278

transition rates from G1 to S and G2 to M.279

3.2 Global Sensitivity of Parameters in ABM Representing 3-D Vascular Tumor Growth280

Implementing Step 1 of SMoRe GloS for this case study, we generate output for a computationally complex ABM that models281

three-dimensional vascular tumor growth, as described in Section 2.4. Figure 3A presents a storyboard depicting a typical282

simulation at various time points, illustrating the growth of a tumor and its associated vasculature at various time points. ABM283

parameters, together with the biological processes they regulate, are depicted in Figure 3B. The rate of tip cell migration284

parameter rmig represents a spatial process, and is highlighted in yellow. Following Step 2 of SMoRe GloS, three candidate285

surrogate models, specified in equations (7), (8) and (9)), are chosen for this ABM. It is important to note that these surrogate286

models are independent of spatial considerations and, therefore, do not explicitly incorporate the processes represented by rmig.287

3.2.1 Surrogate Model Selection for the Computationally Complex ABM is Guided by Goodness-of-fit and Identifiability288

Indices289

Figures 3C-E show average cell number time courses (dashed lines), together with standard deviation (gray shaded area), from290

ABM simulations generated at three representative values of input parameters. Following Step 3 of SMoRe GloS, these figures291

also include fits of the three candidate SMs to the ABM output: exponential growth (blue curves, equation (7)); logistic growth292

(red curves, equation (8)); and von Bertalanffy growth (yellow curves, equation (9)). Visually, the von Bertalanffy model aligns293

more closely with the ABM output than the other two, while the exponential model performs the poorest. This observation is294

confirmed by the RSS distributions for the three models, shown in Figure 3F. The von Bertalanffy model provides a superior295

fit to the ABM output compared to the logistic and exponential models, as evidenced by a high frequency of low RSS values296

coupled with low variance. The exponential model yields the least accurate fits.297

The above results are not surprising, given that the exponential model has one free parameter, the logistic model has two298

and the von Bertalanffy model has three. To facilitate model selection, the Akaike Information Criterion (AIC) is used to299

meaningfully compare the fits of the three surrogate models to ABM output, with results summarized in Figure 3G. This figure300

plots the relative log-likelihood of the von Bertalanffy model compared to the exponential (x-axis) and logistic (y-axis) models.301

The right half of the figure indicates when von Bertalanffy outperforms the exponential model, while the top half indicates302
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Figure 3. Surrogate Model (SM) selection for the 3D vascular tumor growth ABM. A) ABM storyboard showing vascular
tumor growth. B) ABM parameters included in sensitivity analysis. The yellow box highlights local spatial parameters that are
not explicitly captured by the SMs. C-E) Fits of the SMs to ABM output at three representative ABM parameter vectors. ABM
parameter vectors were chosen based on the best fit to the exponential SM (C), logistic SM (D), and von Bertalanffy SM (E). F)
Histograms of log10(RSS) values for each SM across all sampled ABM parameter vectors. G) Comparison of Akaike
Information Criterion (AIC)-based relative log-likelihoods between the three SMs. Individual ABM parameter vectors are
represented as darker colored dots. The x-axis shows the relative log-likelihood of the exponential model, and the y-axis shows
the relative log-likelihood of the logistic model, both compared to the von Bertalanffy model. Positive (resp. negative) values
indicate that von Bertalanffy is more (resp. less) likely than the alternative SM. The background is color-coded by the SM
selected by AIC: yellow indicates preference for von Bertalanffy, red for logistic, and blue for exponential. The ABM
parameter vectors corresponding to panels C), D), and E) are highlighted with black circles. Dashed lines indicate where the
log scales change sign.
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Figure 4. Comparison of the identifiability properties of the three surrogate models (SMs) for approximating the 3D vascular
tumor growth ABM. A-C) Profile likelihoods for three representative ABM parameter vectors (rows) for each SM parameter
(columns). D-F) Identifiability wheels of SM parameters where color indicates the identifiability index, and area the proportion
of ABM parameter vectors for which the given SM parameter had that index. Each wheel is matched with the corresponding
SM (columns A-C).

when von Bertalanffy outperforms the logistic model. In particular, the yellow square represents all cases where von Bertalanffy303

is superior to both the exponential and logistic models (84% of cases). The red square and triangle represent all cases where304

logistic is superior to both von Bertalanffy and exponential models (16% of cases). In no instance is the exponential model305

superior to both von Bertalanffy and logistic models (blue square and triangle). The labeled dots correspond to the ABM306

parameters whose trajectories are shown in panels C-E.307

Continuing to implement Step 3 of SMoRe GloS, we employ the profile-likelihood method to quantify uncertainty in the308

parameter values of all three surrogate models. Figures 4A, 4B, and 4C display representative profile likelihood curves for the309

exponential model (single parameter l , blue curves), the logistic model (two parameters r and K, red curves), and the von310

