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Abstract: Recent clinical trials of mesenchymal stromal cell (MSC) therapy for various inflammatory
conditions have highlighted the significant benefit to patients who respond to MSC administration.
Thus, there is strong interest in investigating MSC therapy in acute inflammatory lung conditions,
such as acute respiratory distress syndrome (ARDS). Unfortunately, not all patients respond, and
evidence now suggests that the differential disease microenvironment present across patients and sub-
phenotypes of disease or across disease severities influences MSC licensing, function and therapeutic
efficacy. Here, we discuss the importance of licensing MSCs and the need to better understand how
the disease microenvironment influences MSC activation and therapeutic actions, in addition to the
need for a patient-stratification approach.
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1. Introduction

The morbidity and mortality associated with acute respiratory disease have never
been more prominent than during the COVID-19 pandemic. In particular, the lack of
therapeutics for treating lung inflammatory conditions including acute respiratory distress
syndrome (ARDS) have highlighted the urgent unmet need for new therapeutic approaches.
Mesenchymal stromal cells (MSCs) derived from both mouse and human bone marrow
(BM), human umbilical cord (UC), adipose tissue (AT) and amniotic (A) tissue have shown
positive outcomes in a broad spectrum of lung diseases [1] in preclinical studies, including
asthma [2,3], idiopathic pulmonary fibrosis (IPF) [4–6], chronic obstructive pulmonary
disease (COPD) [7,8], acute lung injury (ALI) [9–11], and acute respiratory distress syn-
drome (ARDS) [12–14]. Clinical trials have investigated MSC therapy (BM and UC) in
IPF [15], COPD [16–18], ARDS [19,20] and in COVID-19 associated ARDS [21] showing
safety but have not yet shown efficacy. While MSCs (BM or AT) have been approved in
some countries for use in treating acute graft versus host disease (aGvHD) [22–24] and
for Crohn’s fistula [25,26], MSC therapy has not yet been approved for lung inflamma-
tory disorders [27]. However, MSCs have a proven safety profile in clinical trials [27]
for inflammatory lung disorders and there are currently 151 clinical trials investigating
MSCs as a lung intervention (https://ClinicalTrials.gov/, accessed on 5 October 2021),
many of these for COVID-19-associated ARDS. While significant progress has been made
in understanding the mechanisms by which MSC mediate their anti-inflammatory and
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pro-reparative effects in vitro, there are gaps in our understanding of how MSCs mediate
their therapeutic effects in vivo [28,29]. A significant body of work has clearly identified
the requirement for MSCs to be activated or licensed by signals such as pro-inflammatory
cytokines to mediate MSC therapeutic effects [28,30]. It is becoming increasingly apparent
that the disease inflammatory environment into which MSCs are administered is of critical
importance for MSC capacity to suppress inflammation and promote repair [27,28]. The
success of clinical application of MSC administration is limited by unclear understanding of
the role of the microenvironment on MSC capacity to suppress inflammation and modulate
immune responses. In the context of inflammatory lung disorders such as ARDS, there is
now a general consensus that hyper- and hypo- inflammatory traits can be identified in
ARDS patients [31]. Similarly, there are significant differences between the lung microenvi-
ronments of mild, moderate and severe asthmatics [32]. Thus, a better understanding of
how the disease microenvironment may influence MSC therapeutic efficacy would help to
identify the patients in which MSC therapy may be of most benefit. Herein, we provide an
overview of our current understanding of how the disease microenvironment impacts MSC
therapeutic efficacy and potential strategies to license or activate the anti-inflammatory
and pro-reparative functions of MSCs. Where possible, we will focus on studies in inflam-
matory lung disease as well as evidence from other inflammatory conditions that might
help us to better understand the role of the disease microenvironment and the potential for
licensing to impact on MSC protective effects and therapeutic efficacy.

