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Abstract: Currently, breast cancer is one of the most common cancers in women all over the
world. A novel 3D breast ultrasound imaging ring system using the linear array transducer is
proposed to decrease costs, reduce processing difficulties, and improve patient comfort as compared
to modern day breast screening systems. The 1 × 128 Piezoelectric Micromachined Ultrasonic
Transducer (PMUT) linear array is placed 90 degrees cross-vertically. The transducer surrounds the
mammary gland, which allows for non-contact detection. Once the experimental platform is built,
the breast model is placed through the electric rotary table opening and into a water tank that is at a
constant temperature of 32 ◦C. The electric rotary table performs a 360◦ scan either automatically or
mechanically. Pulse echo signals are captured through a circular scanning method at discrete angles.
Subsequently, an ultrasonic tomography algorithm is designed, and a horizontal slice imaging is
realized. The experimental results indicate that the preliminary detection of mass is realized by using
this ring system. Circular scanning imaging is obtained by using a rotatable linear array instead of
a cylindrical array, which allows the size and location of the mass to be recognized. The resolution
of breast imaging is improved through the adjustment of the angle interval (>0.05◦) and multiple
slices are gained through different transducer array elements (1 × 128). These results validate the
feasibility of the system design as well as the algorithm, and encourage us to implement our concept
with a clinical study in the future.

Keywords: 3D imaging ring system; PMUT array; circular scanning; ultrasound tomography

1. Introduction

Breast cancer is the most common cancer in women worldwide. To decrease the mortality rate of
breast cancer, detection in the early stages with screening is crucial [1,2]. Mammography, hand-held
ultrasound, computerized tomography (CT) and magnetic resonance imaging (MRI) are commonly
used methods for breast-cancer screening [3]. However, many of these methods expose the examinee
to harmful radiation and compression pain. Thus, an alternative screening system is necessary.
A promising modality for imaging of breast cancer is ultrasound computer tomography (USCT) [4,5].
The benefits of USCT have been known for a long time and the first publications date back to the
70 s [6]. The USCT system is radiation-free, painless, and suitable for all breast categories [7]. One of
the main advantages of the USCT system is the simultaneous recording of reflection, attenuation,
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and speed of sound images [8,9]. Additionally, high image quality and fast data acquisition can be
achieved [10]. The patient is imaged in the prone position with the breast hanging freely into the
imaging volume [11] so that the USCT images of the female breast are produced. Until now, building
such a device has been extremely costly, and the processing technology of the big ring ultrasonic
transducer array has been complex [12,13].

Breast cancer has higher density and sound speed, likely due to changes in cancerous tissue’s
mechanical and elastic properties [14]. Mean values from the published sound reports are as follows:
fat, 1478 m/s; glandular breast, 1510 m/s; benign breast tumors, 1513 m/s; and malignant breast
tumors, 1548 m/s, suggesting that sound speed can be used to assess breast density and potentially
detect breast cancer [15,16]. Research on breast ultrasound sound speed tomography goes back
more than 35 years with the first report on transmission ultrasound tomography being published in
1974 [17]. In 1981, results were reported of a transmission mode breast scanner that simultaneously
imaged pulse-echo backscatter, attenuation, and speed, which showed clear delineation of breast
architecture [18,19]. More recent research has continued to demonstrate advancement in breast
ultrasound tomography with most approaches using both transmission and reflection methods [20–24].
Currently, the B-Mode ultrasonic tomography is used broadly in medical ultrasonic imaging [25–28].

In this project, a 3D ultrasound imaging ring system using piezoelectric micro-machined ultrasonic
transducer (PMUT) linear array is developed. The 1 × 128 PMUT linear array utilizes the ring system
operating at a center frequency of 3.5 MHz. The ultrasonic transmit/receive signals are controlled
through 16 channels acquisition circuit. C-Mode ultrasonic tomography is combined with PMUT to
perform imaging of the breast model. Various experimental projects are used to validate feasibility of
the system and validity of the algorithm.

2. 3D Ultrasound Imaging Ring System Description

A novel 3D ultrasound imaging ring system is provided in this paper and the diagram is shown
in Figure 1. It consists of the personal computer workstation, four linear ultrasonic transducer linear
arrays, an electric rotary table and its controller, the storage water tank, ultrasonic signal transmitting
and receiving circuits, and a constant temperature heater.
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Figure 1. Diagram of the 3D ultrasound imaging ring system.

