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The human gut holds a special place in the study of different microbial environments due to growing evi-
dence that the gut microbiota is related to host health. However, despite extensive research, there is still
a lack of knowledge about the core taxa forming the gut microbiota and, moreover, available information
is biased towards western microbiomes in both genome databases and most core taxa studies. To tackle
these limitations, we tested a database enrichment strategy and analyzed public datasets of whole-
genome shotgun data, generated from 545 fecal samples, comprising three gradients of westernization.
The NT database was selected as a baseline of biological diversity, subsequently being combined with
various studies of interest related to the human microbiota. This enrichment strategy made it possible
to improve classification capacity, compared to the original unenriched database, regarding the various
lifestyles and populations studied. The effects of incomplete-taxonomy metagenome-assembled gen-
omes on genome database enrichment were also examined, revealing that, while they are helpful, they
should be used with caution depending on the taxonomic level of interest. Moreover, in terms of high
prevalence, the core analysis revealed a conserved set of bacterial taxa in the healthy human gut micro-
biota worldwide, despite apparent lifestyle differences. Such taxa show a set of traits, metabolic roles,
and ancestral status, making them suitable candidates for a hypothetical phylogenetic core of mutualistic
microorganisms co-evolving with the human species.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction the relevance of the microbiota in human health. For instance, a
The human gut microbiota could be defined as the microbial
community that inhabits the human digestive tract. This micro-
biota represents the overwhelming majority of microorganisms
inhabiting the human host, since the bacterial content of the colon
surpasses all other body locations by at least two orders of magni-
tude [1]. Consideration of the microbiota has gone from being vir-
tually ignored by the scientific community a few decades ago to
currently monopolizing many scientific studies. This growing
interest in microbiota research has a dual motivation. On the one
hand, advances in sequencing techniques and bioinformatics have
made the field of metagenomics a robust corpus for scientific
research [2–4]. On the other hand, there is growing evidence for
recent study has recollected more than a hundred diseases and dis-
orders associated with changes in gut microbiota composition [5].

One research avenue involves studies attempting to identify a
core of taxa shared by most human individuals, focusing on the
component of the microbiome found across a considerable propor-
tion of hosts within specific populations and, thus, defining a
‘‘Common Core” [6]. This research trend dates back to the Human
Microbiome Project (HMP) in 2007 [7]. Since then, many studies
have attempted to describe and compare different human-
associated taxonomic cores [8–12]. However, most studies have
been conducted with 16S rRNA data gathered using different tech-
nologies, and usually at a single taxonomic level, offering less res-
olution since the 16S rRNA gene is too conserved to obtain species-
level identification [13,14]. An alternative that provides better tax-
onomic resolution and more accurate abundances is the use of
whole-genome shotgun (WGS) data [15,16]. The few recent exam-
ples mentioning a core within the healthy human gut using WGS
data [17,18] do not develop this concept in-depth and present a
particular bias towards western populations.
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Furthermore, a key factor in any metagenomic study is the use
of reference genome/sequence databases. For shotgun metage-
nomics, the most popular references are NCBI NT and RefSeq data-
bases. Likewise, it is common to use sequences from the GenBank
database [4,19]. However, it is worth pointing out the under-
representation of non-western microbiomes for conventional ref-
erence databases, which may yield results that cannot be general-
ized. The microbial diversity of urban western individuals has been
the objective of a significant number of studies, and therefore it is
better represented in genome databases of known reference organ-
isms [20–22]. In this respect, applying enrichment strategies using
relevant microbiome studies could help to overcome this flaw in
conventional databases, approximating read classification levels
between different populations.

It is not clear whether a core of microorganisms has evolved
with the human species, forming what we might call the phyloge-
netic component of the human microbiota. The phylogenetic thesis
argues that some bacterial taxa have co-evolved with the human
species since the beginning [23]. Conversely, the ecological thesis
argues that the gut microorganisms of human populations may
be highly convergent so that human populations in similar envi-
ronments would show similar bacterial taxa [24]. Indeed, these
two theses are not mutually exclusive but rather complementary.
If the phylogenetic thesis were true, we would expect to find
highly conserved taxa of an ancestral nature, which would play
essential roles in the human microbiota and characteristics that
favor the host’s influence over those taxa.

Here, we present a proof-of-concept study focused on address-
ing the concerns associated with western bias and determining a
universal core in the healthy human gut microbiota, based on ubiq-
uitous taxa that are genuinely conserved independently of ecolog-
ical factors. For this purpose, we usedWGS data and an enrichment
strategy aiming to account for the under-classification of non-
western microbiomes.
2. Materials and methods

2.1. Database enrichment

In brief, for this enrichment strategy, a database widely used in
metagenomics was chosen as a baseline of the known biological
diversity, and then combined with various studies related to the
human microbiota. The NCBI NT database [25] was used as this
baseline and then enriched with relevant humanmicrobiome stud-
ies, including the HMP [26], FDA-ARGOS [27], BIO-ML [28], CGR
[29], HBC [30] and some metagenome-assembled genomes (MAGs)
[21,31] (Supplementary Table 1). All genomes and sequences were
downloaded in April 2020.

