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Simple Summary: The PI3K/AKT signaling pathway plays critical roles in regulating a series of
cellular changes to promote tumor development and progression. The cytoskeletal network, com-
prising of the microfilaments, microtubules, and intermediate filaments, is known to be regulated by
signaling cascades, which lead to dissemination of primary tumors and thus worsen clinical outcomes.
Both aberrant activation of the PI3K/AKT pathway and alteration of cytoskeletal structures are highly
prevalent in cancer cells. However, it is not fully understood how the crosstalk and feedback between
PI3K and the cytoskeleton could cooperatively lead to cancer progression and a poorer patient prog-
nosis. Herein, we discuss the molecular and cellular regulation between cytoskeletal proteins and the
PI3K/AKT signaling pathway, and how these two orchestrate a regulatory process that aids cancer
progression. Our review also summarizes recent advances in the clinical development of PI3K and
cytoskeleton targeting agents, thereby providing insight into the development of novel therapeutic
approaches targeting the interplay between PI3K and the cytoskeleton for cancer management.

Abstract: The PI3K/AKT signaling pathway plays essential roles in multiple cellular processes,
which include cell growth, survival, metabolism, and motility. In response to internal and external
stimuli, the PI3K/AKT signaling pathway co-opts other signaling pathways, cellular components,
and cytoskeletal proteins to reshape individual cells. The cytoskeletal network comprises three
main components, which are namely the microfilaments, microtubules, and intermediate filaments.
Collectively, they are essential for many fundamental structures and cellular processes. In cancer,
aberrant activation of the PI3K/AKT signaling cascade and alteration of cytoskeletal structures have
been observed to be highly prevalent, and eventually contribute to many cancer hallmarks. Due to
their critical roles in tumor progression, pharmacological agents targeting PI3K/AKT, along with
cytoskeletal components, have been developed for better intervention strategies against cancer. In
our review, we first discuss existing evidence in-depth and then build on recent advances to propose
new directions for therapeutic intervention.

Keywords: PI3K/AKT; cytoskeleton; cancer; chemotherapy; clinical trial

1. Introduction
1.1. PI3K/AKT Signaling Pathway in Cancer

The phosphoinositide 3-kinase (PI3K)/AKT pathway is a vital oncogenic pathway
that plays critical roles in multiple aspects of cancer hallmarks, including cell survival,
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metabolism, metastasis, and angiogenesis [1–4]. There are three classes of PI3Ks, strat-
ified by sequence homology and substrate preference. The PI3Ks function to generate
specific phosphoinositides inside cells, where class I PI3Ks synthesize phosphatidylinositol
3,4,5-trisphosphate (PtdIns(3,4,5)P3 or PIP3), class II PI3Ks produce phosphatidylinositol
3-phosphate (PtdIns3P) and phosphatidylinositol 3,4-bisphosphate (PtdIns(4,5)P2), and
class III PI3Ks generate PtdIns3P [5,6]. All classes of PI3K are key players in mediating
multiple cellular processes via the regulation of specific phosphoinositides with district
cellular localization [7]. Class I PI3Ks, which are formed as heterodimers of a catalytic sub-
unit (p110α, p110β, p110γ, or p110δ) and a regulatory subunit (p85α (or its splice variants
p55α and p50α), p85β, p55γ, p101, or p84), are the most studies class, with extensive un-
derstanding of their oncogenic properties (the review focuses on class I PI3Ks herein) [7,8].
PI3Ks are triggered downstream through the activation of receptors, including tyrosine
kinase receptors (RTKs), cytokine receptors, and G proteins coupled receptors (GPCRs).
The PI3Ks are then recruited to the plasma membrane, catalyzing the phosphorylation of
the 3′-hydroxyl group of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2 or PIP2) to
produce the second messenger molecule PIP3 (Figure 1). This lipid conversion process
is reversed by PTEN, the antagonist of the PI3K pathway, through dephosphorylation of
PIP3. As second messengers, PIP3 accumulate at the plasma membrane to recruit down-
stream effector proteins containing pleckstrin homology (PH) domains, to interact with
this lipid [1]. One of these recruited proteins is the serine-threonine kinase AKT, which is
phosphorylated by phosphoinositide-dependent protein kinase 1 (PDK1). Activated AKT
signals to multiple downstream effectors to control diverse cellular functions and deter-
mine the cell fate. For instance, mTOR is activated to initiate protein synthesis via S6K and
4EBP [9,10], and inhibit the forkhead box O (FOXO) family transcription factors to promote
cell survival and metabolic reprogramming [11,12]. Moreover, the PI3K/AKT pathway
has been found to crosstalk with multiple signaling cascades, including the ERK/MAPK,
JAK/STAT, and RAS/RAC pathways [13–17]. The extensive crosstalk among PI3K/AKT
and other molecules thus forms highly interdependent signaling networks to cooperatively
regulate multiple cellular functions of cancer cells and direct the disease progression by
enhancing cell proliferation, migration/invasion, and treatment resistance.

As one of the most frequently mutated oncogenic pathways, PI3K/AKT signaling has
been identified to exhibit a broad mutational spectrum on various components, leading
to hyperactivation of this pathway to promote tumor development and disease progres-
sion [17–22]. Mutations have been identified on all catalytic subunits (p110α, β, γ, and
δ) [23–26]. Among these subunits, activating mutations on p110α are found in approxi-
mately 20–40% of solid tumors, with more than 25 mutation sites identified in colon, breast,
and gynecological cancers [27–30]. These mutations usually contribute to hyperactivation
of the PI3K pathway, which leads to oncogenic transformation of normal cells, somatic
tumor formation in mice, and increased cancer cell invasion and drug resistance [31–33].
Another frequent mutation causing PI3K hyperactivation is the loss-of-function mutation
occurring in PTEN, the antagonist of PI3K pathway. About 60–80% of patients with PTEN
hamartoma tumor syndromes (PHTSs) carry germline mutations of PTEN, predisposing
the patients to increased tumor risk [34,35]. Somatic inactivation of PTEN is also prevalent
in a wide range of sporadic tumors, including colon, melanoma, prostate, and endome-
trial cancers [36,37]. Moreover, expression of PTEN can be inactivated through multiple
post-transcriptional and post-translational regulation, which could explain the PTEN inac-
tivation in cancer cells without a germline PTEN mutation [38]. These mutations, occurring
to different components of PI3K signaling, can synergize or act independently to induce
constitutive activation of PI3K and downstream effectors, which further induces cellular
changes to enhance the tumorigenesis and aggression of an established cancer. For instance,
remodeling of the cytoskeleton is promoted under PI3K activation, which enhances the
metastatic potential of cancer cells. With accumulating evidence from in vitro and in vivo
studies to support the mutated molecules of PI3K as drivers of oncogenic transformation
and therapeutic resistance, PI3K might be an ideal target for developing anticancer drugs.
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Figure 1. Schematic diagram illustrating the PI3K/AKT/PTEN/mTOR signaling pathway in a cell. A
ligand-engaged RTK binds PI3K either directly or indirectly, removing the inhibitory action of its p85
subunit on the catalytic p110 subunit. In physiological conditions, growth factors stimulate PI3K, which
subsequently phosphorylates the phospholipid substrate PIP2 to generate the second messenger PIP3.
PIP3 recruits and activates several functional targets, such as AKT isoform, PDK1, and others. The lipid
phosphatase PTEN converts PIP3 to PIP2, which terminates accentuation of the growth signal to maintain
normal cellular and tissue homeostasis. RTKs, receptor tyrosine kinases; IGF, insulin-like growth factors;
EGF, epidermal growth factor; HGF, hepatocyte growth factor; VEGF, vascular endothelial growth factor;
PTEN, phosphatase and tensin homolog; PI3K, phosphoinositide 3-kinase; PIP2, phosphatidylinositol
4,5-bisphosphate; PIP3, phosphatidylinositol 3,4,5-trisphosphate; PDK1, phosphoinositide-dependent
kinase-1; AKT, protein kinase B; mTORC1, mammalian target of rapamycin complex 1. The figure was
created with BioRender.com (accessed on 14 February 2022) and was exported under a paid subscription.

