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Abstract

3% of the population develops saccular intracranial aneurysms (sIAs), a complex trait, with a sporadic and a familial form.
Subarachnoid hemorrhage from sIA (sIA-SAH) is a devastating form of stroke. Certain rare genetic variants are enriched in the
Finns, a population isolate with a small founder population and bottleneck events. As the sIA-SAH incidence in Finland is .26
increased, such variants may associate with sIA in the Finnish population. We tested 9.4 million variants for association in 760
Finnish sIA patients (enriched for familial sIA), and in 2,513 matched controls with case-control status and with the number of
sIAs. The most promising loci (p,5E-6) were replicated in 858 Finnish sIA patients and 4,048 controls. The frequencies and
effect sizes of the replicated variants were compared to a continental European population using 717 Dutch cases and 3,004
controls. We discovered four new high-risk loci with low frequency lead variants. Three were associated with the case-control
status: 2q23.3 (MAF 2.1%, OR 1.89, p 1.42610-9); 5q31.3 (MAF 2.7%, OR 1.66, p 3.17610-8); 6q24.2 (MAF 2.6%, OR 1.87, p
1.87610-11) and one with the number of sIAs: 7p22.1 (MAF 3.3%, RR 1.59, p 6.086-9). Two of the associations (5q31.3, 6q24.2)
replicated in the Dutch sample. The 7p22.1 locus was strongly differentiated; the lead variant was more frequent in Finland
(4.6%) than in the Netherlands (0.3%). Additionally, we replicated a previously inconclusive locus on 2q33.1 in all samples
tested (OR 1.27, p 1.87610-12). The five loci explain 2.1% of the sIA heritability in Finland, and may relate to, but not explain,
the increased incidence of sIA-SAH in Finland. This study illustrates the utility of population isolates, familial enrichment, dense
genotype imputation and alternate phenotyping in search for variants associated with complex diseases.
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Introduction

About 3% of the population develops saccular intracranial

aneurysms (sIAs) during life [1,2]. Some 95% of subarachnoid

hemorrhages are caused by ruptured sIA (sIA-SAH), a devastating

form of stroke affecting individuals mainly in the sixth decade of

life [3]. The annual incidence of SAH is 4–9 per 100 000

worldwide [4] but over twice as high in Finland and in Japan [5].

The sIA disease is a complex trait, the risk of which is affected by

age, sex, smoking, hypertension, excess drinking [6], and in over

10% of the cases family history of sIA disease [7–9].

To date, genome wide association (GWA) studies have identified

six definite and one probable loci with common variants associated

to sIA: 4q31.23 (OR 1.22) [10,11]; 8q11.23–q12.1 (OR 1.28);

9p21.3 (OR 1.31); 10q24.32 (OR 1.29); 12q22 (OR 1.16) [10];

13q13.1 (OR 1.20); 18q11.2 (OR 1.22) [12] (Table S5). These

seven loci were estimated to explain 6.1%, 4.4% and 4.1% of the

four-fold sibling recurrence risk in Finland, Europe and Japan

respectively [10]. In these previous GWA studies, results on 2q33.1

locus were inconsistent: the locus was significant in the first GWAS

[13], not significant in the enlarged follow-up GWAS [12], and in

the third GWAS the risk allele was reversed in the Japanese

replication sample [10].

The population of Finland is one of the most thoroughly

characterized genetic isolates. Due to the small size of the founder

population, subsequent bottleneck effects and genetic drift, the

Finnish population is enriched for rare and low frequency variants

that are almost absent in other European populations and some

variants rare elsewhere are increased in frequency [14]. This is

best illustrated by the increased prevalence of 36 rare Mendelian,

mostly recessive, disorders in Finland (www.findis.org); the so

called Finnish disease heritage (FDH) [15]. We hypothesized that

some of the enriched rare or low frequency variants could

contribute to the increased sIA-SAH susceptibility in Finland.

In this GWA study we combined the power of 1000 Genomes

imputation, the special benefits of a population isolate and

enrichment of familial cases in the discovery cohort. Familial sIA

patients more often carry multiple sIAs as compared to sporadic

sIA patients, which may confer additional genetic burden to the

sIA formation [8,16,17]. Therefore, in addition to the case vs.

control analysis, we also analyzed the number of sIAs per

individual as an intermediate phenotype. We conducted an

association analysis in a discovery sample of 760 Finnish sIA

cases and 2,513 matched controls followed by replication in an

additional sample of 858 Finnish sIA cases and 4048 controls. The

successfully replicated loci in Finland were further studied in a

Dutch cohort of 717 sIA cases and 3004 controls to assess the

extent to which the allele frequencies and risk effect sizes match

between the isolate of Finland and a continental European

population (Figure 1). In addition, we hypothesized that a

previously inconclusive locus on 2q33.1 [10,13,18] is a true sIA

risk locus at least in Finland and aimed to replicate the best

discovery associations in the locus in this study in the Finnish and

in the Dutch samples.

We successfully identified associations with low frequency

variants in three novel loci in the case vs. control analysis and

one in the aneurysm count analysis. Two of the case vs. control

loci replicated also in the Dutch cohort with similar allele

frequencies and comparable risk effect sizes. The variant in the

aneurysm count locus demonstrated a strong bottleneck effect by

being 15 times more frequent in the Finnish than in the Dutch

controls. We also successfully replicated the previously inconclu-

sive 2q33.1 locus.

Results

Case vs. control analysis in Finnish and Dutch samples
To increase the potential genetic load in the study sample, our

discovery sample consisted of 760 cases from the isolated, high-risk

Finnish population, purposefully enriched for familial sIA (40%)

patients and 2513 genetically matched Finnish controls. The

imputation of the 304,399 previously genotyped variants [12]

against the 1000 Genomes Project reference panel (v3, March

2012 release) increased the number of common and low frequency

variants available for the association analysis to 9,359,231.

Quantile-quantile (QQ) plots of association p-values did not

indicate substantial inflation (l= 1.04) (Figure S1). The discovery

association analysis revealed one locus at 12p11.1 driven by

rs653464 at conventional genome-wide significance (p,561028)

and 14 other loci at p,561026 (Table S1; Manhattan plot in

Figure S3).

We chose 17 SNPs representing the 15 promising loci (p,

561026) above for replication in an independent sample of 858

Finnish sIA cases and 4,048 controls (Table 1). Four SNPs and one

deletion were associated at p,0.05 with the sIA disease (Table S1),

two of them in the previously reported sIA loci 9p21.3 (rs1333042;

OR 1.3, p = 6.361027) and 13q13.1 (rs113124623; OR 0.88,

p = 0.01). The genome-wide significant 12p11.1 locus in the

discovery sample did not replicate (p = 0.29).

In the meta-analysis of the two Finnish samples, four SNPs

reached the commonly used level of genome-wide significance at

p,561028 (Table 2). Three were novel: 2q23.3 (rs74972714; OR

2.1, 95% CI 1.68–2.63, p = 7.4610211, control allele frequency or

CAF 2.35%), 5q31.3 (rs113816216; OR 1.92, CI 1.53–2.40,

p = 1.7461028, CAF 2.09%) and 6q24.2 (rs75018213; OR 1.97,

CI 1.6–2.43, p = 2.25610210, CAF 2.53%). One was previously

reported at 9p21.3 (rs1333042; OR 1.31, CI 1.21–1.42,

p = 1.8610211, CAF 42.3%) (Table 2). We assessed the robustness

of the associations controlling also for age and the effect sizes and

p-values were almost identical (data not shown).