2. The Progress in the Clinical Translation of MSCs for Inflammatory Lung Disease

While earlier studies have not provided clear evidence of efficacy in phase 1/2 ran-
domised controlled trials of MSCs in COPD [17] and ARDS [19,20] there are some reports of
positive effects. A phase 2 trial enrolling 62 randomised patients with COPD, deemed the
systemic administration of BM-MSC safe, although there were no differences in pulmonary
function testing or with the 6-min walking test. However, a decrease in C-reactive protein
was observed in comparison to elevated C-reactive protein (CRP) levels upon study entry
(NCT00683722) [17]. In the context of the growing body of research suggesting the impor-
tance of the inflammatory lung profile of patients and its role in activating or licensing
MSCs, a post-hoc analysis of the trial data was performed with stratification of COPD
patients based on baseline levels of circulating inflammatory marker CRP. Interestingly, the
data demonstrated that Remestemcel-L (BM-MSC) provided significant improvements in
forced expiratory volume in one second, forced vital capacity and six-minute walk distance
at 120 days post-infusion in patients with a higher baseline CRP [18]. In the context of
ARDS, the findings from MSC clinical trials have not been clear-cut with respect to efficacy
but studies have had favourable outcomes. Many of the current clinical trials investigating
MSCs in lung inflammatory conditions are in COVID-19 ARDS and there is now a growing
body of literature supportive of MSC efficacy in both non COVID-19 ARDS and in COVID-
19 ARDS. A double-blinded randomised phase 2a safety trial investigating the use of
allogeneic bone marrow derived-MSCs (BM-MSC) in severe ARDS patients showed there
was no infusion-related haemodynamic or respiratory adverse events, proving their safety,
although, the data could not support a claim for MSC efficacy in this trial and that may
have been associated with reduced viability of the cell therapy product (NCT02097641).
However, patients infused with BM-MSCs (with higher viability post-thaw) had lower con-
centrations of angiopoietin 2 (Ang-2) in their plasma after 6 h [19]. Interestingly, a nested
cohort study within a phase 2a trial investigating BM-MSCs for moderate-to-severe ARDS,
demonstrated that MSC treatment significantly reduced airspace total protein, Ang-2, IL-6
and soluble tumour necrosis factor (TNF) receptor-1 concentrations within a 48 h window
following administration (NCT02097641) [33]. In addition, a phase 1 study of UC-MSCs
in moderate-to-severe ARDS showed safety and reduction of circulating inflammatory
biomarkers (ISRCTN52319075) [34].

Positive findings from the completed Athersys MUST-ARDS phase 1/2 randomised,
double blind, placebo-controlled exploratory clinical study of MultiStem® (BM derived
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human MSC-like cells) therapy in ARDS have been reported in a published conference
abstract [35]. Interestingly, MultiStem®therapy enhanced ventilator-free days and ICU-free
days and reduced mortality [35]. Ricordi and colleagues have also published the findings
from their double-blind randomised control phase 1/2a trial of UC-MSCs in COVID-19
ARDS reporting significantly improved patient survival and significant decreases in pro-
inflammatory cytokines in UC-MSC treated subjects at day 6 (NCT04355728) [21]. Similarly,
a randomised controlled clinical trial investigating UC-MSCs reported improved survival
rate, reduced length of stay and ventilator use as well as a decrease in IL-6 in patients who
received UC-MSCs in COVID-19 ARDS (NCT04457609) [36]. Moreover, Mesoblast have
reported positive initial findings from their phase 3 randomised, double-blind, placebo-
controlled trial investigating Remestemcel-L in COVID-19 ARDS at international confer-
ences (NCT04371393) [37]. Importantly, the work from Calfee and colleagues and others
supports the idea of identifying phenotypes of ARDS [38,39] or treatable traits [40] and
using that information to facilitate a personalised medicine approach. Together these
studies suggest that patient stratification to identify disease phenotypes that might best
respond to MSC therapy may increase the chance for MSC therapeutic efficacy.

3. The Importance of the Inflammatory Disease Microenvironment on MSC
Therapeutic Efficacy

Pre-clinical studies have shown that the microenvironment present at the time of
MSC administration influences MSCs’ actions and thus potential therapeutic efficacy
(Figure 1). For example, if MSCs are administered too early before disease onset (such
as in GvHD) [41–43], or if signals required for their immunomodulation (such as NFκB,
TNF-α receptor, or IFN-γ) [41,44] are blocked, MSCs lose their protective effects. Activation
or licensing of MSC immunomodulation often involves activation of NF-κB and NF-κB
regulated genes. In situations, where pro-inflammatory cytokines are limited or NF-κB
is inhibited, MSC efficacy is impaired [42,43,45]. Moreover, in microenvironments which
prevent MSC immunomodulation or promote MSC death, the presence of allogeneic MSCs
may even promote harm [29,44,46]. For example, MSCs promoted fibrotic changes and
inhibited re-epithelialization in an acid-induced ALI model with high levels of oxidative
stress, whereby the conditions present in this model either negatively impacted the MSCs
or prevented their ability to immunomodulate and promote repair [47].

Figure 1. The Lung Microenvironment can positively or negatively influence MSC licensing and
therapeutic effects. The presence of pro-inflammatory cytokines IFN-γ and TNF-α license MSCs and
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promote MSC immunomodulation. A hypoxic environment can license MSCs and enhance their
survival. Activation of NFκB signalling has been identified as an important factor in MSC licensing.
The crosstalk or interaction between MSCs and macrophages following intravenous administration
has been shown to play a key role in shaping MSC therapeutic effects. The absence of TLR4, TNF-
R1 or IFN-γ on MSC or in the disease microenvironment has been shown to negatively impact
MSC function. The presence of Aspergillus growth or reactive oxygen species (ROS) negatively
impacts MSC survival. There are several licensing options whereby prior licensing of MSCs can be
achieved, in vitro, prior to administration. Licensing options include proinflammatory cytokines,
the anti-inflammatory cytokine TGF-β, via TLR ligand activation or by exposure of MSCs to disease
microenvironments in the form of patient derived serum or bronchoalveolar lavage fluid (BALF).
Image created using Biorender.com.