In the case of studies with MAGs it is not unusual to find gen-
omes with incomplete taxonomies, which may be resolved as spe-
cies at the assembly level, but are not resolved at the taxonomic
level. Therefore, we examined the effects of incomplete-
taxonomy MAGs on genome database enrichment. To do so, we fil-
tered these genomes, retaining those that reached a genus level or
were Candidatus genomes, thus generating two alternative dataset
versions for enrichment (MS and MS-fMAG Sets). In order to min-
imize redundancies between the NT database and the enrichment
datasets we developed a non-redundant filter based on sequence
accession. Most of these enrichment genomes belonged to the
NCBI, and so a list of their associated sequence identifiers (from
RefSeq and GenBank) was generated and used to filter the NT data-
base. Finally, the resulting genomes and sequences were combined,
generating two alternative enriched databases. A more detailed
description of the entire download and construction process is
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given in the supplementary materials (Supplementary Document
1; Supplementary Fig. 1).

The improvement of the enriched databases over the original
database was assessed in terms of classification capacity (as the
percentage of classified sequences) at different taxonomic levels
and factors of interest.

2.2. Metagenomic datasets

We collected 545 publicly available metagenomes from the
European Nucleotide Archive (ENA), encompassing six different
studies [17,22,32–35] (Supplementary Table 2). Technical informa-
tion was retrieved through the ENA Browser. All available meta-
data for each sample were retrieved from the ENA API with the
mg-toolkit (version 0.6.4; https://pypi.org/project/mg-toolkit/)
with further curated inspection of the original publications of each
project.

We applied the following criteria for sample selection: (a)
human gut samples (stool), (b) healthy individuals or population
samples (assuming most individuals will be healthy), (c) only
one run accession per sample accession, (d) shotgun metagenomic
sequencing and (e) Illumina technology. In this case, different life-
styles were used as a proxy to reflect different levels of westerniza-
tion: (a) rural populations (reflecting non-westernization), (b) a
periurban industrializing shantytown (intermediate level of west-
ernization), and (c) westernized urban populations.

2.3. Quality control

Shotgun reads were quality-trimmed and filtered using the
BBDuk tool from BBTools suite (version 38.79) [36]. In the first
step, the right end of the reads was quality trimmed to Q15. In a
second step, the left ends were quality-trimmed to Q1. Subse-
quently, we removed the resulting reads containing any ambigu-
ous base (N) or measuring under 60 base pairs (bp) in length
after trimming. Quality was checked with FastQC (version 0.11.9)
[37] and MultiQC (version 1.8) [38] to study the different datasets
and ensure their quality (Supplementary Table 3).

2.4. Metagenomic classification

Kraken 2 software (version 2.0.8-beta) [39] was used to perform
classification. The databases were constructed and indexed with
default parameters, and classification was performed with a filter-
ing confidence threshold of 0.05 to control the level of false
positives.

The Bracken software performed a re-estimation of abundance
counts (version 2.5) [40]. Using the bracken-build script, we com-
puted a set of probabilities from the Kraken 2 databases, with a k-
mer length of 35 bp (-k 35) and a read length of 60 bp (-l 60) since
the minimum read length in our dataset is 60 bp. Subsequently, we
used Bracken on the Kraken 2 report results, with a read length of
60 bp (-r 60) and a taxon count threshold of 10 reads (-t 10).
Results were obtained at the genus and species levels. The Bracken
results were processed with self-made scripts to obtain the corre-
sponding count matrix and taxa table at the genus and species
level. Finally, kingdoms Metazoa and Viridiplantae, as well as unde-
fined taxa at the super-kingdom (domain) level were filtered out to
perform the subsequent analysis.

2.5. Microbiome analysis

The analyses were carried out mainly with the R programming
language (version 4.0.4), using the Microbiome (version 1.12.0)

https://pypi.org/project/mg-toolkit/
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[41], Phyloseq (version 1.34.0) [42], and Vegan (version 2.5–6)
[43]] packages.