Bertalanffy model (three parameters a , n , and b , yellow curves), respectively. Figures 4D, 4E, and 4F show the corresponding311

identifiability index donut charts for these surrogate model parameters, aggregated over all ABM output. As can be seen,312

parameters in the exponential model (Figures 4A and 4D) and the logistic model (Figures 4B and 4E) have identifiability indices313

of 2 in almost all cases, suggesting these parameters are well constrained by the ABM output. In contrast, the identifiability314

indices for the von Bertalanffy model parameters b and n are almost evenly distributed between 0’s and 1’s, and almost315

exclusively 1’s for a . This indicates that the von Bertalanffy model parameters are poorly constrained by the ABM output.316

Thus, even though the von Bertalanffy model provides the best quality of fit, as evidenced by low RSS values, the uncertainty in317

its parameter values is greatest.318

Considering these results, we expect the logistic model to perform best in the final step of SMoRe GloS due to its consistently319

good fits to ABM output and low uncertainty in parameter values. The exponential and von Bertalanffy only meet one of these320

criteria and are, therefore, not expected to yield optimal results.321

3.2.2 SMoRe GloS Accurately Computes the Global Sensitivity of ABM Parameters, with One Surrogate Model Emerging322

as the Best Choice323

We now proceed to implement Steps 4 and 5 of SMoRe GloS to infer the global sensitivity of ABM parameters, employing two324

distinct methods: the Morris method and eFAST. We present below the results for MOAT. The results for eFAST are similar and325

can be found in SI Figure S2. To evaluate the efficacy of SMoRe GloS, we also directly infer the sensitivity of ABM parameters326

using these methods. For the global sensitivity analysis, we employ three distinct metrics to underscore the critical role of327

surrogate model selection in Step 3 of SMoRe GloS:328

• final tumor size,329
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Figure 5. SMoRe GloS recapitulates global sensitivity of multiple output ABM metrics using the logistic surrogate model
(SM). Each row uses a different output metric (left column) and shows the resulting sensitivity values (middle column) and
their normalizations (right column). Colors in left and middle columns correspond to the SM as shown in the legend in A.
Colors in the right column correspond to the ABM parameter as shown in the legend in F. A-C) Using final tumor size as the
output metric. D-F) Using area under the curve as the output metric. G-I) Using time to half the maximum tumor volume as the
output metric. Note the break in the y-axis scale in B and E.
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• area under the tumor volume time-course curve, and330

• time to half-maximum tumor volume.331

We selected these metrics based on their ability to capture different aspects of the data simulated by the ABM. Specifically, the332

final tumor size is independent of the dynamic properties of the tumor volume time-course, such as its shape and curvature.333

In contrast, both the area under the curve and the time to half-maximum volume are influenced to different degrees by these334

properties. These distinctions are illustrated in Figures 5A, 5D, and 5G. It is important to note that our choice of output335

metrics primarily aims to highlight the importance of surrogate model selection and does not necessarily reflect their biological336

relevance.337

Figures 5B, 5E, and 5H compare the global sensitivity of ABM parameters as inferred directly (black bars) and indirectly338

using SMoRe GloS with the Morris method across the three surrogate models (blue bars for the exponential model, red bars339

for the logistic model, and yellow bars for the von Bertalanffy model). Figures 5C, 5F, and 5I show the predicted relative340

importance of the ABM parameters for each metric by normalizing and stacking their sensitivities. The von Bertalanffy results341

are omitted from the normalization panels due poor unnormalized values.342

343

Selecting a surrogate model solely based on goodness-of-fit to ABM output is insufficient for capturing global sensitivity:344

For all three global sensitivity metrics, the von Bertalanffy model – despite its superior fit to the ABM output – fails to345

adequately capture the sensitivity of the ABM parameters (Figures 5B and 5E, yellow bars). Notably, the time-to-half-maximum346

tumor volume results were so poor that they were not graphed (Figure 5H). This highlights the limitations of selecting a347

surrogate model based solely on goodness-of-fit fit to ABM output, without considering potential over-parameterization. Such348

an approach can severely compromise the effectiveness of the method.349

350

Selecting a surrogate model solely based on minimizing uncertainty in its parameters is insufficient for capturing global351

sensitivity: The exponential and logistic models effectively predict the global sensitivities of ABM parameters with respect to352

final tumor size, as shown in Figure 5B (blue and red bars, respectively). The exponential model marginally outperforms the353

logistic model in capturing the sensitivity of the most significant parameter, while the logistic model excels in predicting the354

relative sensitivities of ABM parameters (Figure 5C).355

Notably, the exponential model, which has the best identifiability indices, exhibits declining accuracy in calculating global356

sensitivity as the output metric becomes more reliant on the dynamic aspects of tumor growth. While it can accurately predict357

the order of importance of ABM parameters for the area under the tumor volume time-course curve (Figure 5E, blue bars), it358

fails to capture the true sensitivities of these parameters and completely fails when assessing the time to half maximum tumor359

volume (Figure 5H, blue bars). This is further evidenced by observing the predicted relative importance of ABM parameters360

