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Abstract: Lipid membranes are common to all forms of life. While being stable barriers that delimitate
the cell as the fundamental organismal unit, biological membranes are highly dynamic by allowing
for lateral diffusion, transbilayer passage via selective channels, and in eukaryotic cells for endocytic
uptake through the formation of membrane bound vesicular or tubular carriers. Two of the most
abundant fundamental fabrics of membranes—lipids and complex sugars—are produced through
elaborate chains of biosynthetic enzymes, which makes it difficult to study them by conventional
reverse genetics. This review illustrates how organic synthesis provides access to uncharted areas
of membrane glycobiology research and its application to biomedicine. For this Special Issue on
Chemical Biology Research in France, focus will be placed on synthetic approaches (i) to study
endocytic functions of glycosylated proteins and lipids according to the GlycoLipid–Lectin (GL–Lect)
hypothesis, notably that of Shiga toxin; (ii) to mechanistically dissect its endocytosis and intracellular
trafficking with small molecule; and (iii) to devise intracellular delivery strategies for immunotherapy
and tumor targeting. It will be pointed out how the chemical biologist’s view on lipids, sugars, and
proteins synergizes with biophysics and modeling to “look” into the membrane for atomistic scale
insights on molecular rearrangements that drive the biogenesis of endocytic carriers in processes of
clathrin-independent endocytosis.

Keywords: glycosphingolipid; galectin; glycosylation; endocytosis; retrograde trafficking; raft;
Casimir force; immunotherapy; tumor targeting; small molecule

1. Introduction

The plasma membrane is a selective barrier for controlled exchanges between eukary-
otic cells and their environments. Endocytosis describes the cellular process by which parts
of the plasma membrane are invaginated to then pinch off membrane-bound carriers for
the uptake of material that originates from the extracellular space or the cell surface [1].
Endocytosis thereby serves a multitude of cellular functions that range from nutrient
uptake and growth factor signaling to the dynamic maintenance of specialized areas of
the plasma membrane, such as the leading edge of migratory cells or the immunological
synapse of lymphocytes.

Amongst the endocytic processes that occur in all eukaryotic cells, the clathrin pathway
remains by far the best-characterized [2–4]. Here, the recruitment of clathrin and its
adaptors onto cytosolic signals of transmembrane proteins drives the bending of a patch
of plasma membrane into a narrow endocytic pit that then detaches by the action of the
scission GTPase dynamin to give rise of an endocytic vesicle.

It is now well established that narrow endocytic pits can also form in endocytic
processes that are not driven by the clathrin machinery [5–8]. A multitude of cellular
proteins are involved in these clathrin-independent endocytosis events, such as small GT-
Pases of the Rho/Rac/Cdc42 [9,10] and Arf families [11,12], actin [13,14], galectins [15,16],
endophilins [17,18], and reticulon3 [19]. Whether these constitute different endocytic path-
ways or contribute at different steps to the same endocytic pathway has remained an open
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question (discussed in Reference [20]). While clathrin-independent endocytic carriers were
initially described as pleiomorphic [21], more recent findings identify them in many cases
as tubular elements [14,16,17,19,22].

In the field of clathrin-independent endocytosis research, the key challenge is to ex-
plain how cargo proteins are recruited and the plasma membrane is bent to form endocytic
pits without the help of the clathrin coat. It is indeed another common characteristic of
clathrin-independent endocytic processes that highly organized electron dense protein
assemblies (termed coats) cannot be found at sites of endocytic pit formation. According to
the GlycoLipid–Lectin (GL–Lect) hypothesis, oligomeric sugar-binding proteins (lectins)
from pathogens or of cellular origin (notably galectins) interact with glycosylated lipids
(glycosphingolipids (GSLs) or glycosylphosphatidylinositol (GPI)-anchored proteins) in a
way such as to drive narrow membrane bending. This leads to the formation of tubular
endocytic pits from which so-called clathrin-independent carriers detach for the cellular
uptake of pathogens (e.g., Shiga and cholera toxins, polyomaviruses, norovirus, etc.), or
cellular glycoproteins (e.g., integrins, CD44, etc.) that are recruited by galectins [23–26]
(Figure 1). To what extent the GL–Lect hypothesis provides the conceptual framework for
a unifying view on clathrin-independent endocytosis remains to be established.
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Once internalized, proteins and lipids are sorted to three principal destinations 
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transport to the Golgi apparatus for subsequent polarized secretion to specialized areas 
of the plasma membrane, such as the leading edge of migratory cells or the immunological 
synapse of lymphocytes [29], or further retrograde trafficking to the endoplasmic reticu-
lum (ER) for retro-translocation to the cytosol [30]. For a discussion of the molecular sig-
nals that determine sorting on endosomes the reader is referred to excellent recent reviews 
[31–33]. 