The main components are described below:

(a) Linear ultrasonic transducer array:

The cross-sectional structure of the 1 × 128 PMUT array is shown in Figure 2. It consists of a shell,
a damping pad, a transducer array, a matching layer, and an acoustical lens. The emissive power of
each element is enhanced by using the acoustical lens. The transmitting and receiving array elements are
controlled by the switch controller. The PMUT was characterized in water at the temperature 32 ◦C with
a precision impedance analyzer (Agilent E4990A, Agilent Technologies, Santa Clara, CA, USA), and the
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results are shown in Figure 3. The PMUT’s resonant frequency is 3.5 MHz with an impedance of 67 Ω
and a static capacitance of 665 pF. The values of impedance and capacitance provide a basis for the
design of a 16 channels ultrasonic transmitting/receiving acquisition circuit. The frequency of 3.5 MHz
of the ultrasound transducer has a broad application in the soft tissue medical imaging. PMUT’s array
spacing is 1 mm, hence the 128 array elements can meet the breast imaging the dimension requirement
of the 3D imaging.
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(b) Ultrasonic signal transmitting/receiving circuit:

Working conditions are determined based on the study of the ultrasonic transducer,
the programmable 16 channels ultrasonic transmitting/receiving acquisition circuit is shown in
Figure 4, which was designed by our research group. The data acquisition system is designed in the
AD9222 core chip, with a sampling frequency of 12 MHz, a large capacity flash memory that is used
as temporary storage medium, and a USB2.0 transmission bus. This system can be used in the 3D
ultrasound imaging ring system to create the desired focus imaging technology. The advantage of this
system is that it can achieve imaging performance far beyond a single channel [20].

Generally, the absorption coefficient of the soft tissue is 0.6~0.7 dB/(cm/MHz) [29]. With the
increase of detection depth, the ultrasonic echo signal will be attenuated. Therefore, multi-channel is
used to transmit and receive ultrasound signals to increase the detection depth and thereby producing
high resolution images [30].
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Figure 4. Ultrasonic transmitting/receiving acquisition circuit.

(c) Mechanical alignment device:

It is composed of an electric rotary table with a polymethyl methacrylate (PMMA) fixed device
and a bracket made of stainless steel. Four 1 × 128 PMUT linear arrays were installed vertically in the
PMMA fixed device, creating a 90◦ cross-symmetric structure as shown in Figure 5.The PMMA device
is a cylindrical structure, which is controlled by an electric rotary table to realize circular scanning.
The diameter of the PMMA device and the electric rotary table is equal. Commonly, the ultrasound
transducer needs water as the coupling medium. Whereas, the electric rotary table that we used should
be placed in air. Hence, the electric rotary table was installed inversely on the bracket. The prone
examinee’s pendant breast is placed through the opening in the electric rotary table and into the
water tank.
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Figure 5. Experimental setup for the 3D ultrasound imaging ring system.

The operation of the system is as follows:

(1) The storage water tank is filled and the water is heated to a constant temperature by a heater.
The temperature is maintained at 32 ◦C for patient comfort and to bring the water tank sound
speed closer to physiologic levels.

(2) The prone patient’s pendant breast is placed through the electric rotary table opening into the
water tank. Scanning is accomplished with the electric rotary table moving the transducer
assembly to the PMMA fixed device, whereupon the transducer assembly begins continuously
acquiring reflectivity ultrasound signals as the transducer rotates through 90◦. A vertical
slice is acquired using linear scanning method at a fixed angle and a horizontal slice is
obtained through circular scanning method when 90◦ scan is completed at various angles with
predetermined interval.
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(3) Multiple slices are gained by shifting the PMUT array element until the entire breast or object
is scanned. A 3D breast image can be reconstructed by merging multiple slices. Finally, it is
visualized on a personal computer workstation.