To assess how the allele frequencies and effect sizes of variants

identified in the Finnish population compare to other European

populations, we studied those variants in a Dutch sample

consisting of 717 sIA cases and 3,004 controls (Table 1). All three

variants tagging the novel loci at 2q23.3, 5q31.3 and 6q24.2 had a

similar low minor allele frequency (1.6–3.9%) in Finland and the

Netherlands (Table 2). Two of them had similar effect sizes and

were also replicated: 5q31.3 (rs113816216; OR 1.3, CI 0.98–1.75,

p = 0.045, CAF 3.87%) and 6q24.2 (rs75018213; OR 1.5, CI

0.98–2.3 p = 0.034, CAF 2.3%). The previously reported 9p21.3

locus also replicated in the Dutch sample (rs1333042; OR 1.32, CI

1.17–1.49, p = 3.4261026, CAF 47.86%).

In the meta-analysis of the Finnish and Dutch samples, all three

novel loci 2q23.3 (rs74972714; OR 1.89, p = 1.4261029), 5q31.3

Low Frequency Intracranial Aneurysm Risk Variants
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(rs113816216; OR 1.66, p = 3.1761028) and 6q24.2 (rs75018213;

1.87, p = 7.1610211) were significantly associated to the sIA

disease at genome-wide significance (Table 2; see Table S7 for

imputation accuracy statistics). Some heterogeneity in effect sizes

exists between samples (Table S9).

As the standard genome-wide significance 561028 is estimated

to correct for independent tests of common variants (MAF. = 5%)

and we tested also a set of low-frequency variants, the common

significance level may be too liberal. Based on Europeans of the

1000 Genomes project we estimated the significance level to be

3.8261028 (See Materials and Methods). All of the reported

variants are below this level.

Association of variants to the number of sIAs
Some 20–30% of the sIA patients carry multiple sIAs, a

phenomenon more commonly seen in familial sIA disease

[8,16,17]. We hypothesized that an increased number of sIAs ($

2) in a given patient would reflect a higher underlying genetic load,

motivating us to use aneurysm count as an intermediate phenotype

to increase statistical power. The number of sIAs was used as a

count data using the negative binomial regression analysis in the

discovery sample of 760 Finnish sIA cases (1–8 sIAs per patient)

and 2,513 controls. The QQ plot (Figure S2) and the genomic

inflation factor (1.05) did not indicate substantial population

stratification.

Nine loci had variants at p,5E-6 (Table S2; Manhattan plot in

Figure S4). The most significant variant of each locus was selected

for replication in the new Finnish sample of 858 sIA cases (1–6

sIAs per patient) and 4,048 controls. Two loci were replicated at

p,0.05: 7p22.1 (rs150927513; RR 1.39, p = 8.3661024, CAF

5.24%) and 16p13.3 (rs144159053; rate ratio (RR) 1.66,

p = 4.461023, CAF 1.27%) (Table S2). rs10802056 on 1p12 had

a significant association p-value but the effect direction was

different and thus was not considered as replicated. We assessed

the robustness of the associations controlling also for age and the

effect sizes and p-values were almost identical (data not shown).

Author Summary

Genome-wide association studies (GWAS) have been
extensively used to identify common genetic variants
associated with complex diseases. As common genetic
variants have explained only a small fraction of the
heritability of most complex diseases, there is a growing
interest in the role of how low frequency and rare variants
contribute to the susceptibility. Low frequency variants are
more often specific to populations of distinct ancestries.
Saccular intracranial aneurysms (sIA) are balloon-like
dilatations in the arteries on the surface of the brain. The
rupture of sIA causes life-threatening intracranial bleeding.
sIA is a complex disease, which is known to sometimes run
in families. Here, we utilize the recent advancements in
knowledge of genetic variation in different populations to
examine the role of low-frequency variants in sIA disease in
the isolated population of Finland where sIA related
strokes are more common than in most other populations.
By studying .8000 Finns we identify four low-frequency
variants associated with the sIA disease. We also show that
the association of two of the variants are seen in other
European populations as well. Our findings demonstrate
that multiple study designs are needed to uncover more
comprehensively their genetic background, including
population isolates.

Figure 1. Study design. The Finnish discovery and replication cohorts represent a population with over two-fold increased risk of subarachnoid
hemorrhage from ruptured saccular intracranial aneurysm (sIA-SAH). The Finnish discovery cohort was intentionally enriched with familial sIA
patients, and 9.4M genotyped and imputed variants were studied. The loci with p,5E-6 were replicated in an independent and unselected Finnish
sIA sample. The allele frequencies and effect sizes of the replicated variants in Finland were finally compared to continental European population
using a Dutch sample. The sIA-SAH risk is not increased in the Netherlands (‘general risk’ in the figure).
doi:10.1371/journal.pgen.1004134.g001
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In the meta-analysis of the Finnish samples, 7p22.1 was

genome-wide significant (rs150927513; RR 1.6, CI 1.37–1.88,

p = 4.9261029, CAF 4.61%);Table 3; See genotype to aneurysm

count distribution in Table S3). The rate ratio (RR) estimate is the

relative rate of aneurysm formation (i.e. change in expected

number of aneurysms) per allele as compared to minor allele

homozygotes.

To compare the allele frequency and effect size of rs150927513

identified in the Finnish population to those of continental

European populations, we studied the variant also in the Dutch,

but the imputation quality (Impute info 0.38) and estimated allele

frequency (0.29%) were too low to obtain reliable estimates (RR

0.97; 95% CI 0.17–4.03, p = 0.97). We additionally checked the

minor allele frequency of rs150927513 in 498 whole-genome

sequenced Dutch individuals of GENOMEoftheNETHER-

LANDS-project (http://www.nlgenome.nl/). Only two individuals

were heterozygous and the rest were major allele homozygotes

(MAF 0.2%), which is in agreement with our imputation results of

the Dutch sample.

Analysis of 2q33.1 locus
Previously published results on the 2q33.1 locus are inconsis-

tent, being significant in the first GWAS [13], not significant in

the enlarged follow-up GWAS [12], and uncertain in the third

GWAS [10]. We aimed to study if the 2q33.1 would replicate in

Finland, even though no variant in this region reached p,5E-6

in the discovery sample. We chose two of the most significant

SNPs (in this study) at 2q33.1 for replication in the new Finnish

replication sample, which was not used in the previous studies

(rs12472355; OR 1.21, p = 2.2361024, CAF 44.3%, and

rs919433; OR 1.18, p = 1.0161023, CAF 44.6%). They are in

LD with the three previously investigated SNPs (rs787994,

rs1429412, rs700651; LD r2 0.75–0.96). The variants

rs12472355 (OR 1.23, CI 1.13–1.33, p = 4.8461027) and

rs919433 (OR 1.21, CI 1.12–1.31, p = 2.1561026) did not reach

genome-wide significance in the combined Finnish samples

(Table 2). They were highly significant in the Dutch sample

(rs12472355; OR, 1.39, CI 1.23–1.57, p = 1.0561027 and

rs919433; OR 1.43, CI 1.26–1.61, p 9.7761029), and in the

meta-analysis of all three samples they reached genome-wide

significance (Table 2). The allele frequencies were notably higher

in the Finnish samples (44% and 43.7%) than in the Dutch

samples (33.2% and 31%).