1.2. Critical Roles of Cytoskeleton in Cancer

The cytoskeleton landscape is a complex dynamic network of filamentous proteins that
provides shape and support to the cell, facilitating the transport of molecules, cell division,
cell invasion, and cell signaling. The cytoskeleton comprises three components: actin
filaments (microfilaments), microtubules, and intermediate filaments (Figure 2). All three
filament systems are highly dynamic, altering their organization in response to the needs
of the cell. Actin exists in two forms: monomeric globular (G-actin) and polymeric filament
(F-actin). These two are under constant dynamic conversion, where G-actin polymerizes
into F-actin and adds to the existing filament from its plus end, while F-actin hydrolyses and
depolymerizes from its minus end [39]. The balance of the two is controlled by a large group
of actin-binding proteins (ABPs) inside cells. ABPs also control the spatial distribution
and remodel actin organization in response to signals, leading to the execution of multiple
cellular processes like vesicular/protein trafficking, cell migration, and maintenance of
cell junctions/polarities [40]. Microtubules (MT) are formed by polymerization of tubulin
dimers, consisting either of α- or β-tubulin. Like actin filaments, microtubules have two
distinct ends, with a plus end oriented towards the cell periphery and a minus end anchored
at the microtubule-organizing center adjacent to the nucleus. MT-binding proteins (MTBPs)
regulate microtubule assembly, depolymerization, stabilization, and cross-linkage, where
these dynamics of microtubules are vital to cell division, intracellular trafficking, cell
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growth, and cell death [41]. Unlike actin filaments and microtubules, which are polymers
of single types of proteins, intermediate filaments are made up of a number of proteins,
with distinct functions [42]. Intermediate filaments (IFs) provide structural support for
cells, contributing to cell shape maintenance, cell migration, and cell adhesion [43]. Several
members of IFs are also key mediators of the process of transducing external mechanical
stresses into cells. For instance, keratins form a network in airway epithelial cells that
protects cells against shear stress [44].

Figure 2. Schematic diagram of cytoskeleton structure that illustrates the three key components:
actin filament, microtubule, and intermediate filament. The figure was created with BioRender.com
(accessed on 14 February 2022) and was exported under a paid subscription.

Research has shown that the cytoskeleton plays vital roles in multiple stages of cancer
progression, with well-illustrated roles in regulating epithelial-mesenchymal transition
(EMT) and metastasis [45–47]. All three cytoskeletal components collaborate and function
collectively to control each step of cell migration, including polarization, formation of pro-
trusions, adhesion, contractility, and transmission. The cytoskeleton spans the cytoplasm
and connects the cell nucleus with the extracellular matrix (ECM) to provide the mechanical
strength and structural basis for cell movement. During the EMT process, the cytoskeleton
is restructured under a coordinated regulation of ABPs, MTBPs, and regulators of IFs, to
weaken cell-cell attachment and strengthen cell-matrix adhesions that transform cancer
cells from the stationary epithelial type into migratory mesenchymal type [47,48]. These
cytoskeletal components further coordinate in a systemic manner that leads to the forma-
tion of cellular protrusions like lamellipodia, filopodia, and invadopodia, which ultimately
leads to cancer metastasis [48–51]. In fact, many of the cytoskeletal molecules, such as
vimentin and keratin, are established as biomarkers for monitoring EMT and metastasis
progress [52]. Besides acting as metastatic factors, the cytoskeleton and its associated
proteins are also critical regulators of cancer cell survival and development of multidrug
resistance. For instance, actin filaments and ABPs are key regulators of apoptosis, cell
growth/proliferation, and angiogenesis [53–56]. Remodeling of the actin cytoskeleton
and altered expression of ABPs, such as tropomyosin, gelsolin, and cofilin, are frequently
observed in solid tumors, allowing tumor cells to evade apoptosis signaling, stimulate
cell proliferation, and acquire chemotherapy resistance [56–60]. Similarly, studies have
also shown that altered microtubule dynamics, with tubulin mutations and differential
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expression of the isoforms, and MT-associated proteins are critical for developing resis-
tance to chemotherapeutic regimes, including microtubule-trageting agents [61–65]. A vast
majority of the cytoskeleton-associated proteins are under concerted regulation of signaling
networks, such as the PI3K/AKT pathway, as a response to external and internal stimuli.
In addition, changes in the cytoskeleton also feedback to the upstream signaling pathway,
which cooperatively reshapes cancer cell behaviors.

2. PI3K/AKT in Regulating Multiple Aspects of Cytoskeleton in Cancer Biology
2.1. PI3K in Regulating the Actin Cytoskeleton

The activation of PI3K signaling not only mediates many critical cellular functions
but also greatly influences cytoskeletal changes [21,66]. The lipid products of PI3K (PIP2
and PIP3) are capable of binding to downstream protein targets containing the PH—which
include the guanine nucleotide exchange factors (GEFs) (Figure 3) [67,68]. This, in turn,
promotes the activation of the Rho family of small GTPases such as Rac1, RhoA, and Cdc42—
which modulate the dynamics of the actin cytoskeleton [69–71]. These Rho GTPases
drive the polymerization of actin monomers by activating actin nucleators such as the
WASP/WAVE proteins via the Arp2/3 complex [72,73]. On activation, the Arp2/3 complex
orchestrates the formation of nascent actin filaments by branching off pre-existing actin
filaments. Furthermore, Rho GTPases are also known to inactivate cofilin (which is an actin
filament-severing and depolymerizing factor) with the help of the LIM kinases (LIMKs)
to stabilize actin filaments [74]. The polymerization of the actin monomers at the plasma
membrane at the leading edge of migrating cells induces the formation of protrusions such
as the lamellipodia [75]. Formation of the lamellipodia is crucial for cell migration and is a
common dynamic surface extension exploited by cancer cells to invade and metastasize to
secondary sites [76,77].