In the context of the GL–Lect hypothesis, many key questions arise on regulation, 
structural organization, and physiological functions. For this review, in the Special Issue 
on Chemical Biology Research in France, the focus will be on GL–Lect-related aspects that 
have been addressed through chemical biology approaches. 

2. Glycosphingolipids 

Figure 1. Endocytic pit construction according to the GL–Lect hypothesis. The sugar binding protein galectin-3 (Gal3) is
monomeric in solution. It binds to complex carbohydrates of plasma membrane glycoproteins (glycosylated cargo). This
leads to Gal3 oligomerization, thereby enabling its capacity to interact with glycosphingolipids (GSLs) in a way such as to
induce narrow membrane bending and the clathrin-independent formation of endocytic pits into which the glycosylated
cargoes are recruited. From these pit, endocytic carriers are then generated for the cellular uptake of the glycosylated
cargoes (not shown). Reproduced with permission from Ref. [16].

Once internalized, proteins and lipids are sorted to three principal destinations within
the endocytic pathway: (i) late endosomes and lysosomes for degradation and nutrient
uptake [27]; (ii) back to the plasma membrane for recycling [28]; and (iii) retrograde
transport to the Golgi apparatus for subsequent polarized secretion to specialized areas of
the plasma membrane, such as the leading edge of migratory cells or the immunological
synapse of lymphocytes [29], or further retrograde trafficking to the endoplasmic reticulum
(ER) for retro-translocation to the cytosol [30]. For a discussion of the molecular signals that
determine sorting on endosomes the reader is referred to excellent recent reviews [31–33].

In the context of the GL–Lect hypothesis, many key questions arise on regulation,
structural organization, and physiological functions. For this review, in the Special Issue
on Chemical Biology Research in France, the focus will be on GL–Lect-related aspects that
have been addressed through chemical biology approaches.

2. Glycosphingolipids

The mole percentage of glycosphingolipids (GSLs) in biological membranes varies
from very low numbers in the nuclear envelop and ER to double digit numbers at the
plasma membrane of epithelial cells [34]. GSLs are essential for life from lower organisms
such as the fruit fly D. melanogaster [35] and the earthworm, C. elegans [36], to mammals [37].
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They have been ascribed a multitude of functions (e.g., receptor signaling, cell adhesion,
membrane trafficking), but molecular mechanisms of action remain poorly explored.

A striking feature of GSLs is their capacity to organize into domains that have been
termed lipid rafts [38]. This lateral “connectivity” results from unique features, such
as long acyl chains and the capacity to form hydrogen bonds. How raft connectivity is
translated into biological functions has mostly remained enigmatic. The raft hypothesis
itself has evolved since its initial formulation. While phase separation with raft fabric
occurs in passive systems such as liposomes, active cell membranes are understood as
non-equilibrium systems. In this context, the construction of raft-type assemblies is thought
to be driven by appropriate triggers (e.g., GSL-binding lectins), which thereby transform
the “raftophilic” potential of GSLs into defined cell biological outcomes [39,40].

Hundreds of different GSL species have been described that are made by chains of
biosynthesis enzymes [41] (Figure 2). It is thereby virtually impossible to “mutate” the
expression of a specific GSL species in the complex cellular environment without affecting
the others. Chemical synthesis has provided a means to address this difficulty, which will
be exemplified here in the context of the GL–Lect hypothesis.
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reactions are shown in dark orange. Reproduced with permission from The Journal of Cell Sci-
ence, Ref. [41]. 