Notably, expression of PPARδ in mouse MSCs has been shown to impair MSC efficacy
in a mouse model of arthritis, while knockdown or antagonism of PPARδ-enhanced mouse
MSC efficacy via increased nitric oxide (NO) production [48]. In a humanised mouse model
of acute GvHD, agonism of PPARδ in human BM-derived MSCs significantly impaired
MSC therapeutic efficacy [49]. With respect to pre-clinical lung injury and sepsis models,
upregulation of PPARδ signalling has been shown to play an important role in LPS-induced
ALI and in caecal ligation puncture-induced sepsis [50,51]. Notably, angiopoietin-like
protein 4 (Angptl4), a known target gene of PPARδ is upregulated in LPS-induced ALI [52]
and has recently been reported as a clinical biomarker for ARDS [53]. Together, this
evidence suggests that PPARδ ligands (agonists) are present in LPS-induced ALI which
may contribute to microenvironmental impact on MSC therapeutic efficacy.

4. Licensing of MSCs Enhances Their Therapeutic Efficacy

IFN-γ, TNF-α and IL-1β have been identified as key mediators that facilitate the acti-
vation of MSC immunomodulation, in vitro [54–57]. A number of pre-clinical studies have
demonstrated the capacity to enhance MSC therapeutic effects using a licensing approach
in lung diseases including ALI, asthma and IPF (Table 1, Figure 1). Moreover, there is much
we can learn about the mechanistic effects of licensed MSCs in other disease models, partic-
ularly where licensed MSCs have been administered systemically via the tail vein (Table 2).
The licensing of mouse MSCs [41] or human BM-MSCs with IFN-γ before administration,
enhanced MSC therapeutic efficacy in a mouse model [41] and a humanised mouse model
of GvHD [43,49,54]. IFN-γ licensing of human BM-MSCs also enhanced therapeutic efficacy
in pre-clinical models of TNBS-induced colitis and DSS-induced colitis [58]. Importantly,
MSCs require stimulation with pro-inflammatory cytokines to produce immunomodula-
tory secreted factors like prostaglandin-E2 (PGE-2) [55,59], indolamine-2,3-dioxygenase
(IDO) [60] and TNFα-stimulated gene 6 (TSG-6) [61], responsible for MSC therapeutic effi-
cacy. TNF-α can act as an adjuvant for IFN-γ, where the two pro-inflammatory cytokines
can work synergistically [62]. Licensing MSCs with TNF-α alone, enhances the production
or secretion of factors such as PGE2, IDO, HGF and TSG-6 [55,63–65] and has been shown
to enhance MSC efficacy in a number of disease models (reviewed in [66]).

Table 1. Pre-clinical models of lung disease that received licensed MSCs.

Murine
Model MSC Source Route of Ad-

ministration Licensing Method Licensing
Location Outcome Ref

IPF
(bleomycin)

Mouse
BM-MSC I.T. Hypoxia (1.5% O2) in vitro ↑ HIF1α, HGF, VEGF

↓ IL-6, pro-IL-1β [67]

ALI Rat BM-MSC In perfusate Hypoxia (1% O2) in vitro
↑ IL-10, PGE2

↓ Lung injury score
↓ TNF-α, IL-1β, MIP-2

[68]
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Table 1. Cont.

Murine
Model MSC Source Route of Ad-

ministration Licensing Method Licensing
Location Outcome Ref

ALI Human
UC-MSC I.V. TGF-β1 in vitro

↑MSC survival
↑ Expression of RhoA
↓ LPS-induced injury

[69]

ALI
Human

UC-MSC
(EVs)

I.V. IFN-γ in vitro

↑ Animal survival
↑ eNOS

↓ Lung injury score
↓ TNF-α

[70]

ALI Rat lung
MSCs I.V. Culture on lung

ECM-cyclic stretch in vitro
↑ Lung elastance
↓ TNF-α, CXCL2 +

neutrophils
[71]

ALI Human
UC-MSC I.N. Heatshock (42 ◦C for 1 h) in vitro

↑ HSP70 expression
↑ IL-10 + PGE2

↓ NLRP3 inflammasome
formation

↓ IL-1β secretion by
macrophages

[72]

ALI Human
BM-MSC I.V. Co-culture w/ serum

from ARDS patients ex vivo

↑ IL-10 + IL-1RN
↓ IL-6, IL-1α, IL-8, IL-1β,

IFN-γ,
TGFβ3, TGFβ2 +

TNFAIP6

[73]

ALI Human
BM-MSC

AM treated
with MSC-

EVs-I.V.