Figure 3. PI3K/AKT signaling axis regulates all major classes of cytoskeletal components. The
activation of the PI3K/AKT signaling pathway plays key roles in the assembly of nascent actin
filaments, polymerization of microtubules, and abundance of intermediate filaments. Collectively,
these changes enhance the motility and migratory potential of cancer cells. Image created with
BioRender.com (accessed on 14 February 2022).

Moreover, PI3K/AKT can regulate Rho family members via crosstalk with other signal-
ing molecules such as GSK-3β. On insulin activation, activated PI3K/AKT phosphorylates
GSK-3β at serine 9, which leads to the inhibition of GSK-3β activity [78]. In gastric cancer cells,
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suppression of PI3K/AKT by PI3K inhibitor LY294002 or silencing AKT leads to decreased
Wnt5-induced GSK-3β phosphorylation, which further causes a reduction in RhoA-dependent
cell migration and actin remodeling [79]. Of note, inhibiting GSK-3β phosphorylation by
pharmacological inhibitors restores RhoA activation and cell migration. Therefore, the sup-
pression of GSK-3β could be another indirect mechanism for PI3K/AKT to regulate RhoA,
and potentially the Rho family members, for remodeling of the actin cytoskeleton.

2.2. PI3K in Regulating Microtubules

Besides actin, microtubule is another critical cytoskeletal component that greatly influ-
ences the overall efficiency of directed cell migration [80–82]. Interestingly, the activation
of PI3K/AKT signaling has been implicated in the regulation of microtubule stability, as
well [83–85]. Within eukaryotic cells, the canonical microtubules are made up of numerous
tubulin dimers (both α- and β-tubulin units) polymerizing into 13 linear protofilaments,
which have been found to assemble around a hollow core to form a pseudo-helical struc-
ture [86,87]. Due to the alternative arrangement of the α- and β-tubulin units, microtubules
are intrinsically polarized with the plus (+) end having the β-tubulin units exposed and
the minus (−) end having the α-tubulin units exposed [88,89]. The work by Onishi et al.
(2007) highlighted the importance of PI3K/AKT signaling in enhancing the stability of the
microtubules [83]. In their experiments, they showed that the microtubules in fibroblast
cells destabilized by either the addition of a pan-PI3K inhibitor LY294002 or the intro-
duction of the dominant-negative form of AKT into the cells, which is in concordance
with findings from earlier studies that showed enrichment of PI3K/AKT signaling and
microtubule stability at the leading edge of the migrating cells [90,91]. The regulation of
microtubule dynamics by the PI3K/AKT pathway can be transduced through GSK-3β. As
discussed earlier, PI3K/AKT exerts an inhibitory effect on GSK-3β activity. The inhibition
of PI3K/AKT signaling by LY294002 induces the activation of GSK-3β, which in turn, regu-
lates a large repertoire of protein substrates that includes microtubule-associated proteins
(MAPs) such as MAP-2, MAP-4, and tau [92]. The GSK-3β-mediated phosphorylation of
these MAPs results in their diminished capacities to bind and stabilize the microtubules.
As a result, the alteration to microtubule dynamics is thought to support cancer progres-
sion as it promotes uncontrolled motility in cancer cells [93]. Moreover, in the context of
cancer biology, increasing studies show that cancer cells often contain modifications and
mutations to the tubulin units that confer their resistance to conventional chemotherapy
(microtubule-targeting agents) [64,94,95].

2.3. PI3K in Regulating Intermediate Filaments

The intermediate filaments, unlike the actin cytoskeleton and microtubules, comprise
a large group of heterogeneous protein members, which are categorized into six major
classes [96]. Another striking feature of the intermediate filaments, which sets them apart
from the other cytoskeletal components, is that they do not control cell movements directly,
but are important modulators of cell motility and often play crucial roles in providing
mechanical support to the cells and tissues [97]. Often, the various classes of the inter-
mediate filaments are also subjected to regulation by the PI3K/AKT signaling pathway.
For example, keratin 18 (type I intermediate filament), along with its filamentous partner
keratin 8 (type II intermediate filament), form the predominant pair of intermediate fil-
ament components in a typical epithelial cell, and their expression in cells is influenced
by PI3K/AKT signaling, where overexpression of AKT increases keratin 8 and keratin
18 [98,99]. Although the activation of PI3K/AKT signaling increases the protein expression
of both keratins, it is interesting to note that their number of mRNA transcripts remains
relatively unchanged, suggesting that the activation of the PI3K/AKT signaling pathway
promotes mRNA stability rather than the abundance of the transcripts. PI3K/AKT sig-
naling is one of the most commonly dysregulated pathways in cancer [100]. Therefore, it
is unsurprising that both keratin 18 and keratin 8 are often upregulated in most human
cancer types [101,102]. Moreover, earlier studies also showed that an increase in the pro-
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tein abundance of both keratin 18 and keratin 8 in cancer cells enhances the migratory
and invasive capacities of cancer cells and alters their interactions with extracellular en-
vironments [103,104]. Similarly, the activation of PI3K/AKT signaling is also known to
phosphorylate vimentin (type III intermediate filament). After phosphorylation by AKT,
vimentin undergoes structural alterations, which lead to changes to its interactions with
numerous intracellular components and its stability; PI3K inhibitor LY294002 and AKT
inhibitor A563 antagonize these changes by decreasing the phosphorylation and stability
of vimentin [105,106]. Such changes to the vimentin dynamics often result in the enhanced
capacity of cancer cells to migrate and invade due to their ability to stabilize focal adhesions
and enhance the mechanical strength of malignant cells [107].