The bacterial Shiga toxin and the closely related verotoxins from enterohemorrhagic 
E. coli strains are a threat to human health by inhibiting protein biosynthesis in target cells 
[42,43]. It is the non-toxic homopentameric B-subunit, termed STxB, which drives the 
clathrin-independent biogenesis of tubular endocytic pits from which the toxins are taken 
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Figure 2. GSL biosynthesis pathways. Left panel: ceramide (Cer) can be acylated (acyl-Cer), phos-
phorylated (Cer-1-phosphate), or conveyed to the TGN for the synthesis of sphingomyelin (SM).
Alternatively, Cer is glycosylated for the synthesis of the GSL precursors, glucosylceramide (GlcCer)
or galactosylceramide (GalCer) along the secretory pathway. GalCer is then processed for the produc-
tion of sulfatides. Right panel: GlcCer is galactosylated to lactosylceramide (LacCer), which serves
as a common precursor for the different GSL series: globo (red), ganglio (green), asialo (blue) and
lacto (purple). Glycosphingolipid-synthetizing enzymes catalyzing the major synthetic reactions are
shown in dark orange. Reproduced with permission from The Journal of Cell Science, Ref. [41].
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The bacterial Shiga toxin and the closely related verotoxins from enterohemorrhagic
E. coli strains are a threat to human health by inhibiting protein biosynthesis in target
cells [42,43]. It is the non-toxic homopentameric B-subunit, termed STxB, which drives the
clathrin-independent biogenesis of tubular endocytic pits from which the toxins are taken
up according to the GL–Lect mechanism (Reference [14], reviewed in Reference [24]). STxB
indeed binds to the GSL globotriaosylceramide (Gb3) not only as the cellular toxin receptor,
but also to cluster and induce narrow membrane bending. How is this achieved? Synthetic
approaches have allowed addressing this question.

In solution, STxB homopentamers do not cluster, while they very efficiently do so
on membranes. Based on coarse grained dissipative particle dynamics simulations, it
was suggested that this occurred through the suppression of thermally excited protrusion
fluctuations of membrane lipids between two tightly membrane associated STxB molecules
that are at a distance of less than 10 nm from each other [44] (Figure 3). Such fluctuation
forces as a source for membrane-mediated clustering had not been suggested before. How
should this be tested experimentally? As the first step in this direction, Gb3 molecules were
synthesized in which the ceramide part was separated from the globotriose sugar by flexi-
ble PEG linkers of increasing length. In dissipative particle dynamics simulations it was
shown that with increasing linker length, the suppression of thermally excited protrusion
fluctuations became progressively weaker [44]. Under these conditions, clustering was
also progressively lost. Satisfyingly, the same trend was observed when STxB clustering
was now measured by fluorescence correlation spectroscopy on giant unilamellar vesicles
(GUVs) that were made with the corresponding PEG linker types of Gb3 molecules. Fur-
thermore, STxB endocytosis was strongly reduced in cells that were reconstituted with
PEG linker Gb3 species, even when the surface density of STxB matched that of cells that
were reconstituted with natural Gb3 (Reference [44]). These findings were consistent with
the proposal of membrane fluctuation forces as a novel modality to induce heterogeneity
in the lateral distribution of GSL-binding proteins in correlated fluids such as biological
membranes [45].
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Figure 3. Hypothesis on fluctuation force-driven clustering. Thermally excited fluctuations are
suppressed by membrane inclusions (yellow) of nanometric size like STxB, not only at the sites of
binding to the membrane, but also for the membrane patch between the two nanoparticles, if they
are separated only by a distance of their own size. This perturbation results in an attractive force
whose strength is expected to be similar to that of shielded electrostatics or van der Waals interactions.
Reproduced with permission from Toxins, Ref. [24].