Co-culture w/ BALF
from ARDS patients ex vivo

↑M2 macrophage
marker expression

↑ Phagocytic capacity of
human MDMs

↓ Cytokine production

[74]

ALI Human
BM-MSC I.T. Cco-culture w/ plasma

from ARDS patients ex vivo

↑ IL-6 production
↑ N-cadherin expression

at mRNA + protein
levels

↓ CD105 + CD90 marker
expression at day 5

[47]

ALI Mouse
BM-MSC I.V. Co-culture w/ serum

from ALI mice ex vivo

↑ Expression of
anti-inflammatory

mediators (TGF-β +
IL-10) in AM in vitro
↓ iNOS + IL-6

[75]

Asthma Mouse
BM-MSC I.T.

Co-culture w/ serum or
BALF from

asthmatic mice
ex vivo

↑ TGF-β, IFN-γ,
IL-10,TSG-6, IDO-1,

IL-1RN, iNOS, TNF-α,
IL-1β + arginase-2
↑ caspase-3, bax
↓ bcl-2Serum:↓ IL-4,

IL-13 + eotaxin

[2]

Footnote ↑ = Increased, ↓ = Decreased. Idiopathic Pulmonary Fibrosis (IPF), Acute Lung Injury (ALI), Acute Respiratory Distress Syndrome
(ARDS), Bone-Marrow Mesenchymal Stromal Cells (BM-MSC), Umbilical-Cord Mesenchymal Stromal Cells (UC-MSC), Intratracheal (I.T.),
Intranasal (I.N.), Intravenous (I.V.), Alveolar Macrophages (AM), Extracellular Vesicles (EV), Extracellular Matrix (ECM), Bronchoalveolar
Lavage Fluid (BALF).
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Table 2. In vivo studies utilising MSC licensing.

Murine Model MSC Source Route of Ad-
ministration

Licensing
Method

Licensing
Location Outcome Ref

GvHD Human
BM-MSC I.V. IFN-γ in vitro

↑ Animal survival
↓ Cellular infiltration

↓ Pathology severity in small
intestine + liver

[43]

GvHD Human MAPC I.V. IFN-γ / PPARδ
antagonist in vitro ↑ Efficacy on day 0

↑ Retention in spleen + liver [49]

GvHD Human
BM-MSC I.V. Cyclosporine A

+ IFN-γ in vitro ↑ IDO production + activity
↑ Animal survival [54]

GvHD Human
BM-MSC I.V. N/A N/A

↑ Immunosuppression
↑ IDO production in
recipient phagocytes

[76]

Corneal
allograft

Mouse
BM-MSC I.V. TGF-β1 in vitro

↑ CD73 expression
↑ Treg expansion

↑ Immunosuppression
↑ Allograft survival
↓ Syngeneic T cell

proliferation

[77]

Corneal
allograft Rat BM-MSC I.V. IFN-γ + TNF-α

+ IL-1β in vitro

↑ Nitric oxide production
↑ Suppression of syngeneic

lymphocytes
↑ Allograft survival
↑Myeloid cells in lung

↑ FoxP3+ Treg population in
lung + spleen

[78]

Sepsis BM-MSC I.V. N/A N/A
↑ Animal survival
↑ Organ function
↓ TNF-α + IL-6

[79]

Arthritis Human
BM-MSC I.V.

PPARβ/δ
antagonist
orIFN-γ +

TNF-α

in vitro

↑ Immunosuppression
↑ NF-kB activity

↑ p65 binding on iNOS
promoter

↓ Severity of disease

[48]

Myocardial
Infarction

Human
BM-MSC I.V. TNF-α in vitro

↑ TSG-6 mRNA in lung
↓ Infarct size

↓ Pro-inflammatory
proteases
↓MMP9

[64]

Footnote: ↑ = Increased, ↓ = Decreased. Graft versus Host Disease (GvHD), Bone-Marrow Mesenchymal Stromal Cells (BM-MSC),
Multipotent Adult Progenitor Cells (MAPC), Intravenous (I.V.).

Trophic factors, including those contained within extracellular vesicles (EVs) produced
by MSCs, are thought to play a key role in mediating MSC therapeutics effects. EVs can
transfer therapeutic cargo, such as mRNA, miRNA and even organelles like mitochondria,
to ameliorate lung injury [70,80–82]. EVs are of particular interest, as they have been iden-
tified as a main effector of MSC paracrine function, playing a pivotal role for intracellular
communication and boasting a therapeutic effect equivalent to that of their parent cells,
MSCs [81]. Along with boosting MSC therapeutic potential, licensing with inflammatory
cytokines can also boost EV efficacy [70,83,84]. The use of human and mouse BM- and
human UC-MSC-derived EVs has been documented in pre-clinical models of lung disease,
such as neonatal chronic lung disease [85], pneumonia [70,86,87], allergic asthma [3,88]
and ALI [74,89]. EVs secreted from UC-MSCs and licensed with IFN-γ were more effective
in attenuating E. coli-induced injury compared with EV from unlicensed UC-MSC in a rat
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model of E. coli pneumonia [70]. Furthermore, IFN-γ licensed UC-MSC EVs, but not naïve
UC-MSC EVs, had the ability to reduce lung protein permeability, alveolar inflammation
and alveolar-arterial oxygen gradient in injured lungs compared with controls [70].

