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Abstract: In the past ten years, extensive research has witnessed the rapid development of perovskite
solar cells (PSCs) and diversified preparation processing craft. At present, the most widely used
methods of preparing perovskite solar cells are the one-step method and the two-step method.
The main work of this paper is to study the effect of the solution deposition process on the quality of
perovskite thin films, as well as modulating majority charge carrier types. Perovskite film was prepared
in air by designing different processes, which were then adequately analyzed with corresponding
methods. It was demonstrated that the preparation process plays a crucial role in modulating the
type of majority carrier and in achieving high-quality perovskite thin film. The one-step prepared
perovskite layer is enriched in MA+, leading to a P type majority carrier type thin film. The two-step
prepared perovskite layer is enriched in Pb2+, leading to a N type majority carrier type thin film.
In addition, we found that the one-step method caused PbI2 residue due to component segregation,
which seriously affects the interface and film quality of the perovskite layer. This work aims
to modulate the majority carrier type of perovskite film through different preparation processes,
which can lay the foundation for the study of homojunction perovskite solar cells to improve the
device performance of PSCs.

Keywords: PSCs; one-step; two-step; perovskite thin film; P type; N type; homojunction;
solution deposition

1. Introduction

The perovskite solar cell (PSC) technology has developed rapidly over the past decade. Despite
toxicity and stability problems [1,2], PSCs have still attracted much attention due to low cost, simple
preparation, and excellent photoelectric properties [3–7]. In 2009, the efficiency of PSC prepared
by Kojima et al. is 3.8% [8]. Recently, the efficiency of PSC has reached to 25.2%, according to the
latest certification report from the National Renewable Energy Laboratory [9]. Nowadays, solution
deposition techniques are widely used in the preparation of PSCs devices. Different preparation
techniques contribute to changing many electronic properties, such as carrier concentration, majority
carrier type, carrier mobility and electrical resistivity [10–13]. In previous studies, heterojunctions
were prepared between the perovskite layer and the carrier transport layer using a one-step process or
two-step process. However, the perovskite layer itself also can be self-doped into a P type or N type to
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form a homojunction [14–17]. The homojunction inside the perovskite layer can form a built-in electric
field to increase the migration ability of electrons and holes, thereby reducing carriers recombination in
the perovskite film layer [14]. Therefore, understanding the elements of the solution deposition method
is crucial in predicting its majority carrier type for the rational design of PSCs devices. The most widely
used methods are the one-step solution deposition and the two-step solution deposition [18]. However,
which, the one-step or the two-step method, can improve the performance of PSCs? What are the
specific differences between the two?

In 2013, the Gratzel group adopted the two-step continuous deposition method, which broke
the previous method of together dissolving spin-coating of PbI2 and CH3NH3I (MAI) in previous
experimental studies, which improved the efficiency of the PSCs [19]. In 2014, Im et al. conducted
a comparative study on the one-step process method and the two-step process method. The paper
pointed out that the coverage of perovskite in TiO2 layer would have a significant impact on device
performance, and concluded that the two-step process is superior to the one-step process [20]. In 2018,
Li et al. conducted a comparative analysis on the preparation of inverted PSCs using the one-step and
the two-step processes under different preparation conditions [21]. These papers [21–23] focused on
the influence of different preparation environments on the device performance, and pointed out the
influence of PbI2 residue. In the same year, Wang et al. conducted quantitative analysis to study the
effects of different low-temperature processes in the glove box on the electrical properties of perovskite
thin films, and concluded that the two-step method had more potential [18].

Although different solution deposition methods have been studied in previous studies, no one has
studied the effects of the one-step and the two-step methods on the majority carrier type of perovskite
films. In the past, the majority carrier type of perovskite thin film was changed by self-doping or
extrinsic doping, but it was found that the preparation of perovskite film by different processes can also
change the majority carrier type. In previous studies, Li et al found that the majority carrier type of
perovskite films can be regulated between the P type and the N type via controlling growth conditions,
but no evidence was supplied on how the preparation process impacts the majority carrier type of
perovskite films so that the performance of PSCs devices is affected [14]. The majority carrier type of
perovskite film not only affects the location of the heterojunction, but also provides data for the study
of homojunction PSCs. Therefore, it is necessary to study the effects of different solution deposition
processes on the preparation of perovskite thin films.