The bacterial cholera toxin from V. cholerae has a very similar overall structure to
Shiga toxin and enters cells by GL–Lect endocytosis via clathrin-independent endocytic
carriers [22]. Its B-subunit, CTxB, interacts with the GSL GM1 as the cellular toxin receptor.
Using synthetic GM1 species from Reference [46] it was very recently shown that CTxB
induced GM1 co-clustering with the GPI-anchored protein CD59 only when the acyl chain
of GM1 was fully saturated [47]. Thus, different ceramide species of GM1 dictate their co-
assembly with CD59 into CTxB-induced nanodomains, which likely underlies endogenous
sorting processes driven by cellular galectins.
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Synthetic GSL species were also instrumental to propose hypotheses on how the
plasma membrane is bent by STxB [14] or CTxB [48] to narrow radii. Using the synthetic
PEG linker Gb3 species from Reference [44], it was shown by grazing incidence x-ray
diffraction that STxB induced lipid compression in a manner that depended on its me-
chanical coupling onto Langmuir trough monolayers [49]. This finding was surprising as
it is commonly assumed that membranes are difficult to compress. When transposed to
bilayered biological membranes, STxB-induced lipid compression would lead to an asym-
metric compressive stress and corresponding inward-bound negative curvature (Figure 4),
as needed for the construction of uptake sites at the plasma membrane.
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Figure 4. Hypothesis on asymmetric compressive stress leading to negative membrane curvature.
Membrane compression of the exoplasmic leaflet to which STxB is bound will force the double-
layered plasma membrane to curve in the direction of the toxin. From Reference [20]; courtesy of the
Cold Spring Harbor Laboratory Archives.

This asymmetric compressive stress mechanism would be expected to synergize with
negative curvature induction that results from the specific geometry of GSL binding sites
on STxB [50] and CTxB [51,52]. It has indeed been noticed that proteins that do not have
any sequence similarity (i.e., STxB and CTxB, but also the VP1 capsid proteins of simian
virus 40) fold, such as to present binding pockets for the sugars of their GSL receptors in the
same position and orientation at the periphery of the pentameric “doughnut”-like shapes
that they adopt (reviewed in references [6,23,24]) (Figure 5). Of note, these binding pockets
are located at a distance above the normal plan of the membrane, such that the membrane
must bend up at the edges to allow the GSL sugars to reach these sites. It remains to be
seen whether this type of molecular organization is also found for the oligomeric galectins.
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Figure 5. Negative curvature induction based on the geometry of GSL binding sites on lectins.
(a) All atom molecular dynamics simulation of the STxB homopentamer (gray ribbon structure, side
view) on a membrane patch. Gb3 molecules in blue. Note the increment of spontaneous membrane
curvature that is observed in silico due to the presence of STxB. (b) Representation (extracted from (a))
of STxB (side view) with three carbohydrates (blue, green and red). For simplicity, only the three Gb3
binding sites on one monomer are shown. Note that sites 1 (red) and 2 (green) are at the periphery
of the protein, while site 3 (blue) faces down under the protein. (c) Schematic representation of the
situation in (b) which illustrates that the membrane (black line) needs to bend up at the edges of
STxB to plug the sugars of Gb3 receptor molecules (red and green) into the binding pockets of sites
1 and 2. This would then lead to the generation of negative membrane curvature. (d) Overlay of
the structures of the following proteins in interaction with GSL receptor analogues: STxB in green
with Gb3 (Reference [53]), CTxB in red with GM1 (Reference [54]), the capsid protein VP1 from SV40
in blue (Reference [55]). Note that despite the fact that these proteins do not have any sequence
similarity, they fold such that the conserved GSL binding site 2 is presented with the same geometry
in space (the sugars of the three structures overlay). It therefore seems likely that this fold was
selected by convergent evolution for the same function: to generate negative membrane curvature
for building endocytic sites for clathrin-independent endocytosis. Reproduced with permission from
Toxins, Ref. [24].

The use of synthetic Gb3 species allowed to show the capacity of STxB to induce
tubular membrane invaginations on GUVs only in the presence of single unsaturated
acyl chains, and not fully saturated chains [14] (Figure 6). Based on all atom molecular
dynamics simulations it was suggested that this was not because STxB lost its capacity to
bend membranes as such [50]. Rather, the raft-type membrane patch that was assembled by
STxB became too rigid to be bent when it only contained fully saturated Gb3 species [50].
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Of note, for the highly related cholera toxin, endocytic and retrograde trafficking into cells
was much more efficient with single unsaturated GM1 acyl chain species, when compared
to the fully saturated ones [56]. This finding indicated that the capacity to organize a
bending-compatible raft-type nanodomain was indeed critical for the biological effect of
the toxins.
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Figure 6. Induction of tubular membrane invaginations by fluorescently labeled STxB on Gb3-
containing GUVs. Note that less than 1 min after addition of STxB, tubular membrane invaginations
(arrows) were observed on GUVs that contained a C22 Gb3 species with a single unsaturated acyl
chain (top panel, C22:1)). In contrast, no tubules were observed on GUVs that contained a C22
Gb3 species with fully saturated acyl chain (bottom panel, C22:0), even after dozens of minutes of
incubation with STxB. Bars = 5 µm. Reproduced with permission from Ref. [14].