Heritability estimate
We estimated the heritability explained by the reported

variants. The four novel loci on 2q23.3, 5q31.3, 6q24.2 and

7p22.1 were estimated to explain 1.7% of the heritability in the

combined Finnish samples. Adding the previously inconclusive

2q33.1 locus increases the heritability explained to 2.1%.

Genotype validation
For validating the imputation accuracy, we genotyped 87

individuals of the discovery sample using Sequenom genotyping.

The concordance rates range from 96–99% except rs74972714

was slightly lower at 94% (Table S8). We did additional validation

by Sanger sequencing 10 individuals per variant who were

predicted to carry minor alleles. The imputation was near perfect

in all other SNPs except rs75018213 had discrepancies between

major allele homozygote and heterozygotes (Table S11). We

further estimated by simulation, how likely it would be to get the

observed OR for rs75018213 in the discovery sample just by

change, given the imputation accuracy (See Text S1 for details).

The probability of chance finding was very low (p: 0.0001) even if

assuming that the minor allele would be over-imputed by 20% in

cases (p: 0.004).

Some individuals were genotyped by both Sanger sequencing

and Sequenom and the concordance between the two methods

was perfect (Table S11). Finally, we estimated, in silico, the

imputation efficiency of reported SNPs in Dutch population. 96

individuals of the Genome of the Netherlands project had both

high coverage whole-genome sequencing (406) data as well as

GWA chip genotyping data available. We imputed the genotypes

of reported SNPs using the same imputation methods, 1000

Genomes reference panel and set of SNPs in GWA chips as was

done in the discovery and Dutch comparison analyses. The

genotype concordance rates were excellent (Table S13). It is

noteworthy that the imputation quality measure reported by the

Impute2 program was higher in all of the SNPs in our Dutch

replication cohort (Table S7) than in the in silico validation

experiment. This indicates excellent imputation quality in the

Dutch replication.

Fine mapping of the identified loci
We attempted to identify putative causative variants from whole

exome sequencing data of 583 Finnish individuals. We focused on

variants within 1 MB of the lead SNPs with high impact on

Table 1. The Finnish and Dutch study samples used in the association analysis of saccular intracranial aneurysm (sIA) disease.

Finnish discovery Finnish replication Dutch replication

Cases Controls Cases Controls Cases Controls

N 760 2,513 858 4,048 717 3,004

Women 443 (58%) 1,454 (58%) 532 (62%) 2,182 (54%) 492 (67%) 1,135 (38%)

Familial sIA 300 (40%) - 51 (6%) - 100 (15%)* -

sIA-SAH 561 (74%) - 587 (68%) - 658 (92%) -

Mean age (SD) 50 (12.6) 56 (13) 52 (12.2) 40 (9.95) 54 (11.7) 68 (10.44)

Number of sIAs

Mean (range) 1.54 (1–8) - 1.46 (1–6) - 1.26 (1–7) -

$2 242 (32%) - 257 (30%) - 127 (18%)** -

*Unknown familial sIA status for 35 patients.
**Number of sIAs not known for 16 patients.
SD = Standard deviation.
doi:10.1371/journal.pgen.1004134.t001

Low Frequency Intracranial Aneurysm Risk Variants

PLOS Genetics | www.plosgenetics.org 4 January 2014 | Volume 10 | Issue 1 | e1004134



T
a

b
le

2
.

Fi
ve

lo
ci

w
it

h
a

g
e

n
o

m
e

-w
id

e
si

g
n

if
ic

an
t

as
so

ci
at

io
n

to
sa

cc
u

la
r

in
tr

ac
ra

n
ia

l
an

e
u

ry
sm

(s
IA

)
d

is
e

as
e

in
th

e
Fi

n
n

is
h

an
d

D
u

tc
h

sa
m

p
le

s.

C
a

se
v

s.
co

n
tr

o
l

a
n

a
ly

si
s

F
in

n
is

h
d

is
co

v
e

ry
F

in
n

is
h

re
p

li
ca

ti
o

n
F

in
n

is
h

m
e

ta
-a

n
a

ly
si

s
D

u
tc

h
re

p
li

ca
ti

o
n

A
ll

m
e

ta
-

a
n

a
ly

si
s

S
N

P
*

G
e

n
e

C
a

se
M

A
F

C
tr

l
M

A
F

O
R

P
C

a
se

M
A

F
C

tr
l

M
A

F
O

R
P

C
a

se
M

A
F

C
tr

l
M

A
F

O
R

P
C

a
se

M
A

F
C

tr
l

M
A

F
O

R
P

O
R
1

P

rs
7

4
9

7
2

7
1

4
(C

/A
)

2
q

2
3

.3
(1

5
0

3
7

0
8

6
0

b
p

)
LY

P
D

6
(4

0
kb

)*
*

0
.0

3
4

0
.0

1
7

2
.7

3
3

.4
3

E-
0

6
0

.0
4

9
0

.0
2

8
1

.8
8

4
.1

1
E-

0
6

0
.0

4
2

1
0

.0
2

3
5

2
.1

0
7

.4
1

E-
1

1
0

.0
1

7
0

.0
1

6
1

.0
4

4
.3

7
E-

0
1

1
.8

9
1

.4
2

E-
0

9

rs
1

1
3

8
1

6
2

1
6

(G
/C

)
5

q
3

1
.1

(1
3

2
8

4
6

2
2

8
b

p
)

FS
T

L4
**

*
0

.0
4

5
0

.0
2

1
2

.3
1

8
.2

6
E-

0
7

0
.0

3
2

0
.0

2
1

1
.6

0
2

.5
7

E-
0

3
0

.0
3

8
2

0
.0

2
0

9
1

.9
2

1
.7

4
E-

0
8

0
.0

4
5

0
.0

3
9

1
.3

0
4

.5
3

E-
0

2
1

.6
6

3
.1

7
E-

0
8

rs
7

5
0

1
8

2
1

3
(A

/G
)