Other cytokine licensing approaches include the use of oncostatin M and TGF-β. Li-
censing of BM-MSCs with oncostatin M enhanced MSC therapeutic efficacy in a bleomycin-
induced fibrosis model [90], while TGF-β licensing of MSC enhanced MSC survival in a
rat ALI model [69]. TGF-β-licensed mouse BM-MSCs have also been utilised in a corneal
allograft mouse model, where they modulated the immune response by suppressing
the effector T cell population and induced Tregs within the lung following intravenous
administration [77].

‘Multi-cytokine licensing’, or ‘composite priming’ involving a cocktail of cytokines,
including combinations of IFN-γ, TNF-α and IL-1β for MSC licensing, has also been
investigated [43,55]. In this context, TNF-α and IL-1β increased the MSC expression of the
IFN-γ receptor, enhancing the MSC immunoregulatory effects; thus, IL-1β can optimise
the therapeutic effects initiated by MSC licensing with IFN-γ/TNF-α [91]. In line with this,
monocyte-derived IL-1β activation of multipotent adult progenitor cells (MAPCs) was
required for MAPC suppression of IL-7-induced CD4 T-cell proliferation [92]. In vivo, rat
BM-MSCs, pre-licensed with TNF-α and IL-1β, promoted corneal allograft survival via
myeloid cell-mediated induction of regulatory T cells in the lung [78].

In addition to cytokines, pre-conditioning, or licensing MSCs with toll-like receptor
(TLR) ligands can enhance therapeutic efficacy in a wide array of inflammatory diseases.
MSCs express a number of TLRs [93]. MSCs licensed with the TLR3 ligand Poly(I:C)
provided enhanced therapeutic effects in pre-clinical models of TNBS-induced colitis [94],
in cardiomyopathic hamsters [95] and in atopic dermatitis [96]. Licensed MSC-derived
EVs via the TLR3 ligand Poly I:C, also exhibited beneficial effects with enhanced antimicro-
bial activity in pre-clinical mouse and ex-vivo-perfused human lung injured with severe
E. coli pneumonia [87,97]. TLR4 priming of MSCs via LPS enhanced MSC efficacy in an
experimental autoimmune encephalitis (EAE) model [98], while LPS-primed MSC-derived
exosomes provided accelerated wound healing in a diabetic cutaneous wound model [99].
Using an alternative approach, Yu and Chiang utilised the TLR2 agonist Pam3CSK4 to
license mouse BM-MSCs and showed that TLR2 activated mouse MSCs further decreased
eosinophil infiltration in the lung and IL-4/IL-5 secretion in the bronchoalveolar lavage
fluid (BALF) and had a greater impact on lung function compared to MSCs in an OVA-
induced allergic airway model [100]. Early work from Waterman et al. highlighted the
role of differential TLR ligation in driving pro- or anti-inflammatory activation of human
MSCs [93]. Pre-conditioning with differential TLR agonists can modulate the MSC secre-
tome, where TLR4 activation with LPS enhances secretion of pro-inflammatory mediators
and TLR3 activation with Poly(I:C) increases secretion of immunosuppressive factors such
as IDO and PGE2 [101,102]. Ligation of TLR2, but not TLR4, inhibited the chemotaxis
of murine BM-MSC and reduced their ability to expand Treg populations in vitro [103].
Moreover, murine BM-MSCs licensed with TLR4 and IFN-γ alleviated liver fibrosis in
mice infected with S. japonicum cercariae, compared with BM-MSCs licensed with TLR2
and IFN-γ, which exacerbated the immunopathology in vivo [104]. In a mouse model of
experimental autoimmune encephalomyelitis (EAE), BM-MSCs licensed with Poly(I:C)
reduced the proliferation of CD3+ T cells, compared with BM-MSCs licensed with LPS,
which increased CD3+ T-cell proliferation. Following i.p. administration, Poly(I:C)-licensed
BM-MSCs alleviated EAE severity in contrast to LPS-licensed BM-MSCs, where their im-
munosuppressive effects were reversed [105]. The differential effects of various TLR ligands
on MSCs may be associated with the downstream activation of pro- or anti-inflammatory
mediators by MSCs. It is also likely that differential disease microenvironments will alter
TLR activation of MSCs in vivo.