3. Small Molecule Inhibitors to Study Shiga Toxin Trafficking

One of the best-known facets of chemical biology is the use of small molecule bioprobes
to perturb cellular processes and to determine the consequences, which may then lead to the
discovery not only of novel molecular mechanisms, but also of more efficient therapeutic
drug candidates [57–61]. Due to the possibility to select for survival, toxins have been
the target for small molecule-based intervention strategies [62], including the prototypical
GL–Lect cargo protein Shiga toxin [63].

In one study, a small molecule screen on cells has led to the identification of two
compounds, termed Retro-1 and Retro-2, which slowed the intracellular progression of
Shiga toxin towards the ribosomes, its cellular target in the cytosol, specifically at the
retrograde trafficking step between early endosomes and the Golgi apparatus [64]. Of
note, Retro-2 was the first small molecule which had a protective effect in animal models
against Shiga toxin [65] or the plant toxin ricin [64]. An optimized version of Retro-2,
termed Retro-2.1, was obtained through a medicinal chemistry approach [66–68]. It was
then shown that Retro-2.1 protected against a number of other pathogens and pathogenic
factors, including several viruses, Leishmania and Chlamydiales [69].

In the initial study, it was found that Retro-1 and Retro-2 induced the redistribution
of the trafficking factor syntaxin-5 from the Golgi apparatus to the ER [64]. How this was
related to the accumulation of Shiga toxin in early endosomes under Retro compound
treatment conditions had remained unexplained. In a recent study, a model for this has
been proposed based on the identification of a Retro-2 interacting partner, the ER exit site
protein Sec16A [70] (Figure 7). In this study, a clickable version of Retro-2 was synthesized,
and Retro-2 interacting proteins were pulled down and identified by mass spectrometry.
Sec16A was one of these. Through a yet-to-be-determined mechanism, the binding of Retro-
2 to Sec16A was found to slow down the anterograde transport of COPII cargo syntaxin-5
from the ER to the Golgi apparatus. This then also led to the loss of the interaction of
syntaxin-5 with another protein, termed GPP130, which was previously shown to be
important for Shiga toxin trafficking from early endosomes to the Golgi apparatus [71].
Indeed, a mutant of GPP130 that failed to interact with syntaxin-5 also failed to enable the
retrograde trafficking of Shiga toxin to the Golgi. With this model, it could be explained
how an effect of Retro-2 on a cellular target in the ER could cause Shiga toxin accumulation
in early endosomes (Figure 7). Using small molecules as tools, this study has provided
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novel cell biological insights on protein sorting at ER exit sites and at the level of the
trans-Golgi network. It also helped to further qualify Retro-2 as a broad-spectrum drug
candidate for several pathogenic viruses, bacteria, and toxins.
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Figure 7. Model of how Retro-2 induces a block of Shiga toxin trafficking at the level of early
endosomes. In untreated conditions (left), Shiga toxin trafficking from early endosomes to the TGN
requires the interaction of GPP130 (blue) with syntaxin-5 (Syn5, yellow). From the TGN, Shiga
toxin then moves on to the ER from where the catalytic A-subunit is translocated to the cytosol
to inactivate ribosomes. Under Retro-2 treatment conditions (right), the anterograde transport of
syntaxin-5 between ER and Golgi is slowed down by the interaction of Retro-2 with Sec16A, leading
to the partial depletion of syntaxin-5 in the Golgi, a loss of its interaction with GPP130, and thereby
the blockage of STxB in early endosomes. Reproduced with permission from Ref. [70].