3. Cytoskeleton in Regulating PI3K Signaling
3.1. Actin Cytoskeleton and Its Regulators in Regulating PI3K Signaling

The role of PI3K signaling in regulating the dynamics of the actin cytoskeleton has
been well documented; the RhoGTPase family members have been extensively implicated
in the migration and invasion of cancer cells on PI3K activation (refer to previous section
for details). Recently, evidence emerged to suggest that family members of RhoGTPase
play vital roles in regulating PI3K signaling (Figure 4). Multiple Rho GTPase members,
including RAC, CDC42, and RhoG, cooperate to activate PI3K [108]. There appear to
be isoform-specific effects of RhoGTPase on regulating different isoforms of p110, the
catalytic subunit of PI3K. While p110α seems to be regulated by RAC/CDC42 indirectly,
p110β has been identified as a direct target of RAC/CDC42 [108–110]. Upon activation
of the upstream GPCR receptor, Dock family RAC-GEF Dock180, a member of guanine
nucleotide exchange factor RAC-GEF that mediates the RAC activity, and its adaptor Elmo1,
mediate the activation of RAC1 and CDC42 GTPase. Active RAC1 and CDC42 directly
bind to p110β via the RAS-binding domain (RBD), which in turn, leads to activation of
p110β [109]. The spatial distribution of PI3K isoforms might be important for Rho GTPase-
mediated activation. RAC1 mediates the translocation of p110β to the lipid raft via direct
interaction on upstream GPCR activation, which subsequently, turns on the PI3K signaling
cascade [110]. In contrast, p110α resides predominantly in the non-raft region of the plasma
membrane under GPCR activation [110]. Besides interacting with p110β, CDC42 can
activate PI3K by suppressing the expression levels of PTEN and interfering with membrane
localization of PTEN to the cell leading edge [111–113], suggesting another direction for
RhoGTPase members in PI3K signaling via inhibiting their suppressors. In addition,
activated RhoA GTPase recruits PTEN to the posterior of migrating cells to form a complex,
leading to localized activation of PTEN and the polarized distribution [113]. Actin filaments
may play a role in feeding back to PI3K in Rac-mediated actin polymerization, where
pharmacological inhibitors of actin polymerization or depolymerization lead to decreased
polarized PIP3 production in cells with PI3K being activated [114,115]. With the ability
to act upstream of and trigger one another, PI3K and RAC/CDC42 could cooperatively
create a positive feedback loop that potentiates and sustains PI3K signaling, and sustains the
levels of active RAC/CDC42 at desired cellular localization, such as at the leading edge of
migrating cells [116,117]. This localized positive feedback would lead to increased cell motility
and invasion, which could eventually contribute to cancer progression.

Besides RAC/CDC42 GTPase, other families of actin-binding proteins may regulate
PI3K in cancer. Gelsolin, an actin severing and capping protein, interacts with PI3K,
leading to PI3K/AKT activation, and subsequently, to cell migration and dissemination
of gastric cancer cells [118]. Members of the myosin family, the actin motors, were also
shown to regulate the downstream effector, AKT, of the PI3K cascade. Myosin IB positively
regulates the activation of AKT in the nucleus by binding to PTEN and preventing its
nuclear translocation [119]. Myosin IIA and its activating enzyme MLCK are required
for phosphorylation of AKT following MEK inhibition in triple-negative breast cancer
cells [120]. Similarly, depletion of MYO18B suppresses the phosphorylation and activation
of PI3K, as well as its downstream effectors such as AKT and mTOR in hepatocellular
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carcinoma [121]. The roles of actin polymerization proteins, such as Arp2/3, remain poorly
understood in PI3K regulation. Since polymerized actin could feedback to PI3K activity
and polarized PIP3 production [114,115], it is plausible that actin polymerization factors,
which conventionally act downstream of the PI3K-RAC/CDC42 pathway, could regulate
PI3K to provide additional directions for the positive-feedback circuit to promote cancer
cell migration.

Figure 4. Cytoskeletal elements regulate PI3K/AKT signaling cascade. The three types of cytoskeleton
collectively control the PI3K/AKT pathway. The cytoskeleton and its associated proteins play critical
roles in regulating multiple steps and players of the PI3K/AKT signaling pathway, including signaling
molecule recruitment, antagonist sequestration, and regulation of gene expression. Image created
with BioRender.com (accessed on 14 February 2022).

3.2. Microtubule Cytoskeleton in Regulating PI3K Signaling

Similar to their actin counterpart, and despite being tightly regulated by the PI3K
pathway, microtubules can also act as upstream regulators of the PI3K signaling cascade.
Several studies have suggested that microtubules can directly regulate PI3K signaling at dif-
ferent levels. PTEN is tethered to endocytic vesicles via phosphatidylinositol 3-phosphate
(PI(3)P), to distribute around the microtubule network [122]. Through vesicular tethering,
PTEN distribution is dependent on microtubules, and thus PI3K signaling can be regulated
at distinct intracellular locations. The dynamics of microtubules play an important role in
AKT activity. A functional microtubule cytoskeleton is required for phosphorylation of
AKT induced by stimulation of insulin-like growth factor 1 receptor (IGF-1R), which lies
upstream of PI3K [123,124]. Insulin receptor substrate 2 (IRS2) localizes to the microtubules,
leading to AKT phosphorylation and activation in a manner dependent on the functional
microtubule network [123]. A portion of IRS2 shows co-localization with microtubules
on the cell membrane when the microtubules are stabilized for visualization, suggesting
that IRS2 might travel along microtubules to interact with activated receptors at the cell
membrane, to recruit downstream effectors like AKT. Activated AKT is then localized to
microtubules via dynactin p150, a microtubule motor-binding protein [125]. The binding of
AKT to microtubules sustains the phosphorylation status of AKT and thus the activation
of the signaling cascade. Disassembly of microtubules switches off PI3K/AKT signaling
through dephosphorylation and inactivation of AKT [125]. Interestingly, acetylated mi-
crotubules, which take the stabilized form, bind to AKT, leading to suppression of AKT
activation and phosphorylation. There is more association of AKT with acetylated micro-
tubules in the cytoplasm when microtubules’ acetylation levels are increased by treatment
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with α-tubulin acetyltransferase 1 inducers or deacetylase inhibitors. AKT may thus be se-
questered inside the cytoplasm and prevented from being activated by PI3K on the plasma
membrane under this condition [126]. Taken together, microtubules regulate PI3K/AKT
signaling by directly participating in receptor substrate recruitment, sustaining activated
AKT and sequestration of inactive AKT, and spatially regulating antagonists such as PTEN.

3.3. Intermediate Filaments in Regulating PI3K Signaling

The intermediate filaments, unlike the actin and microtubule counterparts, consist
of a large group of members with a diversity of functions. Several class members of
intermediate filaments have been shown to regulate PI3K signaling. Within the keratin
family, several members can regulate PI3K/AKT signaling to modulate cancer cell behavior.
Keratin 17 (K17) [127–130] and K80 [131] promote PI3K/AKT signaling via increased
AKT phosphorylation, while K19 [132] plays inhibitory roles in PI3K/AKT signaling, as
evidenced by the hyperactivation of AKT phosphorylation on the loss of this keratin. K8/18
is reported to both promote and inhibit AKT, depending on the cancer cell types and genetic
background [133–136]. A possible mechanism for PI3K/AKT regulation is that keratin can
act as a scaffold for signaling proteins to interact, when it physically binds with the adaptor
protein 14-3-3. K17 and K18 bind to 14-3-3σ and retain the cytoplasmic localization of 14-3-3
under stimulation, which enables the recruitment of signaling molecules for PI3K/AKT
activation [135,137]. Similarly, vimentin has been shown to interact with 14-3-3 [138].
Although poorly understood, vimentin may also feedback to PI3K/AKT signaling by
interacting with 14-3-3, and affects the recruitment of signaling molecules through the
14-3-3 hub.