The oxygen concentration in ex-vivo culture can have a significant impact on MSC
function, particularly when there is a large difference between the oxygen concentration
used during ex-vivo culture (usually normoxic) and the concentration available at the site
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of in vivo administration in inflammatory disease (usually hypoxic). Pre-conditioning in a
hypoxic environment can enhance MSC survival [106–110] and MSCs’ secretion of trophic
factors associated with their therapeutic efficacy [110–113]. Hypoxic licensing is of rele-
vance, as a disruption in oxygen homeostasis results in a hypoxic environment in many in-
flammatory lung diseases [114], such as ARDS, wherein gas exchange is impaired [115,116].
Hypoxic pre-conditioning of MSCs enhanced MSC survival and therapeutic efficacy in
bleomycin-induced lung fibrosis [67]. This enhanced survival was found to be partially
linked to an upregulation in hepatocyte growth factor (HGF) [4]. The importance of HGF’s
role in MSC cytoprotection has also been demonstrated using shRNA knockdown of HGF
in human MSCs in a bleomycin-induced IPF model [4] and in an elastase-induced COPD
model [8]. Differentially, MSCs exposed to hyperoxia (95% oxygen) can have an enhanced
paracrine effect when administered to rats with oxygen-induced neonatal lung injury, due
to an increase in stannocalcin-1 (STC-1) [117]. STC-1 has been described as having an
important role in anti-apoptotic effects when secreted by MSCs [118]. UC-MSC derived
microvesicles had enhanced angiogenesis potential following licensing with hypoxia, both
in vitro and in vivo [119]. Alternatively, MSCs can also be pre-conditioned by culturing
in anoxia, where ischemic MSC derived-exosomes have been shown to have enhanced
protection in endotoxin-induced ALI in mice [120].

5. Exogenous Licensing of MSCs

There is growing evidence that different lung inflammatory environments, illustrated
by utilising serum and BALF collected from various different inflammatory lung condi-
tions as a surrogate, leads to altered MSC behaviours [2,47,121,122]. For example, ex-vivo
exposure of murine MSCs to BALF or serum from mice with house dust mite (HDM)-
induced allergic airway inflammation promoted increased expression of anti-inflammatory
mediators (IDO, IL1RN, TSG-6, IL-10, TGF-β) and enhanced MSC therapeutic efficacy
in HDM-mediated allergic airway inflammation [2]. Pre-conditioning of human MSCs
with ARDS patient (moderately severe ARDS secondary to bacterial pneumonia) serum
led to enhanced production of IL-10 and IL-1RN and decreased production of IL-6, IL-1
and IL-8 [73]. In contrast, BALF from patients with cystic fibrosis had toxic effects on
human BM-MSCs, mediated by Aspergillus species-induced mitochondrial dysfunction
and MSC death [123]. In the context of BALF from ARDS patients, a range of pro and
anti-inflammatory mediators are induced in human MSCs following exposure to ARDS
BALF (taken from ARDS patients without sepsis). Of particular interest, IL-1β present
in these ARDS BALF samples was predictive of the induction of IL-6, IL-8 and FAS by
human BM-MSCs following ex-vivo exposure to the BALF [124]. MSCs exposed to ARDS
patient BALF samples were less effective at driving an anti-inflammatory macrophage phe-
notype compared to MSCs exposed to BALF from other lung conditions (including acute
exacerbations of CF) [121]. A different study used pooled ARDS BALF and following expo-
sure to these samples, human BM-MSCs promoted an anti-inflammatory and phagocytic
macrophage phenotype, in vitro [74]. The limitations of these studies are that the ARDS
patient etiologic profiles were not well described, and the use of different experimental
conditions make it difficult to compare the findings from these studies. However, these
studies highlight that the disease microenvironment present in the lung has the potential
to have a significant positive or indeed negative effect on MSC therapeutic effects. As
such, this underscores the need to better understand the disease microenvironment, how it
influences MSC efficacy, and the potential benefits associated with a patient stratification
approach to identify the patients who are most likely to respond to MSC therapy.