6
q

2
4

.2
(1

4
6

0
5

2
1

7
8

b
p

)
EP

M
2

A
**

*
0

.0
5

1
0

.0
2

7
2

.1
1

3
.4

4
E-

0
6

0
.0

4
2

0
.0

2
4

1
.8

5
2

.8
5

E-
0

5
0

.0
4

6
1

0
.0

2
5

3
1

.9
7

2
.2

5
E-

1
0

0
.0

2
9

0
.0

2
3

1
.5

0
3

.3
9

E-
0

2
1

.8
7

7
.1

4
E-

1
1

rs
1

3
3

3
0

4
2

(G
/A

){
9

p
2

1
.3

(2
2

1
0

3
8

1
3

b
p

)
C

D
K

N
2

B
-A

S1
0

.5
0

0
0

.4
3

2
1

.3
2

3
.0

1
E-

0
6

0
.4

8
1

0
.4

1
7

1
.3

0
6

.3
0

E-
0

7
0

.4
9

0
0

.4
2

3
1

.3
1

1
.8

1
E-

1
1

0
.5

4
3

0
.4

7
9

1
.3

2
3

.4
2

E-
0

6
1

.3
1

6
.7

1
E-

1
6

rs
9

1
9

4
3

3
(A

/G
)`

2
q

3
3

.1
(1

9
8

1
6

6
5

6
5

b
p

)
A

N
K

R
D

4
4

**
*

0
.4

8
0

0
.4

2
8

1
.2

5
2

.5
3

E-
0

4
0

.4
8

6
0

.4
4

6
1

.1
8

1
.0

1
E-

0
3

0
.4

8
3

0
.4

4
0

1
.2

1
2

.1
5

E-
0

6
0

.4
1

8
0

.3
3

2
1

.4
3

9
.7

7
E-

0
9

1
.2

7
2

.2
0

E-
1

2

rs
1

2
4

7
2

3
5

5
(A

/C
)`

2
q

3
3

.1
(1

9
8

2
0

5
8

4
0

b
p

)
A

N
K

R
D

4
4

(3
0

kb
)*

*
0

.4
7

8
0

.4
2

7
1

.2
4

2
.8

9
E-

0
4

0
.4

8
8

0
.4

4
3

1
.2

1
2

.2
3

E-
0

4
0

.4
8

3
0

.4
3

7
1

.2
3

4
.8

4
E-

0
7

0
.3

9
1

0
.3

1
0

1
.3

9
1

.0
5

E-
0

7
1

.2
7

1
.8

7
E-

1
2

*F
o

r
e

ac
h

va
ri

an
t

m
in

o
r

al
le

le
/m

aj
o

r
al

le
le

,
lo

cu
s

an
d

b
as

e
p

ai
r

p
o

si
ti

o
n

ar
e

g
iv

e
n

.
**

T
h

e
va

ri
an

t’
s

d
is

ta
n

ce
(k

b
)

to
th

e
n

e
ar

e
st

g
e

n
e

is
g

iv
e

n
.

**
*L

o
ca

te
d

in
th

e
in

tr
o

n
o

f
th

e
g

iv
e

n
g

e
n

e
.

{ T
h

e
p

re
vi

o
u

sl
y

re
p

o
rt

e
d

9
p

2
1

.3
lo

cu
s

[1
2

,3
9

].
`
T

h
e

p
re

vi
o

u
sl

y
st

u
d

ie
d

2
q

3
3

.3
lo

cu
s

w
it

h
in

co
n

cl
u

si
ve

e
vi

d
e

n
ce

(s
e

e
M

at
e

ri
al

s
an

d
M

e
th

o
d

s)
.

1
So

m
e

h
e

te
ro

g
e

n
e

it
y

in
e

ff
e

ct
si

ze
s

e
xi

st
s

b
e

tw
e

e
n

co
h

o
rt

s.
Se

e
T

ab
le

S9
fo

r
h

e
te

ro
g

e
n

e
it

y
st

at
is

ti
cs

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
g

e
n

.1
0

0
4

1
3

4
.t

0
0

2

T
a

b
le

3
.

T
h

e
lo

cu
s

w
it

h
a

g
e

n
o

m
e

-w
id

e
si

g
n

if
ic

an
t

as
so

ci
at

io
n

to
th

e
n

u
m

b
e

r
o

f
sa

cc
u

la
r

in
tr

ac
ra

n
ia

l
an

e
u

ry
sm

s
(s

IA
)

p
e

r
in

d
iv

id
u

al
in

th
e

Fi
n

n
is

h
sa

m
p

le
s.

A
ss

o
ci

a
ti

o
n

to
sI

A
co

u
n

t
F

in
n

is
h

d
is

co
v

e
ry

F
in

n
is

h
re

p
li

ca
ti

o
n

F
in

n
is

h
m

e
ta

-a
n

a
ly

si
s

D
u

tc
h

re
p

li
ca

ti
o

n
A

ll
m

e
ta

-
a

n
a

ly
si

s1

S
N

P
*

G
e

n
e

C
a

se
M

A
F

C
tr

l
M

A
F

R
R

P
C

a
se

M
A

F
C

tr
l

M
A

F
R

R
P

C
a

se
M

A
F

C
tr

l
M

A
F

R
R

P
C

a
se

M
A

F
C

tr
l

M
A

F
R

R
P

R
R

P

rs
1

5
0

9
2

7
5

1
3

(T
/A

)
7

p
2

2
.1

(4
8

9
4

7
4

4
b

p
)

R
A

D
IL

**
0

.0
6

0
0

.0
3

6
1

.9
5

8
.8

6
E-

0
8

0
.0

7
0

0
.0

5
2

1
.3

9
8

.3
6

E-
4

0
.0

6
5

3
0

.0
4

6
1

1
.6

0
4

.9
2

E-
0

9
0

.0
0

3
0

.0
0

3
0

.9
7

4
.8

2
E-

1
1

.5
9

6
.0

8
E-

0
9

*F
o

r
e

ac
h

va
ri

an
t

m
aj

o
r

al
le

le
/m

in
o

r
al

le
le

,
lo

cu
s

an
d

b
as

e
p

ai
r

p
o

si
ti

o
n

ar
e

g
iv

e
n

.
**

Lo
ca

te
d

in
th

e
in

tr
o

n
o

f
th

e
g

iv
e

n
g

e
n

e
.

1
Se

e
T

ab
le

S9
fo

r
h

e
te

ro
g

e
n

e
it

y
st

at
is

ti
cs

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
g

e
n

.1
0

0
4

1
3

4
.t

0
0

3

Low Frequency Intracranial Aneurysm Risk Variants

PLOS Genetics | www.plosgenetics.org 5 January 2014 | Volume 10 | Issue 1 | e1004134



protein product (i.e. variants affecting splice site, losing or gaining

stop/start codon, altering reading frame) or non-synonymous

coding SNPs. We additionally filtered variants if they were not in

LD with the lead SNPs (r2,0.4, Europeans of 1000 Genomes if

available). 254 variants were identified, most of which were rare.

However 15 variants were enriched to low-frequency range

(MAF.1%) (Table S12). The impact of these variants needs to be

evaluated in follow-up studies.

Regulatory elements at identified loci
The UCSC Genome Browser and HaploReg version 2 [19]

were used to search for ENCODE regulatory elements at the five

genome-wide significant variants.

rs74972714 at 2q23.3 and rs150927513 at 7p22.1 reside within

a DNAse hypersensitivity peak. The rs75018213 at 6q24.2 resides

on an ENCODE GATA2 transcription factor binding site peak

(Table S4).

Using genome-wide Chip-SEQ analysis, Ernst et al. constructed

a predicted cell-type specific regulatory region map of nine

chromatin marks in nine cell lines [20]. rs113816216 at 5q31.3

resides on a predicted erythroleukemia cell specific (K562) strong

enhancer and rs75018213 at 6q24.2 on a predicted lymphoblas-

toid cell (GM12878) weak enhancer (Table S4).

We searched for putative transcription factor binding sites

affected by the four variants, based on position weight matrices

from Transfac, Jaspar and ENCODE (top 3 enriched motifs for

each transcription factor, identified in transcription factor Chip-

SEQ peaks [19]). rs74972714 at 2q23.3 affects putative binding

sites for EBF1 (ENCODE), HDAC2 (ENCODE), RXRA:PPARG

complex (Transfac), ZNF423 (Jaspar) and ZIC3 (Jaspar).

rs113816216 at 5q31.3 affects the putative binding sites for

RFX1 (Transfac), SREBP1 (ENCODE), STAT3 (Transfac) and

IKZF3 (Transfac). rs150927513 at 7p22.1 affects putative binding

sites of T (brachyury) (Transfac), CEBPB (Transfac) and P300

(ENCODE). rs75018213 at 6q24.2 is not directly on any putative

transcription factor binding site. (Table S4).