In addition to the cytoplasmic intermediate filament counterparts, lamins, which form
the nuclear envelope, can also influence PI3K/AKT signaling by regulating the mRNA
levels of PI3K subunits p110 and p85 [139]. Depleting lamin A/C abrogates PI3K activation
and thus reduces the cell growth and migration/invasion of prostate cancer cells. Therefore,
PI3K signaling, and the activities of intermediate filaments, coordinate in a co-regulatory
manner, which impacts cancer cell behavior and disease progression, such as metastasis.

4. Clinical Relevance of PI3K/Akt-Cytoskeleton Crosstalk
4.1. Targeting PI3K/Akt in Cancer Treatment: PI3K Inhibitors in Clinical Trials

Dysregulation of PI3K/AKT signaling is a highly prevalent event in tumor progres-
sion [2,21,140]. Given its indispensable roles in tumor biology, it is unsurprising that efforts
to develop novel therapeutic agents targeting this pathway have been unwavering for
the past two decades (Table 1). Broadly speaking, PI3K inhibitors can be categorized into
several classes; the more prominent ones include pan-PI3K inhibitors, isoform-selective
PI3K inhibitors, and dual PI3K/mTOR inhibitors [141,142]. The pan-PI3K inhibitors can
target all the isoforms of the catalytic p110 subunit (PI3Kα, PI3Kβ, PI3Kγ, and PI3Kδ) by
blocking their ATP-binding sites [143,144].

An example of a well-studied pan-PI3K inhibitor would be buparlisib (NVP-BKM120),
a reversible and orally bioavailable small molecule inhibitor [140,145]. Due to its potent
anti-cancer properties in numerous preclinical studies, buparlisib has been propelled into
clinical settings [146,147]. In the first-in-human study, the maximum tolerated dose (MTD)
for buparlisib was found to be 100 mg/day [148]. In this phase-I dose-escalation trial,
buparlisib showed some clinical activity in patients with advanced solid cancer types,
though a multitude of adverse events such as asthenia, rash, hyperglycemia, decreased
appetite, diarrhea, and nausea were observed. In a phase-II, open-label, single-arm study,
similar adverse events were observed in patients who received buparlisib [149]. However,
buparlisib was found to confer limited clinical benefits to patients despite the preselection
of patients with tumors that harbor PI3K pathway alterations. Unfortunately, other clinical
trials involving buparlisib in combination with other anti-cancer agents also failed to show
significant clinical activity for patients suffering from advanced solid tumors [150–152].
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Another prominent class of PI3K inhibitors is the dual PI3K/mTOR inhibitors, which
have been regarded as a highly promising drug class due to the sheer importance of the
PI3K/AKT/mTOR signaling axis in cancer biology [141,153]. Moreover, the potential to
develop novel compounds acting as a single agent against two crucial targets within the
same signaling axis was made possible due to the structural similarities between mTOR and
the catalytic p110 subunit [154]. To date, there are only a few dual PI3K/mTOR inhibitors
that remain relevant in clinical development, of which gedatolisib is one such candidate
that has been evaluated against both solid and liquid tumors in the clinical setting [155,156].
In the first-in-human study, the MTD for gedatolisib was established to be approximately
154 mg/week [157]. Although adverse events such as mucosal inflammation, nausea,
and hyperglycemia were commonly observed in patients, it was notable that antitumor
activity was observed within the study—with two patients having partial responses and
eight patients having lost-lasting stable disease. In a recent phase-I dose-escalation study
involving gedatolisib in combination with carboplatin and paclitaxel for the treatment of
patients with advanced solid tumors, 65 percent of the patients were found to achieve an
objective response and 17 percent of the patients had stable disease [158].

Besides the traditional pan-PI3K and dual PI3K/mTOR inhibitors, another newer
class of PI3K inhibitors, known as isoform-selective PI3K inhibitors, has also been starting
to gain traction over the past few years as there is increasing evidence that supports the
notion that different PI3K isoforms serve non-overlapping functions in cancer cells in a
context-dependent fashion [159]. Moreover, these newer classes of PI3K inhibitors typi-
cally exhibit better safety profiles as they target only the relevant PI3K isoforms, thereby
limiting the toxicities associated with pan-inhibition [2]. One of the most successful exam-
ples of isoform-selective PI3K inhibitors would be idelalisib (CAL-101), the first-in-class
PI3Kδ-selective inhibitor, which received FDA approval for cancer patients with small
lymphocytic lymphoma and follicular lymphoma in 2014 [160,161]. In a phase-I study
involving 64 patients suffering from indolent lymphoma, idelalisib was administered to the
patients at doses ranging from 50 to 350 mg (either once or twice each day) [162]. Although
adverse events were reported in approximately 20 percent of the subjects, it was notable
that under the idelalisib treatment regimens, 85 percent of the patients achieved disease
regression. In another phase-III study, which evaluated the combinatory treatment regimen
of idelalisib with rituximab (a monoclonal antibody that targets the transmembrane protein
CD20 on B cells) for the treatment of relapsed chronic lymphocytic leukemia, patients who
were given the combination treatment had better survival outcomes compared to patients
who received rituximab as the sole therapeutic agent [163]. The median overall survival for
patients in the combinatory treatment arm was reported to be 40.6 months, compared to
34.6 months for patients in the rituximab-only arm.