6. Endogenous Licensing of MSCs

Thus far, we have discussed the evidence supporting the fact that MSCs can influence
their microenvironment once administered in vivo and the positive impact that exogenous
licensing can have on MSC therapeutic effects. The previous paragraph alluded to the
fact that MSCs can also be influenced by their microenvironment, for example, ex vivo,
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following exposure to BALF or serum from inflammatory conditions. Based on the status
of the microenvironment, MSCs can either have a beneficial or detrimental effect in the case
of acute lung injury [47]. One of the earliest studies focusing on the microenvironmental ef-
fects on MSC efficacy showed that MSCs failed to modulate the immune response in GvHD
driven by IFN-γ knock out T cells, demonstrating the importance of IFN-γ for activation of
MSC immunomodulatory function in vivo [41]. In alignment with this, protective effects
of BM-MSC administration in a mouse model of allergic airway inflammation were lost in
IFN-γ receptor knockout mice [125]. While systemic administration of mouse BM-MSCs
protected against ventilator-induced lung injury in mice, the same MSCs exacerbated injury
in an acid-induced ALI mouse model [47]. Exacerbated injury was associated with higher
BALF concentrations of IL-6, fibronectin, and lower levels of total antioxidant capacity
(TAC) [47], highlighting conditions which negatively impact MSC functions. The proteomic
profile of more than half of a cohort of ARDS (severe pneumonia without sepsis) patients
serum samples (n = 33) shared this profile of high plasma fibronectin and low levels of TAC,
suggesting that the microenvironment present in these patients may not be optimal for
MSC administration [47]. This study from Islam et al. was an important study in highlight-
ing that there may be lung inflammatory conditions that may not be compatible with MSC
therapeutic efficacy. Notably, a recent clinical trial of BM-MSC in ARDS (inclusion criteria:
sepsis with/out pneumonia, pneumonia without sepsis, aspiration only) showed a non-
significant trend of higher 28-day mortality in patients after treatment with MSCs compared
to that of placebo (NCT02097641) [19]. This may be associated with baseline imbalances in
the severity of illness and low viability of the MSCs utilized in this trial, however, it is also
possible that the microenvironment present in some of these patients was sub-optimal for
MSC therapeutic efficacy. These investigators are now conducting another trial in a select
population of patients with ARDS resulting from trauma as opposed to sepsis or pneumo-
nia to better evaluate this issue. Importantly, there are also many pre-clinical studies that
have identified ways in which the lung inflammatory environment facilitates the licensing
or activation of MSCs. In addition to the positive effects associated with endogenous
production or presence of NF-κB, TNF-α receptor, or IFN-γ [41,44,45], endogenous TNF-α
has also been shown to play a key role in licensing MSCs, in vivo, through the induction of
TSG-6. Human MSCs expressing high levels of TSG-6 improved survival and preserved
body weight in a murine bleomycin model, compared with the control. Similarly, human
MSCs attenuated LPS-induced inflammation in the lung via secretion of TSG-6, as knock
down of TSG-6 expression abrogated the human BM-MSCs’ anti-inflammatory effects in
this murine model of ALI [126]. Moreover, entrapment of BM-MSCs in the lung leads to
their activation and production of TSG-6, which has been shown to play a role in protection
against myocardial infarction in mice [64]. Endogenous TNF-α or TNF receptors present
in the disease microenvironment have been shown to play a key role in MSC efficacy in
pre-clinical models of sepsis [127] and cardiomyopathy [128]. BM-MSCs from TNF-α or
TNF-R1 knockout mice did not protect against caecal ligation and puncture-induced sepsis
following intravenous administration [79]. An elegant study identified an important role
for induced pluripotent stem cells (iPSC)-MSCs sensitivity to endogenous TNF-α in protec-
tion mediated via mitochondrial transfer in anthracycline-induced cardiomyopathy [128].
Specifically, transplantation of iPSC-MSCs but not TNFαIP2 (TNF-α induced protein that
regulates tunnelling nanotube (TNT) formation) knockdown iPSC-MSCs protected against
cardiomyopathy [128].

In addition to pro-inflammatory cytokines, toll-like receptors (TLR) and their ligands
also influence MSC efficacy and function in vivo. TLR4 knockout mouse BM-MSCs failed
to protect against E. coli-induced pneumonia [10] and were not efficacious in pre-clinical
models of EAE [98] in comparison with wildtype MSCs. On the other hand, the microenvi-
ronment in the failing heart or myocardial infarct promoted a pro-inflammatory phenotype
in both resident and transplanted mouse MSCs via TLR4 activation [129]. Interestingly,
TLR4 knockout MSCs maintained their expression of CD47 (a “don’t eat me” signal), in-
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creasing their survival and facilitating their protective effects in a pre-clinical model of
myocardial infarction [129].