3. Results

According to the novel 3D ultrasound imaging ring system shown in Figure 1, experimental
platform system is constructed as shown in Figure 6.
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3.1. Methods

It is known that when an ultrasonic pulse propagates in an object or soft tissue, a reflection of
this pulse will occur every time it passes an interface layer where the refractive index is different [3].
A tomography image reconstruction can be accomplished by using sound reflection, transmission,
or a combination of reflection and transmission. Although this is an early stage study of the breast
ultrasound tomography imaging technology, the classic reflection ultrasonic imaging technology is
used to verify the feasibility and validity of this system. In this experiment, the four 1 × 128 PMUT
linear arrays are used for not only transmitting, but also receiving ultrasound signals, respectively.
The experiment was conducted in the water tank, at a temperature of 32 ◦C. The PMUT array was
driven by a signal generator (Agilent 33521A) and amplified by a power amplifier (HA205) [21].
The N-th element is excited by an AC sine voltage that has a pulse repetition interval of 1ms,
an operating frequency of 3.5 MHz and an amplitude of 100 Vpp. The pulse echo is received by
the same N-th element. Both the ultrasound pulsed signal and echoed signal are shown in Figure 7.
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Figure 7. Ultrasound pulse echo signal with a zoomed in view of the echoed signal.

The characteristic values are normalized to provide an intuitive view of the relative relationship
of the transmitting and receiving signals. The speed of sound in water is 1540 m/s [12]. The distance is
obtained by calculating the time difference between the transmitted signal and the received signal,
times the speed of sound, and then divided by 2, as shown in Equation (1):

s =
t × c

2
(1)

The results indicate that the object distance from the transducer is 72 mm. As the different
impedance of the target object is detected, the amplitude and distance of pulse echo signal will change,
so the detection of the soft tissue can be accomplished by using the pulse echo method. In addition,
the size and location of masses can be determined through subtracting distance 1 and distance 2 from
the diameter (180 mm) of the electric rotary table via the echo pulse method, as shown in Figure 8b.
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The setup of the ultrasound tomography transducer acquisition is shown in Figure 8. The breast
model is placed through the electric rotary table opening into the water tank, which is demonstrated
in Figure 8a. The transducer ring configuration platform is created as shown in Figure 8b. And the
number of the probe can be adjusted. In the experiment, the four PMUT linear arrays are placed
90 degrees cross vertically which were set at 0 degrees (PMUT 1), 90 degrees (PMUT 2), 180 degrees
(PMUT 3), and 270 degrees (PMUT 4), respectively. The distance of opposite PMUT’s is 180 mm.
Set1(PMUT 1, 2) and Set2(PMUT 3, 4) work alternately. During the testing of the circular scanning
imaging technology, and an image slice is obtained by rotating the transducer 90 degrees with an
interval of 2 degrees with the electric rotary table. The more probes, the shorter the acquisition time
of data. The precision of the electric rotary table is 0.05◦, which allows for a theoretical achievement
of 7200 echo pulse signals. 128 horizontal slices are achieved by rotating the N-th element through a
full circle. A slice map of ultrasound tomography imaging is shown in Figure 8c. It is the basis of 3D
breast imaging.

According to the characteristics of breast detection, the circular scanning method was used.
A stereo scan of the breast model can be completed when the probe is rotated 90 degrees. The breast
model is shown in Figure 8d. The processing step of a horizontal slice data is as follows: (1) store data
in columns which each column is an ultrasonic echo data; (2) a Butterworth filter process; (3) envelope
detection; (4) logarithmic compression; (5) coordinate transformation using the center of the electric
rotate table as a reference point; (6) morphological processing including a bicubic filling algorithm and
an inflation algorithm. Then, a horizontal slice image can be produced. Most importantly, the algorithm
only needs to detect the half depth of the detection target, which can realize full depth imaging and
reduce the power consumption of the ultrasonic transducer.

3.2. Experiments and Results

3.2.1. Iron Model Imaging

In this section, ultrasound tomography imaging of an iron model in different shapes were obtained
by circular scanning using the ring system. A cylindrical iron and a square iron are experimented
using the ring system as shown in Figure 9. The operation process of the PMUT has been described
previously, and thus will not be described in detail here. The ultrasonic tomography images of the
cylindrical and square iron models are shown in Figure 9a,b, respectively.
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Through analysis of the relative position and distance of the scanned model, the size and the
outline of the iron model can be delineated. The diameter of the cylindrical iron is 2.1 cm measured by
the experiment. The relative error is 5%. Whereas, the length of the square iron is 2.15 cm measured by
the experiment. The relative error is 7.5%. Measured values are in conformity with the actual values.
However, the ultrasonic detection of the cylindrical iron is better than the square iron model, mainly
because sound wave reflection from a cylindrical surface is easier to detect due to smaller angles
of incidence, and thus the greater amplitude of reflected wave. The detection of contour is related
to the change of incident angle. The smaller the change of incident angle, the clearer the contour.
The preliminary imaging was implemented, which verified the feasibility of the circular scanning
imaging system.