Another approach to target the PI3K/AKT signaling cascade in cancer treatment is to
utilize AKT inhibitors, either mono-agent or in combinational therapy. To date, the two
main classes of AKT inhibitors, the allosteric inhibitors and ATP-competitive inhibitors,
have produced promising results in clinical development [164]. ATP-competitive inhibitors
directly target the conserved ATP-binding pockets with high potency [165]. Although ATP-
competitive inhibitors lack selectivity in general, many compounds have been identified
with high binding potency and are undergoing extensive clinical evaluation among all
AKT inhibitors. Capivasertib (AZD5363) and ipatasertib (GDC-0068) are promising candi-
dates in this class, showing comparatively tolerable side effects in phase-I trials [166,167].
Common side effects include diarrhea, nausea, headache, hypertension, hyperglycemia,
and fatigue [168]. Although monotherapies are observed to be ineffective in managing
cancer progression [167], phase-II studies of these two compounds showed promising
results in combinational therapy to combat multiple types of advanced or metastatic cancer,
including ER+/HER2- breast cancer [169], triple-negative breast cancer [170], gastric can-
cer [171], and prostate cancer [172]. In these studies, addition of ATP-competitive inhibitors
to clinically proven chemotherapeutic agents and hormone therapies, such as paclitaxel,
fulvestrant, and abiraterone, showed improved treatment efficacy with prolonged disease-
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free, and sometimes overall, survival in patients. Phase-III clinical trials are underway
to evaluate capivasertib and ipatasertib in combinational treatment for advanced breast
and prostate cancers [173,174]. Pilot reports demonstrate that ipatasertib, in combination
with atiraterone, improves progression-free survival for a subset of patients with metastatic
castration-resistant prostate cancers who carry PTEN-loss, but no apparent improvement
is observed in patients without such mutations [173]. Therefore, the genetic background
of patients and tumors should be considered in the evaluation of treatment efficacies in
ongoing trials with ATP-competitive AKT inhibitors.

Like ATP-competitive inhibitors, allosteric inhibitors have drawn attention for clinical
development. Allosteric inhibitors have been shown to have good selectivity toward AKT
rather than other kinases, due to the mechanism of maintaining AKT in its inactive confor-
mation [175]. As a newer generation of ATP inhibitors, many allosteric inhibitors are in
early-phase clinical trials [174,176]. MK-2206 in this class has been recently examined in
phase-II clinical trials in combination with the aromatase inhibitor, anasterozole, to treat
PIK3CA-mutant ER-positive and HER2-negative breast cancer, with no apparent improve-
ment observed with the combinational treatment [177]. In comparison, HR-/HER2+ breast
cancer patients treated with MK-2206 and neoadjuvant treatment had higher pathological
complete response rates compared to patients receiving standard neoadjuvant therapy
alone [178]. As the results for both ATP-competitive and allosteric inhibitors in clinical
studies differ in patients with cancers of different genetic backgrounds, further studies are
warranted to unravel the predictive biomarkers to maximize the therapeutic efficacies, to
develop a precision treatment that utilizes AKT inhibitors.

Table 1. PI3K/AKT inhibitors in clinical development.

Drug Name Phase Treatment Composition Disease Studied

Pan-PI3K inhibitors

Buparlisib I/II

Buparlisib monotherapy [148,149]
Buparlisib + mFOLFOX6 [150]

Buparlisib + abiraterone acetate [151]
Buparlisib + enzalutamide [152]

Advanced solid tumors [148,150]
Patients with solid or hematologic malignancies with

PI3K pathway activation [149]
Castration-resistant prostate cancer [151]

Metastatic castration-resistant prostate cancer [152]

Dual PI3K/mTOR inhibitors

Gedatolisib I/II Gedatolisib monotherapy [157,158]
Advanced solid tumors [157]

Advanced solid tumors treated with palliative
chemotherapy [158]

Isoform-selective PI3K inhibitors

Idelalisib III/FDA approved
(for treating SLL)

Idelalisib monotherapy [161,162]
Idelalisib + rituximab [163]

Relapsed indolent lymphoma [161,162]
Relapsed chronic lymphocytic leukemia [163]

ATP-competitive AKT inhibitors

Capivasertib I/II Capivasertib + fulvestrant [168,169]
Capivasertib + paclitaxel [170]

PTEN-mutant ER + metastatic breast cancer [168]
Estrogen receptor + HER2- metastatic/advanced breast

cancer with aromatase inhibitor resistance [169]
Metastatic triple-negative breast cancer [170]

Ipatasertib II/III

Ipatasertib + mFOLFOX6 [171]
Ipatasertib + abiraterone [172]

Ipatasertib + abiraterone
and prednisolone [173]

Locally advanced/metastatic gastric and
gastroesophageal junction cancer [171]
PTEN metastatic prostate cancer [172]

Metastatic castration-resistant prostate cancer [173]

Allosteric AKT Inhibitors

BAY 1125976 I BAY 1125976 monotherapy [176] Advanced solid cancer [176]

MK-2206 II
MK-2206 + anastrozole [177]

MK-2206 + standard
neoadjuvant therapy [178]

Stage II/III ER+/HER2- breast cancer
with PIK3CA mutation [177]

HR-/HER2+ breast cancer [178]
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4.2. Targeting Cytoskeleton in Cancer Treatment

Cytoskeleton-targeting agents have been used in clinical practice in cancer treatment
for a long time, with the majority of the agents used belonging to microtubule disruptors
and anti-mitotic agents [56,179]. The microtubule-targeting agents (MTAs) in use belong
to two main classes, microtubule destabilizing agents and microtubule-stabilizing agents,
with opposite roles to play in microtubule polymerization and dissociation [180]. Both
classes of drugs disrupt the dynamics and function of the microtubule network in cells,
thus exerting potent anti-miotic effects on cancer cells to induce cell death [42]. MTAs
can induce cell death in non-dividing cells via different mechanisms, such as inhibition of
oncogenic signaling, vesicular trafficking, angiogenesis, and cell invasion, and thus MTAs
remain as promising candidates for new chemotherapy development (Table 2) [35,43].

Two sites on tubulin are frequently recognized and bound by destabilizing agents,
which are the ‘vinca’ domain and the ‘colchicine’ domain. Vinca alkaloids, originally
extracted from Catharanthus roseus and other vinca plants, are one of the most used
classes of chemotherapeutic agents [181,182]. There are five vinca alkaloids in clinical
practice, vincristine, vinblastine, vindesine, vinorelbine, and vinflunine, which may be
employed as a regime in combination with other chemotherapeutic drugs to treat multi-
ple cancers [183]. Other vinca-site inhibitors also show promising therapeutic properties.
Eribulin binds to the same site on tubulin as vinca alkaloids. It has been shown to have
potent anti-cancer properties in various types of cancer preclinically, and to reduce ab-
normal tumor-associated vasculature [184,185]. Eribulin has been approved for treating
metastatic breast cancer and liposarcoma in recent years [186,187], and is undergoing clini-
cal trials for treating triple-negative breast cancer, which lacks effective treatment options
clinically [188,189]. Dolastatin 10 is another non-vinca alkaloid microtubule-destabilizing
agent, which exerts potent anti-mitotic and anti-tumor effects in cancers including small-
cell lung cancer, ovarian cancer, prostate cancer, and breast cancer [190,191]. However,
phase-2 clinical trials carried out in ovarian and prostate cancer showed no significant
efficacy of dolastatin 10 when used in doses with good tolerance [192,193]. Recent ad-
vances in antibody-drug conjugates (ADCs) enable the safe usage of dolastatin 10 and
its derivatives in high doses by targeting cancer cells via cancer-specific antigens such
as CD30. Monomethyl auristatin E (MMAE), a synthetic dolastatin 10 analog, has been
conjugated to the anti-CD30 monoclonal antibody and tested in several advanced-stage
tumors, with good therapeutic efficacies achieved. Glembatumumab vedotin, an MMAE
ADC, is undergoing preclinical and phase-I/II testing for breast cancer, recurrent/ re-
fractory osteosarcoma, and advanced melanoma [194–197], while another MMAE ADC
named brentuximab vedotin has been approved to treat anaplastic large-cell lymphoma
and refractory Hodgkin lymphoma [198–201].