At the 2q33.1 locus neither of the studied variants (rs919433,

rs12472355) are on ENCODE DNAse hypersensitivity or

transcription factor binding site peaks. However, rs919433 is on

a predicted lymphoblastoid (GM12878) cell enhancer whereas

rs12472355 is not directly on any regulatory region. rs919433

disrupts a putative transcription factor binding sites for RUNX2

(OSF2,Transfac) and the MYC:MAX complex (Transfac).

eQTL analysis
To study the potential effects of the variants in the five

significant loci on the transcripts of nearby genes, we correlated

the variants to expression levels of exons of nearby genes

(expression quantitative trait locus (eQTL) analysis) obtained

using RNA-sequencing in lymphoblasts of genotyped European

individuals from the 1000 Genomes Project (Finnish, British,

Toscani and CEPH populations, n = 373; www.geuvadis.org,

[21]). Each variant was correlated to transcripts residing within

1 MB. There were 55 genes in 586 exons available for analysis (see

Materials and Methods) and in total 748 tests were performed

corresponding to Bonferroni corrected significance threshold of

8.761025. Strongest association for each variant are reported

below and all eQTL results in Table S6.

The most significant eQTL associations were observed at the

2q33.1 locus: rs12472355 associated significantly to the closest

gene ANKRD44 (per allele fold change (FC) 0.94, p = 1.8361025)

and also to HSPD1 (FC 0.94, p = 1.661024), whereas rs919433

was associated to the same genes but in different order of

significance; HSPD1 (FC 0.94, p = 3.861025) and ANKRD44 (FC

0.95, p = 1.461024). Among the novel low-frequency variants,

only rs150927513 at 7p22.1 was significantly associated to

TNRC18 (FC 1.23, p = 5.161025). Nominal associations were

observed for two other novel low frequency variants: rs113816216

at 5q31.3 to VDAC1 (FC 2.12, p 4.6E-4); rs74972714 at 2q23.3 to

EPC2 (FC 0.75, p = 3.961022). rs75018213 at 6q24.2 did not have

any association even at nominal p,0.05 (Table S6).

We additionally investigated the eQTL landscape of identified

loci by pairwise comparison of p-values from eQTL (MAF.0.05

p,0.001) and sIA analyses (Figure S5) and by plotting eQTL

associations (p,0.001) in the implicated loci (Supplementary

Figure S6 A–E). Only few loci show strong (p,1E-5) association in

eQTL and at least nominal (p,0.05) association to sIA (Table

S10). There does not seem to be stronger eQTL associations in LD

with the lead SNPs. In the 2q33.1, where the lead SNPs were

significantly associated to transcript levels, there seems to be a lot

of regulatory potential in the same locus, even though not in direct

LD with the lead variants (Figure S6 E).

Discussion

In this study, we used three approaches to improve the power to

identify new loci associated to the sIA disease. First, we focused on

the Finnish population isolate with increased risk for subarachnoid

haemorrhage from ruptured sIAs (sIA-SAH) [5]. Second, we

enriched the proportion of familial sIA patients in the discovery

sample, thus possibly increasing the prevalence of risk alleles.

Third, we increased genome-wide coverage through imputing

ungenotyped variants based on 1000 Genomes Project data. The

used 1000 Genomes Project imputation reference panel included

93 Finns, which made it well suited for discovery of enriched sIA

associated variants in the Finnish population. Using this combi-

nation of strategies, we were able to identify three new loci

associated with sIA disease, and one locus associated with the

number of aneurysms. Additionally we replicated a locus where

the evidence so far was inconclusive. Together these five loci

account for 2.1% of the heritability in the Finnish samples. In

comparison, the six previously identified SNPs explain 2.5% of the

heritability in the discovery sample of the current study. Our

results likely reflect the varying genetic background of complex

traits, such as sIA, in different populations.

Four novel sIA loci
The lead SNPs in the four novel loci all have a low frequency (,

5%) in the general population and could not have been identified

without imputing the genotype data against the 1000 Genomes

reference. One of the variants, rs150927513 at 7p22.1 that was

associated with the number of sIAs, indicates a strong bottleneck

effect, for it was 15 times more frequent in the controls of

combined Finnish samples (4.6%) than in the Dutch sample

(0.3%), and it is virtually non-existent in other populations (1000

Genomes). The three other loci had similar frequencies in Finland

and other European populations (1000 Genomes). These four

novel loci explain 1.7% of the heritability in the Finnish samples.

The four sIA loci had higher effect sizes (point estimates ranging

from 1.59 to 1.88) than the lead SNPs identified by previous GWA

studies. We cannot yet conclude whether relatively high ORs of

low frequency risk alleles are a typical feature of sIA disease.

Similar, and higher, odds ratios for low frequency and rare

variants have been reported in isolates for other traits [22,23]. It is

likely that this first wave of low frequency and rare susceptibility

variants represent ‘‘low hanging’’ fruits that do not allow general

conclusions about the susceptibility landscape of sIA or other

complex traits.

Low Frequency Intracranial Aneurysm Risk Variants
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2q23.3 locus
The variant rs74972714 at 2q23.3 has a frequency of about 2%

in European populations, including Finns. It was significantly

associated to sIA in the Finnish samples but did not show a trend

for being associated in the Dutch sample despite having a similar

allele frequency. Further studies are required to find out whether

this variant tags a risk allele specific to Finnish sIA patients. The

variant is located 40 kb downstream of LYPD6 and 55 kb

upstream of MMADHC (Figure 2 A). LYPD6 has recently been

characterized as a member of the Ly-6 protein superfamily [24].

LYPD6 is ubiquitously expressed with highest levels in heart and

brain. GPI-anchored Ly-6 proteins such as PLAUR function, e.g.,

in cellular adhesion [24]. LYPD6 overexpression can inhibit

transcriptional activity of the AP1 transcription factor complex

[24], a key inflammation mediator activated, e.g., in endothelial

cells in atherogenic disturbed blood flow conditions, leading in

turn to upregulation of pro-inflammatory molecules [25]. Similar

transcriptional changes have been found in the ruptured human

sIA wall [26]. MMADHC is an intracellular vitamin B12 trafficking

gene. Mutations in this gene can cause methylmalonic aciduria or

homocystinuria, or both [27].

5q31.1 locus
The variant rs113816216 at 5q31.3 has a frequency of 1–3% in

Finland and most other European populations, except in Spain

(7%). It was significantly associated to the sIA disease in the

Finnish samples and was also significant in the Dutch sample but

had a somewhat lower OR there (Table 2). The meta-analysis of

all combined samples exceeded the genome wide significance

threshold. The variant is located in the intron of FSTL4 (Figure 2

B), a poorly characterized gene. FSTL1, a paralog of FSTL4, codes

a protein inducing innate immunity as TLR4 agonist [28].

Increased tissue levels of FSTL1 were associated to the severity

of heart failure [29] and to the coronary artery aneurysm

formation in Kawasaki disease [30]. Variants in FSTL4 were

modestly associated to human ischemic stroke [31], and a variant

70 kb from FSTL4 nominally to hypertension [32].