3.2.2. Breast Model Imaging

The imaging of iron was used of initial testing of the system. The setup was evaluated with a
breast model (15.5 cm × 8 cm) with a 5 cm mass to verify the applicability of the system. Three groups
of experiment were designed by changing the angle of rotation while keeping the PMUT array
element constant.

The angle is determined by the electric rotary table, the precision of electric rotary table is 0.05◦,
which allows for the theoretical acquisition of 7200 echo pulse signals each full circle. The ultrasonic
image of breast model using ring system at intervals of 10◦, 6◦ and 2◦ are shown in Figure 10.
The preliminary imaging is accomplished, the size of the mass is about 5.1 cm in the center of the
breast model. The boundary of the breast model also can be distinguished. The results show that the



Sensors 2018, 18, 1332 9 of 12

test value of the mass is consistent with the actual value, and the setup can detect two substances.
The images acquired from the different intervals demonstrate the relationship between scanning
interval and image quality. Additionally, the resolution of the imaging improves with the decreasing
interval angle.
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Figure 10. Ultrasonic tomography of breast model using the ring system with an (a) angle of 10◦;
(b) angle of 6◦; (c) angle of 2◦.

By using the 1 × 128 PMUT linear array, 128 horizontal slices are produced from element 1 through
128 at intervals of 2◦. The reconstruction time per slice is 534.4 s by using HP workstation (16 G).
The element spacing is 1 mm. Elements 30, 50, and 70 are shown in Figure 11, in which the mass can
be seen in Figure 11a–c. The location of the masses is in the center of the breast model. The size of
the masses is about 5.0 cm, 5.1 cm, 4.9 cm respectively. Furthermore, the mass was clearly detected.
However, the size of the mass is diverse due to transition to different slices of the breast model.
Characteristic information of soft tissue each slice is different. Therefore, the setup can distinguish
objects from the background even inner structures. The breast model used in this experiment is shown
in Figure 8d. The boundary of the breast model also can be distinguished. However, the boundary
is not complete. This is due to the uneven shape of the breast model. The tilted side is not easily
detected because the incident angle is relatively large. Besides, only one element was used to emitting
and receiving at the same time. If we use focus technology, the quality of image will be improved.
Experimental results verified the effectiveness of this ring system, in which 3D breast imaging will be
accomplished through multilayer slice data reconstruction.
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4. Discussion and Conclusions

In this project, a novel 3D ring imaging system with a rotatable 1 × 128 PMUT linear array is
achieved. Based on the characteristics of breast detection, a circular scanning method is proposed.
According to the characteristics of circular scanning, the corresponding ultrasound tomography
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is designed. The algorithm only needs to detect the half depth of the detection target, which
can realize full depth imaging and reduce the power consumption of the ultrasonic transducer.
Through the experimental analysis of ultrasonic imaging of a cylindrical iron, a square iron and
a breast model, the size, location, and outline of a hypothetical mass can be distinguished from soft
tissue. This setup is mainly for the detection of breast lesion, through the electric rotary table control,
combined with ultrasonic transducer is placed vertically (adjustable number), a circular scanning
(adjustable interval angle) can realize 3D scanning of mammary gland. By using rotatable line array
instead of a cylindrical array, it can decrease the difficulties of sensor’s fabrication processing and
overcome the poor consistency and poor reliability of a cylindrical array. Compared with the existing
ultrasonic equipment, this setup has a simple structure and low cost. Moreover, the setup can obtain
both reflected signals and transmission signals. Multi-modal imaging studies can be carried out.
However, the 3D scanning relies on mechanical rotation, thus causing inevitable water disturbance
and more data acquisition time. Test results are consistent with the theoretical values. The ultrasound
tomography imaging validates feasibility of the system and validity of the algorithm, with additional
advantage of portability.

5. Patents

Chinese Patent: The breast ultrasound imaging system and the testing method based on CMUT
ring array (Application No. 2017105534314).
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