Herein, we envisage whether it is possible to regulate the majority carrier type of perovskite film
by different solution deposition processes. This experiment was carried out in air, high temperature
conventional PSCs were prepared via the one-step process method and the two-step process method
under the same environmental conditions. In this article, we supplied the experimental data that
CH3NH3PbI3 can be either P or N self-doped using different preparation processes of perovskite.
The majority carrier types of perovskite films were found to be regulated by the film composition that
was strongly influenced by the preparation process, precursor composition, and process conditions.
Due to different processes causing segregation of perovskite layer components, the perovskite layer is
rich in Pb2+ or rich in MA+, and the result is self-doping into N type or P type perovskite film [24].
Our experimental results show that we can modulate the majority carrier type of perovskite film by
controlling the preparation process. The P-type perovskite film is prepared by a one-step method,
and the N-type perovskite film is prepared by a two-step method. Thus, this study will be helpful in
making the performance of PSCs better.

2. Materials and Experimental Methods

2.1. Materials

Fluorine-doped SnO2 (FTO) as substrate of perovskite thin films was purchased from Shanghai
MaterWin New Materials Co., Ltd. (Shanghai, China). The N, N-dimethyl formamide (DMF) and
the Dimethyl sulfoxide (DMSO) were purchased from Alfa Aesar (China) Corp. (Shanghai, China).
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The isopropanol (IPA) and the chlorobenzene, the acid titanium dioxide solution (bl-TiO2) and the
18NR-T TiO2 (mp-TiO2) were purchased from Shanghai MaterWin New Materials Corp. (Shanghai,
China). The Methylammonium iodide (MAI) and the Spiro-OMeTAD solution, the PbI2 and the NaI
were purchased from Xi’an Polymer Light Technology Corp. (Xi’an, China). The gold-plated electrode
metal was produced by Beijing Zhongjinyan New Material Technology Co., Ltd. (Beijing, China).

2.2. Device Fabrication

Figure 1 displays the structure of the device which prepared the one-step solution deposition
(a) and the two-step solution deposition (b) from top to bottom are FTO (C/Au)/Spiro-OMeTAD/

CH3NH3PbI3/mp-TiO2/bl-TiO2/FTO. As the photoelectric anode material of solar cell devices,
FTO conductive glass must be cleaned carefully before use. After cutting and separating the conductive
glass, an ultrasonic device was used to sequentially clean the conductive glass with a mixed solution
(detergent and deionized water), glass water (acetone: deionized water: 2-propanol = 1:1:1) and
alcohol in sequence. After ultrasonic cleaning, rinsed three times with deionized water and dried for
30 min. It was then treated with ultraviolet ozone (UVO) for 1 h before use to increase hydrophilicity.
Next, acid TiOx solution was rotated and coated at 2000 rpm for 60 s to prepare the dense layer of TiO2

(bl-TiO2), and then heated by hot plate at 100 ◦C for 10 min for heat treatment. After heat treatment,
the substrates were put into the muffle furnace and calcined at 500 ◦C for 30 min to obtain the intact
TiO2 dense layer. Next, 18NR-T TiO2 slurry solution was rotated and coated at 2000 rpm for 60 s to
prepare the TiO2 mesoporous layer (mp-TiO2), and then heated by hot plate at 100 ◦C for 10 min for
heat treatment. Finally, the substrates were put into the muffle furnace and calcined at 500 ◦C for 1 h to
obtain the intact TiO2 mesoporous layer.
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Figure 1. The structure of the device prepared by the one-step method (a) and two-step method
(b) from top to bottom are fluorine-doped SnO2 FTO (C/Au)/Spiro-OMeTAD/CH3NH3PbI3/mp-TiO2/

bl-TiO2/FTO. The figure includes the direction of the built-in electric field, the direction of carrier
migration and the majority carrier type of perovskite films.