(Figures 5C and 5F, second column versus first column).361

362

Capturing global sensitivity accurately requires balancing good fits to ABM output with minimizing uncertainty in surrogate363

model Parameters: The logistic model consistently reproduces the sensitivities of ABM parameters across all evaluated metrics364

(Figures 5B, 5E and 5H, red bars, and Figures 5C, 5F and 5I, third column versus first column). These findings highlight the365

critical need to balance maximized goodness-of-fit with minimizing surrogate model parameter uncertainty when performing366

model selection in Step 3 of SMoRe GloS.367

3.3 Computational efficiency of SMoRe GloS for Computing Global Sensitivity368

The primary advantage of SMoRe GloS over directly computing global sensitivity with a complex model lies in its significant369

computational efficiency. Implementing the MOAT method directly with d parameters using a Latin Hypercube Sampling370

(LHS) of k points and nr replicates at each point requires (d +1)⇥ k⇥nr ABM simulations. The d +1 factor accounts for371

perturbing each LHS sample vector across all d parameter components. Typically, k values are recommended to range between372

10 and 5041. For the 3D vascular tumor growth ABM, we varied d = 4 parameters using k = 15 LHS points, with nr = 6373

replicates, requiring 450 ABM simulations. Each simulation lasted, on average, 10 minutes, resulting in a total wall time of374

approximately 75 hours when run serially. In contrast, with SMoRe GloS, we started with the same (d +1)⇥ k = 75 ABM375

parameter points, but we drew 100 samples from the corresponding surrogate model (SM) parameter subspaces for each. This376

produced a total of 7,500 SM simulations. Since solving the SM has a negligible cost compared to interpolating the subspace377

and drawing samples, SMoRe GloS completed this task in under one minute (Figure 6A, blue line).378

For the more computationally intensive eFAST method, even more ABM simulations are required, further emphasizing379

the value of SMoRe GloS in improving computational efficiency. In our case, we applied eFAST to d = 4 parameters, with380

Nr = 2 replicates per parameter (corresponding to random phase shifts), and Ns = 65 samples per curve. The value Ns = 65 is381

the minimum recommended14. As with the MOAT method, we ran nr = 6 replicates at each point to estimate the average ABM382
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Figure 6. Comparison of ABM simulations and CPU time for computing global sensitivities using MOAT and eFAST in 3D
vascular tumor growth ABM. A) Chart showing SMoRe GloS speedup (expressed as times faster) compared to direct
implementation of global sensitivity analysis methods. The speedups exclude the setup time for the surrogate model. B)
Number of ABM simulations and CPU time required to implement MOAT, eFAST, or both, either directly (blue bars) or with
SMoRe GloS (yellow bars), including the setup time for the surrogate model. CPU time is based on assuming 1 ABM
simulation takes 10 minutes.

behavior. This led to a total of d ⇥Nr ⇥Ns ⇥nr = 3,120 ABM simulations, which, if run serially, would require nearly 22383

days of wall time. In contrast, SMoRe GloS once again demonstrated its computational superiority by completing the eFAST384

analysis in under 5 minutes (Figure 6A, orange line).385

SMoRe GloS does require an initial investment of computational resources for generating ABM output at sampled points386

in the ABM parameter space and profiling the SM against this output. For the vascular tumor growth ABM, we sampled387

g = 3 points in each of the d = 4 dimensions of parameter space, with nr = 6 replicates at each point, resulting in a total388

of gd ⇥ nr = 486 ABM simulations. While this number is comparable to the simulations required for directly computing389

MOAT sensitivities, it is significantly lower than what would be required for directly implementing eFAST. With just these 486390

simulations, we were able to successfully recapitulate both MOAT and eFAST global sensitivity results. These are summarized391

in Figure 6B.392

4 Discussion393

In this paper, we introduce a novel method for inferring the global sensitivity of parameters in agent-based models (ABMs):394