Some of the most interesting studies focused on understanding how MSCs mediate
their effect, have identified an important role for host macrophages present at the site
of administration. A growing body of recent literature suggests that MSC–macrophage
crosstalk plays a key role [130,131] in shaping MSC anti-inflammatory effects. An increase
in anti-inflammatory or non-classical monocytes or macrophages has been reported in a
range of disease models following MSC administration [79,82,92,132–136]. With respect
to mechanisms, the transfer of mitochondria from MSCs to macrophages has been shown
to enhance their bioenergetics [84] and promote an anti-inflammatory phenotype [11,82].
Use of clodronate liposomes to delete macrophages in vivo has demonstrated that the
presence of macrophages are essential for MSC-mediated anti-inflammatory effects in
preclinical models of ARDS, corneal allo-transplantation, liver injury and DSS-induced coli-
tis [11,133,137,138]. Phagocytosis of MSCs [139,140], MSC-EVs [141], MSC cytoplasm [142]
or MSC mitochondrial transfer via tunnelling nanotubes [11] can drive anti-inflammatory
macrophage phenotypes. Building complexity upon those findings, one study showed
that macrophage phagocytosis of MSCs that have been killed by cytotoxic T cells plays a
key role in human BM-MSC protection against GvHD following i.v. administration [76].
Importantly, i.v. administration of apoptotic MSCs did not have the same level of pro-
tection as live MSCs [76]. Moreover, while live MSCs were effective in combination with
immunosuppressive drugs, heat-killed MSCs were not efficacious in pre-clinical allogeneic
heart transplantation [143]. Many of these findings highlighting the importance of the
MSC-macrophage crosstalk in driving MSC activation and therapeutic effects are in studies
using systemic administration of MSCs, whereby MSCs become trapped in the lung and
mediate their effects even in inflammatory conditions distal to the lung. Thus, if we are to
better understand exactly how the disease microenvironment influences MSC licensing
and therapeutic efficacy and to identify the mechanism used by MSCs in mediating their
effects, then we need to include in-depth studies of the lung environments present before
and after MSC administration when MSCs are administered intravenously.

7. Patient Stratification to Identify Responders to MSC-Based Therapy

MSCs are usually detected for only a short time (72 h) in the lung or any other organ
following systemic administration [29,140,144], however, their longevity can be enhanced
in an injured lung or in licensed MSCs. Interestingly, exposure to healthy control BALF
promotes human BM-MSC expression of HLA-DR, arguably increasing recognition and
clearance of the MSCs [124]. This doesn’t occur with ARDS BALF exposure, suggesting
that the ARDS inflammatory environment may be protective of MSC survival [124]. We
have also demonstrated that IFN-γ licensing of human BM-MSCs enhances their longevity
in the short-term, in vivo, while pre-exposure to a PPARδ agonist significantly reduces
MSC longevity in vivo in a humanised mouse model of aGvHD [49]. Despite the short
time-frame, MSCs can mediate significant protective effects when administered to condi-
tions where there is an acute inflammatory insult such as in ARDS. Data from chronic lung
patients where MSCs have been investigated within clinical trials but have not demon-
strated efficacy in COPD [17,145–147], or IPF [15,148]. Furthermore, preclinical evidence
suggests that MSCs cannot promote the regeneration of fibrotic tissue when administered
during established bleomycin-induced IPF [4,149,150] and delayed administration of MSC
in an elastase-induced COPD model reduced MSC efficacy. Given that patients with IPF
and COPD are likely to receive MSCs at a time when the disease is fully established, this
data suggests that MSCs may not be efficacious. In the context of the acute nature of
ARDS [151], and the growing body of literature supporting the potential for MSC efficacy
in ARDS [19,21,35,36], it seems sensible that MSCs may be most suitable in acute inflam-
matory conditions. Moreover, the data discussed in this review also supports the idea
that differential disease microenvironments present in some diseases or sub-phenotypes
of disease may be better suited to facilitate MSC activation and lead to optimal MSC
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therapeutic effects. For example, stratification of ARDS patients based on the hyper and
hypo-inflammatory phenotypes may lead to the identification of responders to MSC ther-
apy. Similarly, COPD patient stratification based on CRP baseline levels may enhance MSC
efficacy, suggesting that even in some chronic diseases, the inflammatory environment
may dictate potential MSC efficacy. Moreover, the potential to enhance MSC efficacy via
pre-conditioning or licensing before administration to patients may provide a solution to
try to enhance MSC therapy in heterogeneous patients where MSCs may not receive activa-
tion signals, negatively influencing their efficacy. Interestingly, Horwitz and colleagues
have registered a phase I clinical trial investigating IFN-γ-licensed MSCs as a prophylaxis
against aGvHD (NCT04328714). The findings from this study are eagerly awaited as the
first study evaluating licensed MSCs in clinical trials.

8. Conclusions

In patients who respond to MSC therapy, these cells can have significant effects on
the morbidity and in some cases mortality of patients who are very unwell and who have
limited options. Although it may seem that limited progress has been made in the transla-
tion of MSC therapy to patients with inflammatory conditions (particularly in the lung),
the field has learned much about how these cells respond to the inflammatory/disease mi-
croenvironment in which they find themselves following administration. Considering this,
there is also a significant volume of research to be done in order for us to fully appreciate
and understand how best to utilise these cells, so that we can identify the mechanisms of
action and critical quality attributes required by the regulatory agencies. In our opinion,
significant efforts should be made at the pre-clinical model stage and in patients following
MSC administration to better identify how the disease microenvironment influences MSC
licensing, function and efficacy.
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