Figure 2a is the one-step preparation of perovskite film; 0.5993 g PbI2 (1.3 mol/L) was weighed with
an electronic balance and baked on a hot plate at 70 ◦C for 30 min to remove moisture, PbI2 changed
from light yellow to orange. Then, 0.1908 g MAI (1.2 mol/L) was weighed and mixed with PbI2.
Two kinds of precursor PbI2 and CH3NH3PbI (MAI) were dissolved in the mixed solution of N,
N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) (volume ratio of 4:1). In order to make
the drug dissolve evenly, the agent was put into the ultrasonic equipment for ultrasonic dissolution
for 15 min. Next, it was stood for 12 h, and the agent was filtered before use. The preparation of the
perovskite layer had two successive spin coating stages including the first stage of 1000 rpm for 10 s,
and the second stage of 3000 rpm for 30 s. Twenty microliters of chlorobenzene were added with 15 s
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left in the second stage. Perovskite thin film was obtained after 40 min of heat annealing with a 100 ◦C
hot plate. Spin-coating spiro was used on the perovskite film at 3000 rpm for 30 s to prepare a hole
transport layer. Finally, the counter electrode was conductive glass as the substrate, and the carbon
film was formed by the smoke particles generated by the burning of the candle. The prepared carbon
film was aligned on the top layer of the prepared device and the side was clamped with a butterfly clip
for easy packaging.
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Figure 2. Flow chart of preparation of perovskite film by the one-step (a) method and the two-step
(b) method.

Figure 2b is the two-step preparation of perovskite film; 0.5993 g PbI2 (1.3 mol/L) was weighed
with an electronic balance and baked on a hot plate at 70 ◦C for 30 min to remove moisture, PbI2 changed
from light yellow to orange. Following this, the precursor of PbI2 was dissolved in the mixed solution
of N, N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) (volume ratio of 0.95:0.05). Placed
in an ultrasonic device for sonication until the solute was completely dissolved, then filtered solution.
Next, 0.07 g MAI was weighed with an electronic balance, and 1 mL of isopropanol (solvent) was
added. It was placed in an ultrasonic device for sonication until the solute was completely dissolved,
and then filtered. The first step of the two-step method was to spin-coat the PbI2 solution at 1500 rpm
for 30 s on mesoporous TiO2 substrate. The second step of the two-step method was to spin-coat the
MAI solution on PbI2 substrate at 1500 rpm for 30 s, and place it on the hot plate heat annealing at
150 ◦C for 15 min. The perovskite thin film was then obtained. Spin-coating spiro on the perovskite
film was used at 3000 rpm for 30 s to prepare a hole transport layer. Finally, the counter electrode was
conductive glass as the substrate, and the carbon film was formed by the smoke particles generated
by the burning of the candle. The prepared carbon film was aligned on the top layer of the prepared
device and the side was clamped with a butterfly clip for easy packaging. The device was also prepared
by a two-step gold-plated electrode, and an electron transport layer, a perovskite layer and a hole
transport layer were formed on the etched glass substrate. Finally, it was put into the vapor deposition
chamber and vapor-deposited on the gold electrode.

The Hall effect test described in this paper is a perovskite film prepared on a glass substrate.
In other tests, perovskite film refers to the film prepared on carrier transport layer. All the tests contain
substrates. The perovskite layer described refers to a single layer of perovskite, and the test results do
not include other layers.
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2.3. Characterization

The morphology details of perovskite films were measured by scanning electron microscope (SEM)
(SIGMA, Zeiss, Jena, Germany). Energy dispersive X-ray spectroscopy (EDS) was used for testing and
analyzing the content of chemical constituents in perovskite films. X-ray diffraction (XRD) data from
samples of perovskite thin films substrates were collected using an X-ray diffractometer (D8 Focus,
Bruker, Dresden, Germany). The absorption spectra of perovskite films with different solution
deposition process step were analyzed using an ultraviolet (UV) visible absorption spectrometer
(Avantes, Apeldoom, The Netherlands) and the Photoluminescence Spectroscopy (PL) data were
obtained by a LabRAW HR800 PL testing system (HORIBA JObin Yvon, Paris, France). Hall effect
data were measured by the Hall Effect Measurement System HL5500PC (QUATEK, Shanghai, China).
The photocurrent density-voltage (J-V) characteristics were measured under simulated standard air
quality daylight (AM 1.5, 100 mW/cm2) with a solar simulator (Sol 3A, Oriel, New Port, RI, USA).