Surrogate Modeling for Recapitulating Global Sensitivity (SMoRe GloS). This first-of-its-kind approach leverages explicitly395

formulated surrogate models to approximate ABM outputs, enabling a comprehensive exploration of parameter space that396

would otherwise be computationally prohibitive. Our findings demonstrate the potential of SMoRe GloS to significantly397

enhance the efficiency of global sensitivity analysis for ABMs, without compromising accuracy when applied judiciously.398

One of the key strengths of SMoRe GloS is its combination of flexibility and adaptability. We demonstrated that our method399

performs consistently well with both eFAST and the Morris Method. By being agnostic to specific global sensitivity analysis400

techniques, SMoRe GloS offers greater compatibility across various sensitivity methods, with differing objectives like factor401

fixing, factor mapping and factor prioritization. This adaptability allows users to tailor the approach to their specific needs402

and preferences, which is particularly valuable given the wide range of applications for ABMs. Our successful application of403

SMoRe GloS to both, a two-dimensional cell proliferation assay, and a more complex three-dimensional vascular tumor growth404

model, highlights its broad utility.405

SMoRe GloS offers significant computational efficiency compared to traditional approaches. For example, directly406

implementing the MOAT method for the 3D vascular tumor growth model required 450 ABM simulations, corresponding to407

⇠75 hours of CPU time, whereas SMoRe GloS achieved the same MOAT implementation in under 1 minute. The speedup408

was even more dramatic with eFAST, where direct implementation demanded 3,120 ABM simulations and 22 days of CPU409

time, while SMoRe GloS completed the task in under 5 minutes. Our results demonstrate that, even after accounting for the410

initial cost of setting up the surrogate model, SMoRe GloS provides substantial advantages in both speed and flexibility. This is411

particularly advantageous for more complex global sensitivity analysis tasks like factor mapping and prioritization, which are412

typically orders of magnitude more computationally expensive than simpler methods like MOAT, used for factor fixing.413

We implemented SMoRe GloS with an on-grid parameter sampling, which scales exponentially with the dimensionality of414

the parameter space; this could be further optimized by employing Latin Hypercube Sampling (LHS), which scales linearly415

with parameter space dimensions. This would further reduce the computational cost of setting up the surrogate model. It is416

important to note that many complex models require hours per simulation, making direct global sensitivity analysis using417

methods like eFAST computationally prohibitive. However, SMoRe GloS makes such analyses feasible.418

Another notable feature of SMoRe GloS is its ability to produce global sensitivity indices for ABM parameters that are not419

explicitly included in the surrogate model formulation. This feature enhances our method’s utility for complex models where420

certain biological or real-world processes are difficult to capture with computationally less expensive surrogate models. The421
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implications are significant: we demonstrated that SMoRe GloS can accurately compute the sensitivity of spatial parameters422

that appear in an ABM, even when they are absent from a spatially-independent surrogate model.423

One caveat of our approach is that the effectiveness of SMoRe GloS in accurately recovering the correct sensitivity indices424

of ABM parameters hinges on the choice of surrogate model. Ideally, one would aim to find a surrogate model that fits all425

ABM outputs near perfectly, with parameters that are fully identifiable – that is, determined with minimal uncertainty – across426

all outputs. However, this may be unattainable in practice because improvements in the fit quality frequently come at the427

cost of introducing additional parameters that may diminish their identifiability properties. To address this, we advocate428

for a balanced approach to surrogate model selection, guided by both goodness-of-fit to ABM output and the identifiability429

properties of surrogate model parameters. Specifically, the focus during surrogate model selection should be on ensuring it430

faithfully reproduces the ABM output with minimal uncertainty. Developing a mechanistic surrogate model that aligns with the431

underlying mechanisms coded in the ABM could be a promising strategy. The particular output metrics of interest, for which432

we wish to determine the sensitivities of ABM parameters, should be considered after selecting a robust surrogate model. Since433

a well-constrained surrogate model will be broadly applicable, it can effectively assess a variety of output metrics, making our434

approach particularly valuable given the unpredictable nature of exploratory modeling.435

There are several promising avenues for further developing and extending SMoRe GloS. One potential direction under active436

consideration is to establish a ranking system for ABM parameters based on their influence on surrogate model parameters. This437

information could then be integrated with a sensitivity analysis of the surrogate model parameters to produce a global sensitivity438

ranking for the ABM parameters. Such an approach might eliminate the need to reconstruct surrogate model parameter439

hypersurfaces, thereby increasing our method’s efficiency. Additionally, as previously discussed, obtaining a well-constrained440

surrogate model that faithfully reproduces the ABM outputs of interest is crucial. To this end, we are currently exploring the441

use of machine learning and equation learning algorithms to further enhance our results. These approaches could lead to more442

robust and accurate surrogate models, ultimately broadening the applicability and efficiency of SMoRe GloS in various complex443

biological and real-world systems.444
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