4. Vectorial Proteomics

Retrograde trafficking between early endosomes and the Golgi apparatus was discov-
ered using the GL–Lect cargo protein Shiga toxin [72]. This trafficking interface has since
become a hot spot of membrane biology research [73–75]. While it was initially thought that
very few cargo proteins would undergo retrograde transport from the plasma membrane
to the Golgi [76], this had not been addressed in a systematic manner. For this, a vectorial
proteomics approach was designed [77–79]. To generate a capture reagent in the Golgi,
the SNAP tag [80] was fused to the transmembrane region of Golgi-localized galactosyl
transferase, which itself was fused to GFP for pull-down using GFP-trap beads. The SNAP
tag reacts specifically with the small molecule compound O6-benzylguanine (BG), which
is a synthetic derivative of guanine. It was thereby possible to covalently capture retro-
grade cargo proteins in the Golgi provided that these had first been labeled at the plasma
membrane with BG. For this, a BG labeling reagent was needed with a key property: to be
membrane impermeable. This was achieved by synthesizing a BG-containing molecule
that had an N-hydroxysuccinimide (NHS) moiety for the reaction with primary amines of
plasma membrane proteins, and a PEG9 moiety to provide membrane impermeability.

The first retrograde proteomics study with this system revealed that an unexpect-
edly large number of plasma membrane proteins underwent retrograde transport to the
Golgi [81]. Proteomics results of course need to be confirmed. For this, the cell adhesion
and migration factor α5β1 integrin was chosen for which retrograde trafficking had never
been described before. In experiments on cells in culture, in C. elegans and in mice, it was
shown that retrograde trafficking of specifically the non-ligand-bound inactive conforma-
tion of α5β1 integrin allowed the protein to have access to the polarized secretion capacity
of the Golgi. In migratory cells, retrograde transport was thereby required for the dynamic
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localization of α5β1 integrin to the leading edge toward which the Golgi is polarized in
these cells.

Of note, the conceptual pattern of “retrograde transport to the Golgi to enable polar-
ized secretion to a specialized area of the plasma membrane for the dynamic localization
of proteins thereto” may apply more widely [29]. For example, using the Golgi SNAP
tag/NHS-PEG9-BG system it was also discovered that in lymphocytes the signaling protein
Lat underwent retrograde trafficking and subsequent polarized secretion to be dynamically
localized to a specialized plasma membrane area of T lymphocytes: the immunological
synapse [82].

The SNAP tag approach has also been exploited to quantify the passage of biological
or therapeutic macromolecules from the outside of cells to the cytosol [83]. Macromolecules
indeed do not readily cross membranes. Cytosolic arrival, via direct translocation across
the plasma membrane or endocytosis followed by endosomal escape, is currently one of
the main bottlenecks for the development of macromolecular therapeutics such as nucleic
acids (siRNAs, mRNAs, etc.) or peptides [84–86]. To quantify the absolute amounts of
macromolecules that reach the cytosol, the SNAP tag-based capture reagent, here fused
to neon green fluorescent protein, was expressed in the cytosol of target cells. Organic
synthesis was used to build chemical branches with (i) BG for reaction with the cytosolic
SNAP tag; (ii) NHS for coupling to the macromolecules; and (iii) biotin for ELISA-based
quantification [83]. With this setup, it has become possible not only to compare transloca-
tion efficacy in different experimental conditions, but also to determine absolute amounts
of macromolecules that reach the cytosol. For STxB, this number turned out to be 23,000 ho-
mopentamers per HeLa cell after 4 hours of incubation at 37 ◦C with 40 nM of the vector.
For a total of 4.9 million STxB homopentamers that were associated on average with each
HeLa cell at this time point, 0.46% had thereby reached the cytosol in a reaction that was
sensitive to temperature, cellular ATP levels, and endosomal acidification [83]. This quan-
titative assay may now allow to further develop STxB as a therapeutic delivery tool (see
below) by increasing its intrinsic capacity to escape from endosomes to the cytosol [87].

5. Therapeutic Delivery

Antibodies have become powerful macromolecular therapeutics against a wide range
of diseases, including notably cancer [88]. Several of them are amongst the best-selling
biologicals [89]. Two developments have created an additional momentum: The emergence
to the market of antibody-drug conjugates for direct tumor targeting [90], and of immune
checkpoint inhibitors for antitumor immunotherapy [91,92].

In a recent prioritization of cancer antigens by the National Cancer Institute at
Rockville (USA), 4 out of 75 were GSLs (GD2, GD3, fucosyl-GM1, and GM3), with GD2
arriving already at the 12th position [93]. Yet, GSLs are only rarely exploited for tumor
targeting. Generating high affinity binding ligands against GSLs is a notoriously diffi-
cult task due to the high structural flexibility of these molecules. An exception is the
anti-GD2 antibody dinutuximab, which entered the market for the treatment of high-risk
neuroblastoma patients [94].