Colchicine-site binders, including colchicine and its analogs, represent another class
of MDA undergoing clinical trials. Combretastatin A-4 (CA-4) and its prodrugs show
efficacy in treating multiple hematological cancers and solid tumors in preclinical setups
including acute myeloid leukemia and thyroid cancer [202,203]. Fosbretabulin (CA-4
phosphate) showed moderate effectiveness in combinational therapy for ovarian cancer and
anaplastic thyroid cancer in clinical trials, with toxicities such as ataxia and cardiovascular
symptoms observed [204–207]. Other combretastatin prodrugs, OXi4503 (combretastatin
A1 diphosphate) and ombrabulin/AVE8062, are also undergoing clinical development for
the treatment of acute myeloid leukemia (AML) and ovarian cancer, respectively [204,208].
Other colchicine-site binders under clinical trials include lisavanbulin (BAL101553) and
plinabulin. Plinabulin is a non-conventional colchicine binding-site inhibitor, with its
affinity for β-tubulin to inhibit tubulin polymerization [209,210]. Plinabulin is shown to
exert anti-cancer effects in patients with solid tumors [211], and protective effects against
neutropenia for non-small-cell lung cancer patients undergoing docetaxel treatment [212].
A phase-III clinical trial on combinational treatment of plinabulin and docetaxel for EGFR
wild-type non-small-cell lung cancer is in progress [204]. If the outcome is favorable,
palibabulin can serve as an alternative agent used in combination treatment to reduce
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the side effects of first-line regimens with docetaxel in NSCLC patients. Lisavanbulin, a
water-soluble prodrug of avanbulin, shows anti-cancer activity against diverse treatment-
resistant cancer models, including those resistant to conventional MTAs, in preclinical
setups [213–215]. A phase I/II study for lisavanbulin in combination with radiotherapy to
treat advanced solid tumors is ongoing [216]. Given the anti-cancer property of lisavanbulin
in treatment-resistant cancer cells, it may be a promising anti-cancer agent in targeting
intractable cancers.

Taxanes are among the most used drugs belonging to microtubule-stabilizing agents,
where they bind to the taxane sites on β-tubulin [217]. Paclitaxel- and docetaxel-based regimes
have been used as first-line chemotherapy in treating various solid cancers such as breast,
ovarian, and lung cancers since the 1990s [179,218,219]. Because of treatment resistance in can-
cer cells and induction of toxicity to patients, novel taxane derivatives have been synthesized
and tested both preclinically and in clinical trials. Cabazitaxel, with greater penetration of
the blood-brain barrier compared to early-generation taxanes, has been developed to treat
metastatic castration-resistant prostate cancer, and exhibits lower toxicity at low-dose adminis-
tration compared to docetaxel [220,221]. Another approach to increase the therapeutic profile
is to conjugate taxanes to nanoparticles/molecules designed to target cancer cells. These
particles may consist of fatty acids, albumin, poly-l-glutamate, and other molecules [222–224].
Compared to unbound forms, nanoparticle-bound taxanes exhibit better drug delivery, lower
toxicity, and potentially higher therapeutic value. Nab-paclitaxel, which is formed by binding
paclitaxel to albumin, has achieved improved clinical efficacy in treating breast cancer com-
pared with previous taxanes, and retains effectiveness in treating advanced/metastatic breast
cancer patients, even for those who developed resistance to previous chemotherapy regimens
(including taxanes-based treatment) [225–228].

Another microtubule-stabilizing agent under clinical evaluation is epothilone, which
binds to the taxane-binding site on microtubules [229,230]. Compared to taxanes, epothilones
exhibit good water solubility and brain-penetrating capacity, demonstrating higher efficacy in
killing a broad spectrum of cancer cells in preclinical testing [231–234]. Moreover, epothilones
interact with β-tubulin with a higher affinity compared to taxanes and are less susceptible to
the effects of the drug efflux protein P-glycoprotein, hence reducing the chances of resistance
development in cancer cells [232,235]. With these preclinical characteristics, epothilone B
and its derivatives show promising treatment efficacy with tolerable side-effects and are
in phase 2/3 trials [236,237]. Of note, ixabepilone, a semi-synthetic analog of epothilone,
has been efficacious in treating breast cancer patients resistant to previous chemotherapy
(including taxanes), with prolonged progression-free survival of patients [235,237,238]. This
treatment efficacy was observed when ixabepilone was employed as a monotherapy in
treating patients with metastatic/advanced treatment-resistant breast cancers. Ixabepilone
synergizes in combination with capecitabine (which inhibits DNA synthesis) to prolong the
overall survival of breast cancer patients who are resistant to anthracyclines and taxane-based
regimes [237–240]. With the distinct characteristics of reduced resistance development and
greater accessibility in the body, more epothilone members can be considered for evaluating
their clinical values in cancer management.

4.3. Potential Crosstalk of PI3K Inhibitors and Cytoskeletal Disruptors in Clinical Treatment of Cancer

As discussed in the earlier sections, PI3K/AKT signaling regulates virtually all major
classes of the eukaryotic cytoskeletal components, and hence, it is little wonder that many of
these PI3K inhibitors exert great influence on the cytoskeletal dynamics, as well. For exam-
ple, idelalisib is known to influence the distribution of chronic lymphocytic leukemia cells
in patients at the cellular level by attenuating their migratory and invasive capacities [241].
Several preclinical studies have also shown that idelalisib can block these leukemia cells
from migrating by both blocking chemotaxis directly and downregulating the production
of the respective chemical stimuli in the stroma [242,243]. In the context of solid tumors,
idelalisib has also been known to downregulate the expression of type-III intermediate fila-
ment vimentin and other key EMT markers by blocking the PI3K/AKT/GSK3β signaling
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axis in liver cancer cell lines [244]. As for buparlisib, it has been shown to destabilize the
microtubule structures in glioblastoma cells, thereby decreasing their migratory and inva-
sive properties [145,147]. However, based on our current understanding of the mechanistic
actions of buparlisib, it has been suggested that the microtubule-destabilizing properties of
buparlisib might be independent of its PI3K-inihibiting abilities [145,245].

Table 2. Microtubule-targeting agents in clinical development.