6q24.2 locus
The variant rs75018213 at 6q24.2 has similar frequencies (2%)

in European populations, including Finns. It was significantly

associated to the sIA disease in the Finnish samples and was

also significant in the Dutch sample but had a somewhat

lower OR there (Table 2). It is located in the intron of EPM2A.

The LD spans over 300 kb downstream covering FBXO30,

LOC100507557, SHPRH and GRM1 (Figure 2 C). In the

ENCODE data, rs75018213 is located in a GATA2 transcription

factor binding site RNA-seq peak. Homozygous deletions in the

EPM2A gene result in progressive myoclonus epilepsy (PME)

with Lafora bodies (OMIM 254780) [33]. No vascular anomalies

have been reported in EPM2 deletion patients with a PME

phenotype or their heterozygote parents. EPM2A encodes a

phosphatase, which dephosphorylates glycogen, but it is likely

that EPM2A has broader functions in regulation of glycogen

biosynthesis, endoplasmic reticulum stress, autophagy, and

possibly also cell cycle [34].

7p22.1 locus and the number of sIAs
The variant rs150927513 at 7p22.1 was significantly associated

to sIA count per individual in the Finnish population (Table 1). Its

frequency was 4.6% in the Finnish samples but only 0.3%, in the

Dutch sample, in line with most European populations. This

variant would therefore likely not have been identified if a

sufficient number of Finnish individuals had not been included in

the reference panel.

The variant is located in the intron of RADIL (Figure 2 D), a rap

GTPase interactor, an essential effector of RAP1 in activation of

integrins in cell-adhesive signalling by G protein-coupled receptors

[35]. RADIL has also been shown to control, together with RAP1,

neutrophil adhesion and chemotaxis [36]. Neutrophils seem to

have a role in the formation and rupture of intracranial and

abdominal aortic aneurysm [26,37,38]. The strongest eQTL

association was to an exon of TNRC18 (FC 1.23, p = 5.161025), a

functionally uncharacterized gene.

As we analysed the number of sIAs as a count variable from 0–

8, the inherent assumption was that the same variant would

increase the risk of the first and the subsequent sIA formation.

Thus, any variant associated to the number of sIAs will to some

extent be associated in the case vs. control analysis. Indeed, in the

analysis of combined Finnish cohorts rs150927513 was associated

in the case-control analysis (OR 1.54, p = 6.561027) and

consistently also in the analysis of multiple vs. single sIA patients

(OR 1.65, p = 8.461024). The association of this variant, should

be interpreted as reflecting the tendency of sIA formation, rather

than considering multiple sIAs as a completely different dichot-

omous end point.

Previously identified 9p21.3 locus
The 9p21.3 locus has been robustly associated to the sIA disease

[12] as well as to cardiovascular, metabolic and cancer traits

[39,40], and it has been extensively studied by others [41]. The

allele frequency and effect size in the current study, although with

a different lead SNP (r2 = 0.7 to previous lead SNP rs1333040), are

in strong agreement with the previous study [12]. This locus is not

therefore discussed further here.

2q33.1 locus with previously inconclusive evidence
Two common variants, rs12472355 and rs919433 at 2q33.1

were significantly associated to the sIA disease in the Finnish and

Dutch samples (Table 2), rs919433 intronic and rs12472355

upstream 30 kb from ANKRD44 (Figure 2 E). The allele

frequencies were somewhat higher in the Finnish samples

(rs919433, 44%; rs12472355 43.7%) than in the Dutch samples

(33.2%; 31%) or in the Japanese population according to 1000

Genomes Project (28.1%; 27.5%). In this locus, the risk allele was

reversed in the Japanese cohort of the previous sIA GWA study

[10]. ANKRD44 is likely a subunit of protein phosphatase 6 [42]

that functions, e.g., in cell cycle control [43] and in inhibition of

NF-kB activation [44]. NF-kB is a significant mediator in

experimental sIA formation in rats, highly expressed in human

sIA wall [45], and it was associated to human sIA wall rupture in

transcriptomic profiling [26]. In eQTL analysis rs12472355 was

significantly associated to ANKRD44 (FC 0.94, p = 1.8361025) and

rs919433 to HSPD1 (FC 0.94, p = 3.861025)

In conclusion, we identified four novel loci associated to sIA

disease and confirmed one additional locus with previously

inconclusive evidence, together explaining 2.1% of the sIA

heritability in Finland. Our data illustrates the utility of high-risk

population isolates, familial disease history, and dense genotype

imputation in search for low-frequency variants associated to

complex human diseases. The inclusion of Finnish individuals in

the imputation reference panel and especially the highly differen-

tiated variant in 7p22.1 would likely not have been identified

The identification of the four novel low frequency variants

would likely have required much larger sample sizes in more

mixed populations. Further studies of the identified five loci are

Low Frequency Intracranial Aneurysm Risk Variants
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Figure 2. Regional association plots of the five identified saccular intracranial aneurysm (sIA) loci in the combined Finnish samples
and the Dutch sample. Association p-values (2log10 scale, y-axis) of variants are shown according to their chromosomal positions (x-axis). Blue
lines indicate the genetic recombination rate (cM/Mb). Figures A–C present the loci identified in the case vs. control analysis at 2q23.3, 5q31.3, and
6q24.2, respectively. Figure D presents the 7p22.1 locus associated to the sIA count per patient. Figure E presents the 2q33.1 locus with inconclusive
previous evidence. Purple rectangles indicate the most significant variant in a) the Finnish discovery sample and, along the dashed line, its p-values in
b) the combined Finnish samples (META FIN) and in c) all samples (META ALL). Adjacent variants in linkage disequilibrium (r2; EUR populations, 1000
Genomes March 2012) to the index variant are shown in colours indicating their r2 levels (r2 box in each figure).
doi:10.1371/journal.pgen.1004134.g002
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needed to explain their functional mechanisms in the pathogenesis

of sIA disease.

Materials and Methods

Ethics statement
For all of the Finnish and Dutch samples, the local ethics

committees approved the study and all patients gave written

informed consent.

Study samples
A. Finnish discovery sample. The initial discovery GWAS

data consisted of previously Illumina genotyped 974 Finnish

intracranial aneurysm patients and 740 controls [12]. The patients

were collected from the registries of Neurosurgery, Kuopio

University Hospital, and Neurosurgery, Helsinki University

Hospital, solely serving their catchment populations in Eastern

and Southern Finland, respectively. The sIAs were angiograph-

ically verified and the cases of subarachnoid hemorrhage from

ruptured sIA (sIA-SAH) with computed tomography (CT).

Patients with at least 1 first-degree relative carrying sIA disease

were considered familial [8]. For the unruptured aneurysms we do

not have the exact indications for these patients available.

However in our aneurysm database in Neurosurgery of Kuopio

University Hospital the indications for angiography of unruptured

aneurysm patients were: 1) Incidental unruptured sIA (leading

cause was headache) found in neuroimaging with non-related

indications 383/467 = 83% 2) Incidential unruptured sIA found in

neuroimaging screening of sIA family members 45/467 = 9.6%

and 3) Symptomatic but unruptured sIA causing focal neurological

symptoms 39/467 = 8.4%

The Helsinki Birth Cohort Study (HBCS) includes 8,760

individuals born in the Helsinki Central Hospital between 1934

and 1944 [46]. A subset of 1676 Illumina genotyped individuals

were available for the present study. The Health 2000 Cohort

(H2000) includes 2 402 Finns, and of those 2138 Illumina

genotyped individuals were available for the present study [47,48].