The GL–Lect cargo protein STxB, a natural GSL ligand, was therefore developed as
an alternative scaffold for antibodies to exploit GSLs as therapeutic targets. In an initial
approach, it was attempted to target the natural STxB receptor, Gb3, which is overex-
pressed by certain tumors (e.g., breast cancer [95], colorectal carcinoma [96–98], gastric
adenocarcinomas [99], pancreatic cancer [100], and lymphomas [101]; reviewed in Refer-
ence [102]). In animal models it was shown that STxB accumulated on Gb3 positive tumors
in vivo [97,103,104], and that the poorly immunogenic protein could target these tumors
even after repeated injections [97]. Synthetic chemistry approaches were used to generate
autoimmolative linker arm-based conjugates between STxB and the following cytotoxic
molecules: the topoisomerase I inhibitor SN38 (Reference [105]), the pro-apoptotic benzo-
diazepine RO5-4864 (Reference [106]), the intercalating drug doxorubicin and the highly
cytotoxic tubulin polymerization inhibitor monomethyl auristatin F (MMAF) [107,108].
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On cells in culture, these conjugates had excellent specificity for Gb3 expressing tumors,
and for STxB-MMAF activities in the low nanomolar range were measured [107,108]. In
mouse tumor models, these conjugates were unfortunately not successful, most likely
due the high Gb3 expression levels on kidney. Very recently, a proprietary methodology
has been designed to select for STxB variants that recognize GSLs of choice (patent filing
WO2018192719A1). It might thereby become possible to evolve STxB into an alternative
molecular scaffold for the targeting of truly tumor specific GSLs or cocktails thereof.

The therapeutic success of inhibitory antibodies against the immune checkpoint
molecules PD-1/PD-L1 or CTLA-4 has boosted the general interest in antitumor im-
munotherapy. Yet, only a fraction of patients (below 30%) respond to checkpoint in-
hibitory antibodies, and those who respond have tumors that are infiltrated by anti-tumor
T cells [109]. It is therefore assumed that vaccines that induce such anti-tumor T cells would
synergize with checkpoint inhibitor treatments.

The GL–Lect cargo protein STxB is one vaccine candidate. Its cellular receptor, the
GSL Gb3, is expressed on human and mouse dendritic cells [110–112]. When chemically
coupled to antigenic peptides or proteins, STxB was shown to have a protective effect in
mouse models of viral infection [113] or tumor development [114–122].

Several aspects of STxB as a vector for immunotherapy are of particular interest. First,
it was shown early on that STxB synergized with antibodies against the immune checkpoint
molecule PD-L1 in the protection of mice against head-and-neck cancers [117]. Second,
STxB coupled to the epitopes of the E7 protein from human papilloma virus 16 induced
humoral IgA and cellular CD8+ immune responses in the mucosa of the respiratory
tract specifically only when given via the mucosal route of vaccination [116–119]. Third,
when used as a mucosal vaccine, STxB-E7 induced resident memory CD8+ T cells, which
are thought to be the most effective cells for controlling tumor growth [121,122]. It has
also been argued that only the intranasal route of immunization would lead to sterile
immunity against SARS CoV-2 (Reference [123]), and that cellular and humoral immunity
are required for optimal protection against the virus [124]. Forth, STxB has recently
been obtained by chemical synthesis and in vitro refolding of the protein (patent filing
WO/2020/245321). This provides new opportunities for the chemical development of the
vector and its industrial production.

6. Conclusions

For this Special Issue on Chemical Biology Research in France, the contribution of
organic chemical synthesis to the fundamental and applied research exploration of the GL–
Lect hypothesis was illustrated. Due to its universal nature, this hypothesis has the potential
to become a paradigm in the field of membrane biology, complementary to the clathrin
coat paradigm. With the chemical synthesis of STxB and the possibility to create novel GSL
binding specificities, unprecedented opportunities furthermore arise for the development
of this platform technology towards the clinics: (i) for immunotherapeutics with optimal
cross-priming potential against tumor and infectious disease antigens, including SARS CoV-
2; and (ii) for tumor targeting tools against GSLs as groundbreaking opportunities in the
antibody-drug conjugate market, which, despite its dynamics and economic importance,
remains in need for further technological leverage.
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