3. Results and Discussion

Figure 3a,b portrays the top view and cross section of perovskite thin film prepared by the
one-step method, Figure 3c,d portrays the top view and cross section of perovskite thin film prepared
by the two-step method. It can be clearly seen from the top view that the one-step process and the
two-step process prepared perovskite layers are flat, but the two-step prepared perovskite has a larger
grain size. In the cross-section Figure 3d, it can be noticed that the upper surface of the perovskite
film prepared via the one-step method is flat, but the lower surface (the interface in contact with the
mesoporous layer) has many holes. The formation of these pores may be related to the dropping
time and the amount of dropping of chlorobenzene. The added chlorobenzene did not come to the
lower surface of the perovskite, so that the crystallinity of the lower surface was not good, and pores
appeared. It can also be observed from the Figure 3b that the perovskite grains prepared via the
one-step method do not penetrate the entire perovskite layer, and there are many perovskite grain
boundaries in the vertical direction of the perovskite film. On the contrary, the perovskite film prepared
via the two-step process method has fewer grain boundaries in the vertical direction and the perovskite
grains almost vertically penetrate across the entire perovskite layer, which is an important reason for
higher conversion efficiency of the perovskite photoelectric device by using the two-step preparation.
It can be concluded that the interface of the perovskite film prepared via the two-step process method
is better than that of the one-step prepared perovskite film, which may have a crucial influence on the
ability of the perovskite layer carrier to be injected into the titanium dioxide layer.

Figure 4 is the XRD comparison of the preparation of perovskite film via the one-step process
method and the two-step process method. The blue circle in Figure 4 is the peak of residual PbI2. It can
be seen from the XRD pattern that the XRD peak position of the perovskite prepared via the one-step
process method and the two-step process method are almost the same. Besides, the peak of PbI2 is
present in the XRD image of the one-step prepared perovskite film, which illustrates that residue of
lead PbI2 in the perovskite film prepared via the one-step process method. However, the strength of
the perovskite XRD peak prepared by the two processes is different. The change of the XRD peak
of the perovskite show that there is no obviously difference in the crystal structure of the perovskite
prepared by the two methods, which can be considered as the same crystal structure type [25]. The
residue of PbI2 has an impact on the interface of the perovskite film, which affects the efficiency of the
device [16–18].
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Figure 4. XRD patterns of perovskite films with one-step and two-step. The blue circle is the peak of
residual PbI2.

Figure 5 is a comparison of the ultraviolet absorption spectra of the samples prepared via the
one-step and the two-step methods. It can be observed from the Figure 5 that most of the light
absorption wavelength is distributed in the visible range, and the effective absorption intensity of the
two-step sample is higher than that of the one-step sample. It is indicated that the absorbance of the
sample prepared via the two-step process method is stronger than that of the sample prepared via the
one-step process method, and the absorption band side shows a blue shift.
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Figure 5. UV-visible absorption spectra of perovskite films with the one-step and the two-step methods.

Figure 6a,b show photoluminescence (PL) spectra of samples prepared via the one-step and the
two-step methods. The experiments in this paper were all perovskite layers prepared on the TiO2 layer.
In Figure 6a, the strength of the emission peak of the sample prepared via the two-step process method
is lower than that of the sample prepared via the one-step process method, indicating that the ability of
the two-step prepared perovskite film carrier to inject the TiO2 layer is stronger. The SEM experiments
indicate that the interface and film quality of the two-step process method sample are better than that
of the one-step process method sample, which is consistent with the experimental results obtained in
Figure 6a. In Figure 6b is a normalized PL spectrum, in which the curve of the two-step sample exhibits
a blue shift compared to the curve of the one-step sample. This is consistent with the displacement of
the absorption band edge in the ultraviolet absorption spectrum of Figure 5.

Figure 6. Cont.
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Figure 6. Photoluminescence (PL) spectra of perovskite films with the one-step process method (a) and
the two-step process method (b).