The discovery aneurysm cases, 740 population controls and

Health 2000 controls have been used in the previous sIA GWA

studies [10,12].

The following 210 cases and 119 controls were removed from

the discovery sample: fusiform aneurysm carriers (n = 5); dupli-

cated cases (n = 9) and controls (n = 10); blind duplicate cases

(n = 15) and controls (n = 5); genotyping rate ,97% (29 cases, 31

controls); individuals with higher missingness from cryptically

related pairs (Identity by descent (IBD).0.1875, similarity halfway

between 2nd and 3rd degree relatives: 69 cases, 55 controls);

genetic distance to 5 nearest neighbours .4 standard deviations

longer than the average distance (2 cases, 18 controls); patients not

traceable from the database or with traumatic SAH (n = 81);

polycystic kidney disease (n = 4).

The following SNPs were removed: missing genotypes .5%;

minor allele frequency ,1%; Hardy-Weinberg disequilibrium p-

value in controls ,1*10-6; symmetric SNPs (A/T, C/G); and

SNPs not on all the genotyping platforms.

To minimize false positives, each sIA case was matched to three

controls by gender and genetic distance from control individuals.

First, a sliding window approach was used to thin the set of SNPs

to be approximately independent of each other. A sliding window

of 1500 SNPs was shifted by 150 SNPs at a time along

chromosomes, and in each step SNPs were filtered if any pairwise

r2 was .0.2, resulting in 79596 independent SNPs. Pairwise IBS

distances of these SNPs were used in multidimensional scaling and

four first dimensions were used in matching. Plink v. 1.07 [49] was

used for thinning and MDS analysis. R package optmatch was

used to pair each case to three controls. After 1:3 matching,

additionally all Eastern Finnish controls from the previous sIA

study were included [12].

The final discovery sample consisted of 760 sIA cases and 2,513

controls (Table 1). After SNP filtering, there were 304,399

genotyped SNPs and 9,046,433 imputed SNPs and indels (see

imputation paragraph for imputation QC) for the discovery

sample.

B. Finnish replication sample. The replication sample

consisted of 858 independent sIA patients from the registry of

Neurosurgery, Kuopio University Hospital. There were 1,605

independent controls, 453 from Eastern Finland and 1152 from

the FINRISK study, both genotyped using the Sequenom iPLEX

technique. Additionally, 2,443 whole genome genotyped controls

from The Cardiovascular Risk in Young Finns Study were

acquired and replication SNPs were extracted after imputation

(Table 1).

The Cardiovascular Risk in Young Finns Study is a follow-up

study of cardiovascular risk factors from childhood to adulthood

[50,51]. The participants were randomly chosen from the Finnish

Population Registry and recruited from five university cities in

Finland. The baseline study launched in 1980 and included 3,596

individuals. Follow-ups have taken place at every three to six years

with the last one in 2007 at 27 years of age.

The FINRISK cohort is a national survey on risk factors of

chronic and non-communicable diseases in Finland [52]. The

survey has been conducted every five years since 1972 in randomly

selected, representative population samples from different parts of

Finland.

C. Dutch replication sample. The Dutch sample consisted

of previously GWAS genotyped 786 Dutch sIA cases (Yasuno

2010), and the 3,110 controls were recruited as part of the

Nijmegen Biomedical Study (n = 1,832) and the Nijmegen Bladder

Cancer Study (n = 1,278) [53,54]. The relevant medical ethical

committees approved all studies and all participants provided

written informed consent.

The patients were admitted to the Utrecht University Medical

Center between 1997 and 2007. The sIA-SAH cases were verified

with CT scan and sIAs by angiography. Unruptured sIAs were

identified by angiography in the absence of clinical or radiological

signs of SAH [12]. Patients reporting at least 1 first-degree relative

carrying sIA disease were considered familial.

The Nijmegen Biomedical Study is a population based cross-

sectional study conducted by the Radboud University Nijmegen

Medical Centre [53,54]. Age and sex stratified, randomly selected

adults ($18 years) of Nijmegen (n = 22,452) received an invitation

to fill out a postal questionnaire on lifestyle and medical history.

The following cases and controls were excluded: missingness $

0.05 (n = 10); IBD$0.2 (n = 102); heterozygosity ./,3 standard

deviations from the mean (n = 46); and principal component

analysis outliers (n = 43). The intersection of SNPs in different

platforms was first extracted and symmetric SNPs were removed

(A/T, C/G). SNPs prior to the imputation were filtered by the

following QC criteria: genotype missingness .0.05; MAF,0.01;

HWE p,0.001; differential missingness between cases and

controls p,1E-5.

The final Dutch replication sample consisted of 717 cases and

3,004 controls (Table 1).

Replication strategy
From both of the analyses (the case vs. controls and the number

of sIAs) the best independent SNPs were taken to replication if p,

5E-6. Additional significant independent SNPs in a locus was
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tested by analyzing each SNP within 1 MB from the top SNP

while adding the top SNP as a covariate. Additionally the most

significant SNP in the current study in 2q33.1 region with

uncertain evidence in previous sIA GWASs was taken to

replication. Variant was considered replicated if it reached one-

tailed significance of p,0.05 and was consistent in terms of risk

allele. In all of the results, one-tailed p-values are given for the

Finnish replication and in Dutch results.

Genotyping
Genomic DNA was extracted from peripheral blood and

genotyped by Illumina arrays: the Finnish discovery sample and

the Dutch replication cases by CNV370k DUO chip; the HBCS

and YFS controls by Illumina Human670K customBeadChip; and

the H2000 controls by Illumina Infinium HDHuman610-Quad

BeadChip.

In the Finnish replication sample, DNA was genotyped using

Sequenom MassARRAY system and iPLEX Gold assays (Seque-

nom Inc., San Diego, USA). The data was collected using the

MassARRAY Compact System (Sequenom) and the genotypes

were called using TyperAnalyzer software (Sequenom). Genotyp-

ing quality was examined by a detailed QC procedure consisting

of success rate checks, duplicates, water controls and Hardy-

Weinberg Equilibrium (HWE) testing. SNPs were filtered if

genotype missingness .0.05 or if HWE p,0.001.

Imputation
For imputation of additional genotypes in the discovery sample,

the Young Finns replication cohort and in the 2nd Dutch replication

sample the genotypes were first pre-phased [55] using the Shape-IT

[56] phasing software and the pre-phased haplotypes were subjected

to imputation. The Impute version 2.2.2 software [57] with 1,000

Genomes Phase I integrated variant set release (v3) reference panel

(05 Mar 2012 release downloaded from http://mathgen.stats.ox.ac.

uk/impute/data_download_1000G_phase1_integrated.html) was

used. Imputed genotypes were filtered if the Impute info measure

was ,0.5 or minor allele frequency ,0.01 in the Finnish discovery

sample.

eQTL analysis
We analyzed whether the identified genome-wide significant

SNPs might affect gene expression by using the European samples

of the Geuvadis RNA-sequencing data set, with mRNA sequenc-

ing data from LCLs of 373 samples from the FIN, CEU, GBR and

TSI populations of 1000 Genomes project (for details, see [21]).