Drug Phase Treatment Composition Disease Studied

Vinca-site binders

Eribulin
II/ FDA approved (for

metastatic breast cancer and
liposarcoma)

Eribulin versus dacarbazine [186]
Eribulin versus capecitabine [187]

Eribulin + pembrolizumab [188,189]

Advanced liposarcoma or
leiomyosarcoma [186]

Advanced/metastatic breast cancer
with prior anthracycline- and
taxane-based treatment [187]

HR+ HER2- metastatic
breast cancer [188]

Metastatic triple-negative
breast cancer [189]

Glembatumumab vedotin
(MMAE ADC) II Glembatumumab vedotin

monotherapy [194–197]

Recurrent osteosarcoma [195]
Advanced melanoma [196]

Advanced glycoprotein
NMB-expressing breast cancer [194]

Metastatic glycoprotein
NMB-expressing triple-negative

breast cancer [197]

Brentuximab vedotin
(MMAE ADC) FDA approved Brentuximab vedotin

monotherapy [198,199,201]

Hodgkin’s lymphoma [199,201]
Systemic anaplastic large cell

lymphoma [198]

Colchicine-site binders

Fosbretabulin II
Fosbretabulin + pazopanib [205]

Fosbretabulin + bevacizumab [206]
Fosbretabulin + paclitaxel/carboplatin [207]

Recurrent ovarian cancer [205,206]
Anaplastic thyroid carcinoma [207]

Combretastatin A1
diphosphate I CA1P monotherapy [208] Relapsed or refractory acute myeloid

leukemia [208]

Plinabulin III Plinabulin + docetaxel Metastatic non-small cell lung cancer
(NCT02812667)

Lisavanbulin I/II Lisavanbulin monotherapy [216] Advanced solid tumors [216]

Taxane-site binders

Cabazitaxel III Cabazitaxel versus docetaxel [220,221] Metastatic castration-resistant
prostate cancer [220,221]

Nab-paclitaxel II/III
Nab-paclitaxel monotherapy [227]

Nab-paclitaxel versus paclitaxel [226]
Atezolizumab + nab-paclitaxel [228]

Advanced triple-negative
breast cancer [228]

Metastatic breast cancer patients with
visceral metastases [227]

Metastatic breast cancer [226]

Ixabepilone III Ixabepilone + capecitabine [238,240]
Metastatic breast cancer previously

treated with anthracycline and
taxanes [238,240]

Given the extensive crosstalk and feedback regulation between PI3K signaling and mul-
tiple cytoskeletal elements, it is reasonable to propose that PI3K inhibitors and cytoskeletal-
targeting agents could be applied together to potentiate therapeutic efficacies. One im-
portant rationale for combining PI3K inhibitors and MTAs in treating cancer comes from
studies on mitosis. MTAs are known to inhibit cancer cell proliferation by disrupting mi-
totic spindles, as microtubules and their associated proteins constitute many fundamental
structures for mitotic spindles [179,246]. PI3K/AKT has also been shown to be indispens-
able for mitotic spindle formation, where p110α is activated on mitosis initiation to produce
PIP3 at the midcortex in metaphase cells, for correct orientation of the spindles [247,248].
Due to the critical roles of PI3K/AKT signaling, inhibiting either PI3K or AKT through
pharmacological inhibitors, such as LY294002 and MK-2206, leads to abnormalities in
centrosome and mitotic spindle formation [247,249,250]. Of note, the class-II PI3K family
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member, PI3K-C2α, interacts with the transforming acidic coiled-coil containing protein 3
(TACC3) and clathrin heavy chain (CHC) complex to stabilize the kinetochore-microtubule
for spindle formation [251]. These studies highlight the crucial roles of PI3K family mem-
bers in regulating mitosis. One could reason that combining PI3K/AKT inhibitors and
MTAs could potentiate the anti-mitotic activity of the treatment. Indeed, loss of PI3K-C2α
further enhances the anti-mitotic effect of paclitaxel in a preclinical setup, where mitotic
spindle disruption, abnormal metaphases, and cell death induction are observed to be
increased with the combination of PI3K-C2α loss and paclitaxel treatment [251]. Moving
into clinical development, phase-II clinical trials for HER2+ primary breast cancers have
been conducted to evaluate the addition of buparlisib to paclitaxel and trastuzumab (a mon-
oclonal antibody that targets HER2) treatment [252]. The initial results were not favorable,
with early suspension due to toxicity concerns. However, a subset of patients with ER+ and
HER2+ cancers showed better responses with the addition of buparlisib to paclitaxel and
trastuzumab, compared to control groups receiving a placebo plus taxane-trastuzumab-
based therapy. Therefore, future trials could consider combining newer generations of
PI3K inhibitors and microtubule-targeting agents (MTAs) with enhanced safety profiles.
These might include combinations of newer generations of MTAs, such as MDAs (e.g.,
MMAE ADCs), MSAs (e.g., ixabepilone), and second-generation PI3K inhibitors (e.g.,
taselisib and alpelisib). Moreover, customized selection of patients for treatment using
tumor profiles and/or pathway-specific biomarkers may enhance the responses, as seen in
the ER+/HER2+ subgroup of breast cancer patients. A recent phase-II study on squamous
cell carcinoma of the head and neck examined the use of biomarkers to select patients
who might respond to the combination of buparlisib and paclitaxel [253]. It was observed
that patients with specific biomarker profiles, such as TP53 alterations or an HPV-negative
status, had improved progression-free survival when treated with buparlisib and paclitaxel.
Considering that MTAs are widely used in treating many solid cancers, and given the
heterogeneous biology of cancers, future studies could aim to identify biomarkers and
combinatorial regimes for stratified treatment with PI3K inhibitors and MTAs in different
cancers at different stages.

5. Conclusions and Future Perspectives

Both the PI3K/Akt pathway and cytoskeleton are interlinked, acting as regulators and
effectors for each other. The interplay and coordinated regulation of these two reshape
cancer cell behavior, ultimately contributing to multiple aspects of disease progression
including metastasis. Despite drug development to target PI3K and the cytoskeleton
separately, targeting PI3K/AKT and the cytoskeleton together using combined therapy
approaches should be considered for future drug development. Of note, drug resistance is
a common obstacle to effective disease management when using the conventional MTA-
based therapies, with PI3K/AKT as an important mechanism for drug resistance develop-
ment [254]. Therefore, understanding the PI3K-cytoskeleton interplay will not only help
to identify new druggable targets for future drug development but also provide insight
into improving the current MTA-based chemotherapy. Future studies should continue to
explore the combination approach of targeting PI3K-cytoskeleton elements, to develop
effective customized and personalized treatments with improved safety profiles, as well as
identify biomarkers for selecting patients who might reap the maximum benefit.
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