In this paper, the Hall effect was tested on the one-step sample and the two-step sample. In
Table 1, the one-step perovskite film of the sample tested was a P type semiconductor, and the two-step
perovskite film was an N type semiconductor. The P type semiconductor is a majority of hole carriers,
and the N type semiconductor is a majority of electron carriers. Annealing temperature and annealing
time will affect the physical properties of the crystal, and may also be related to the process, because the
two-step method will be left for a few seconds after the first step of the spin coating PbI2. In this paper,
the one-step method is 100 ◦C, annealing for 40 min, and the two-step method is 150 ◦C, annealing
for 15 min. It is indicated that the different solution deposition process methods of the one-step and
the two-step will produce segregation of components, which have a great effect on the crystal of the
perovskite thin film and may change the photophysical semiconductor characteristics of the film. In
the XRD comparison chart of Figure 4, the residue of PbI2 was found in the one-step perovskite thin
film. From this we can infer the one-step prepared perovskite film is rich in MAI, so the perovskite
film is MA+ is rich and Pb2+ is deficient. The Hall-effect semiconductor type measured in the one-step
sample of this experiment is P type consistent with the paper [20].

Table 1. Hall effect parameters with one-step and two-step methods.

Process a No. Rs b (ohm/sq) Mob c(cm2/Vs) N d(/cm3) Type e

One-step Method 1 1.4 × 109 520 +1.8 × 1011 P
One-step Method 2 9.8 × 108 680 +1.9 × 1011 P
Two-step Method 1 4.7 × 109 494 −5.4 × 1010 N
Two-step Method 2 6.7 × 109 598 −3.1 × 1010 N

Notes: a. Process method; b. Surface resistivity; c. Hall mobility; d. Carrier concentration; e. Majority carrier type.

Table 2 shows the photovoltaic parameters of the carbon film perovskite device prepared via the
one-step method and two-step method, and the gold electrode perovskite device prepared by the
two-step method. Combined with the J-V curve of Figure 7, there can be seen that the open circuit
voltage, current density and the fill factor of the two-step prepared perovskite device are higher than
those of the one-step preparation device, and the current density and device efficiency of the device
prepared via the two-step process method are almost twice as large as the one-step process method,
which shows that the two-step method has obvious advantages compared with the one-step method.
Mainly due to the great difference in the perovskite films prepared by the two different processes,
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combined with the SEM, XRD, UV absorption and PL spectra of the experimental samples, the quality
of perovskite films prepared via two-step method is obviously higher than those prepared via the
one-step method.

Table 2. Photovoltaic detailed parameters of perovskite devices prepared by one-step and
two-step methods.

Samples Voc
a (V) Jsc

b (mA/cm2) FF c (%) PCE d (%)

One-step carbon 0.75 11.37 0.52 4.43
Two-step carbon 0.98 19.73 0.57 10.94

Two-step gold 1.07 22.26 0.70 14.66

Notes: a. Open-circuit voltage; b. Short-circuit photocurrent density; c. Fill factor; d. Power Conversion Efficiency.

In addition, the gold electrode perovskite device with the two-step method was added in this
experiment. Compared with the two-step carbon film electrode, the open circuit voltage and current
density of the two-step gold electrode device increased. The impact factor increased from 0.57 to 0.7,
and the device efficiency increased from 10.94% to 14.66%, both of which improved greatly.
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4. Conclusions

The one-step process compared to the two-step process method, the one-step process method
requires the counter-solvent chlorobenzene to be dropped. The anti-solvent addition time and amount
have a great influence on the quality of the perovskite thin film, and the requirements of the operator
are extremely high, with less repeatability. Through the combination of SEM image, XRD pattern
and PL spectrum analyses, it was found that the surface of the perovskite thin film prepared by the
one-step process method has PbI2 residue, so that the ability of carriers to inject TiO2 in the perovskite
layer is poor. In comparison, the interface of the perovskite film prepared by the two-step method
is better than that of the one-step prepared perovskite film. Due to the interface of the perovskite
layer prepared by the two-step method, the film quality is better and the carrier injection into TiO2

is stronger. Combined with the comparison of device efficiencies, it is concluded that the two-step
process is better for the preparation of perovskite devices.
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It was found that the one-step prepared perovskite layer was rich in MA+, and the Pb2+ deficiency
made the film appear as a P type semiconductor. The two-step prepared perovskite layer was rich in
Pb2+, and the MA+ deficiency makes the film appear as a N type semiconductor. It can be said that
we have found that the electronic properties of the perovskite film, such as the carrier concentration,
mobility, majority carrier type, could be significantly tuned by changing their preparation process.
This work laid the foundation for future research on homojunction perovskite solar cells.
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