We did eQTL analysis for each of the associating variants and

all the genes within a 1 MB window that were expressed in .50%

of the individuals (Table eQTL). We used exon quantifications

based on individual read counts per exon, after correction by the

total number of mapped reads per sample and PEER normali-

zation to remove technical variation. For each exon, we calculated

linear regression between these expression values and genotype

dosage of the associating variants in the 1000 Genomes data.

Regional association plots
Regional association plots were generated using LocusZoom

with LD data from European populations of 1000 Genomes

project (Hg19/March 2012) [58].

Search of regulatory elements at identified variants
The UCSC Genome Browser and HaploReg version 2 [19]

were used to search for ENCODE regulatory element regions

located at the five genome-wide significant variants. HaploReg

database also annotates if SNP resides on a putative transcription-

factor binding site (TFBS) according to Transfac or Jaspar TFBS

profiles and also 10 most enriched TFBS profiles identified in

ENCODE TF Chip-Seq peaks. We used all the Jaspar and

Transfac annotations and three most enriched ENCODE based

TFBS annotations for each TF.

Statistical analysis
GWA was performed against two complementary phenotypes:

the case vs. control status and the number of sIAs.

Case vs. control analysis. SNPTEST v2.3.0 was used for

the association analysis, assuming additive effect. Genotype

uncertainty in the imputed SNPs was taken in to account by

treating them as continuous expected genotype dosages. The

gender was used as a covariate.

Aneurysm count analysis. The Vuong test [59] showed that

the negative binomial model was a significantly better fit to the sIA

count per individual when compared to the Poisson model. The

zero-inflated negative binomial model was not significantly better

either, so the simpler negative binomial model (glm.nb function in

MASS R package) was used. When assessing the model fits, the

gender was used as a predictor. Imputation uncertainty was taken

in to account by treating the imputed SNPs as continuous

expected genotype dosages, and the gender was used as a

covariate.

Meta-analysis. The association evidence from the discovery

and replication samples were combined by inverse variance-

weighted fixed-effects meta-analysis, using Plink v.1.07 [49].

Heterogeneity statistic I2 and confidence intervals were calculated

according to Higgins et al. [60] using metafor R package [61].

Genome-wide significance level estimation. As the stan-

dard genome-wide significance value of 5 * 1028 is estimated to

correct for independent tests when testing all common variants

(MAF. = 5%). As we tested variants with MAF. = 1%, the

standard genome-wide significance may be liberal. A simple

Bonferroni correction would be much too string because of

correlation between tested variants.

We estimated approximately independent number of variants

by analysing chromosomes 1 and 7 of European individuals of the

1000 Genomes Project. We pruned the set of variants to be

approximately independent (pairwise r2, = 0.6 within 250 kb of

each other) using WDIST (https://www.cog-genomics.org/wdist/).

This resulted in 308547 and 358834 independent variants out of

2215231 and 2553047 respectively. Taking the same proportion

(14%) of SNPs from the 9 359 231 variants in the discovery is

1 303 594 variants which yields genome-wide significance of 3.82 *

10-8. We similarly estimated squared correlation r2 of the 528677

genotyped and imputed variants of all 3273 discovery samples in

chromosome 7 using custom Python script. The proportion of

approximately independent variants was 53 909 (10.2%), which is

lower than in the full set of 1000 Genomes variants (threshold 5.2 *

10-8).

Heritability analysis. The fraction of additive genetic

variance explained by the five identified loci was estimated using

the liability threshold model [62]. The model assumes an additive

effect at each locus, which shifts the mean of a normally distributed

distribution of disease liability for each genotype. The combined

genetic variance explained by the five SNPs (rs74972714,

rs113816216, rs7501821, rs1509275133, rs12472355) in the five

loci was assumed to be the sum of variances explained by each SNP.

Risk allele frequencies in controls and OR’s from combined Finnish

samples was used and population prevalence of 3% of the sIA

disease was assumed [1]. Heritability of the six previously identified

lead SNPs (rs9298506, rs1333040, rs12413409, rs9315204,
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rs11661542, rs6841581) was estimated using the allele frequencies

and effect sizes from the discovery cohort of the current study.

Supporting Information

Figure S1 Quantile-quantile plot of case vs. control analysis.

(TIF)

Figure S2 Quantile-quantile plot of aneurysm count analysis.

(TIF)

Figure S3 Manhattan plot of case versus control analysis.

(TIFF)

Figure S4 Manhattan plot of aneurysm count analysis.

(TIFF)

Figure S5 Pairwise plot of eQTL association statistics vs.

aneurysm association statistics in the discovery cohort. All variants

within 1 MB of reported variants and with both eQTL and

aneurysm data available are plotted. Nominal aneurysm associa-

tion p-value threshold of p = 0.05 is shown as vertical line.

(TIF)

Figure S6 Regional eQTL association landscape of the five

identified saccular intracranial aneurysm loci. The reported lead

SNP association to sIA disease is shown as purple circle. All other

data points are eQTL association p-values (only association p-

values,0.001 are shown). Color coding indicates LD between the

sIA variant and each eQTL variant. Association p-values (2log10

scale, y-axis) of variants are shown according to their chromo-

somal positions (x-axis). Blue lines indicate the genetic recombi-

nation rate (cM/Mb). Figures A–C present the loci identified in

the case vs. control analysis at 2q23.3, 5q31.3, and 6q24.2,

respectively. Figure D presents the 7p22.1 locus associated to the

sIA count per patient. Figure E presents the 2q33.1 locus with

inconclusive previous evidence.

(TIF)

Table S1 All variants analyzed in case vs. control analysis in the

discovery and the replication phases.

(XLS)

Table S2 All variants analyzed in the aneurysm count analysis in

the discovery and the replication phases.

(XLS)

Table S3 Genotype to aneurysm count distribution of genome-

wide significant rs150927513 in combined Finnish discovery and

replication cohorts.

(XLS)

Table S4 Regulatory elements at the identified variants.

(XLS)

Table S5 Previous GWAS studies of the sIA disease. Association

results are reported according to chromosomal loci and differing

SNP is indicated above each study column if different from

primary study. Each cell reports [odds ratio; (pvalue); risk allele;

allele frequency in controls] (e.g 1.6 (4.5E-4) 38%) unless otherwise

noted.

(XLS)

Table S6 eQTL analysis results of correlating each genome-

wide significant SNP to exon expression levels of genes , = 1 MB

away from the index SNP.

(XLS)

Table S7 Imputation accuracy statistics of all genome-wide

significant variants.

(XLS)

Table S8 Genotyping of 87 individuals of the discovery sample

by direct genotyping.

(XLS)

Table S9 Heterogeneity statistics of meta-analysis combining all

three samples.

(XLS)

Table S10 All variants with eQTL associations p,0.001 and

aneurysm association (discovery sample) p,0.05 within 1 MB of

reported variants.

(XLS)

Table S11 Validation of imputed genotypes by Sanger sequenc-

ing.

(XLS)

Table S12 Putative protein product function affecting variants

within 1 MB of the identified variants in 583 whole exome

sequenced Finnish individuals.

(XLS)

Table S13 In silico validation of genotype imputation accuracy

in Dutch population using 96 individuals with both genotype chip

data and high coverage(.406on average) full genome sequencing

data available.

(XLS)

Text S1 Description of simulation experiment to assess false

positive probabilities due to imputation inaccuracy.

(DOCX)
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