2.5.1. Defining a universal core
The core microbiome analysis was performed at the genus and

species level using the Microbiome package. To avoid the presence
of possible spurious low-abundance signals we worked with a
1e � 4 relative abundance threshold (0.01% compositional abun-
dance). When defining cores, the taxa failing to reach this abun-
dance level were considered absent in the sample. Pan-Cores
were obtained using a prevalence threshold of 0.9 (presence in at
least 90% of samples) for all samples. Additional cores were calcu-
lated for each country (El Salvador, Madagascar, Peru, China, Japan,
and United States) and lifestyle (rural, periurban shantytown, and
urban) using the same parameters. The resulting cores were com-
pared with the UpsetR package (version 1.4.0) [44]. The intersec-
tion between the additional cores was used to define universal
cores of prevalent taxa. Their prevalence was examined in all sam-
ples for different abundance thresholds using the Com-
plexHeatmap package (version 2.6.2) [45]. Taxonomic
relationships among taxa were examined using the Metacoder
package (version 0.3.4) [46]. This intersection-based criterion
was also used to investigate less prevalent core taxa, using less
stringent prevalence thresholds of 0.7 and 0.5, defining medium
and soft cores, respectively. Additionally, microbial relative abun-
dances for the most abundant taxa were inspected.

2.5.2. Abundance clustering and pattern analysis
Abundance clusters and differential patterns between groups

for these universal core taxa were examined at the genus and spe-
cies level. These trends were analyzed using relative abundances
based on each lifestyle-country combination. Abundance patterns
were analyzed employing z-scores. Different groups and taxa were
clustered using the k-means clustering algorithm as implemented
on the ComplexHeatmap package unless stated otherwise. In these
cases, the number of optimal clusters was determined by the
Elbow method (Supplementary Figs. 2–3).

2.5.3. Ordination analysis
Inter-sample differences were investigated employing a Princi-

pal Component Analysis (PCA) with the Phyloseq package using
genus level relative abundances. The scores of the associated taxa
were inspected with the Vegan package to investigate the main
genera drivers of the differences for the two first components. In
addition, Bray-Curtis dissimilarities were also estimated and used
with alternative ordination methods, including Principal Coordi-
nates Analysis (PcoA) and Non-Metric Multidimensional Scaling
(NMDS).

2.6. Data availability

The accession numbers of the samples and associated metadata
used in this work can be consulted in Supplementary Table 4. The
scripts used for this work can be found at GitHub (https://github.-
com/sarpiens/corescripts). The enriched databases will be avail-
able on request.

3. Results and discussion

3.1. Considerations on MAG enrichment and comparison of strategies

The Kraken-Bracken tandem was used to verify the improve-
ment provided by the enrichment strategy, which offers good
results at the genus and species level, as shown in recent publica-
tions [19,40].
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On examining the Kraken 2 results, a general improvement is
observed for the enriched databases compared to its original coun-
terpart, which almost doubles its classification capacity from
domain to genus levels (Fig. 1A). As we go down the taxonomic
tree, we can see how the number of classified reads decreases.
The database enriched with the unfiltered-MAG microbiome stud-
ies, manages to classify slightly more sequences than its filtered
counterpart for taxonomic levels between domain and order. How-
ever, this changes for levels between family and genus, where the
roles are reversed. The average classification capacity at the genus
level is 51.2% for the enriched unfiltered-MAG database and 59.8%
for its filtered counterpart. On the contrary, the roles are reversed
again at species level, and their values drop to 47.9% and 43.8%,
respectively.

In MAG studies, it is not unusual to find genomes with incom-
plete taxonomies that are resolved as species at the assembly level
(usually under the 95% average nucleotide identity criterion), but
are not resolved as species at the taxonomic level. In this situation,
artefactual species may appear, namely a species-level taxID that
presents an incomplete taxonomy and could act as a catch-all
taxon comprising assemblies of different species. For example, in
the Almeida study, we found 22 assemblies resolved as species
with the 95% average nucleotide identity criterion at the assembly
level, but they ended up together at the taxonomic level under the
taxID ‘‘uncultured Bacteroidales bacterium (194843)”. This bac-
terium has been successfully assigned to the order level to subse-
quently generate an artefactual species with gaps in its taxonomy.
On the one hand, these species would increase the classification
capacity at higher taxonomic levels, as far as their taxonomy
may allow them. However, this would also imply a decrease at
intermediate levels where taxonomic gaps are found. An increase
in sequences classified at the species level would also be expected,
but to the detriment of identifying more informative species. This
would explain the differences observed between the enriched
databases.

The emergence of these artefactual species appears to result
from a behavioral change in the way MAGs are treated in the
prokaryote curation process in the NCBI Taxonomy Database. The
practice of assigning specific taxIDs at the species level for MAGs
was discontinued in August 2017 because the number of such sub-
missions was expected to rise to a level that would make it imprac-
tical to assign individual taxIDs [47]. We believe that this should be
taken into account when working with databases that include
MAGs, as they could introduce a certain bias and negatively affect
the classification capacity depending on the study’s taxonomic
level of interest.

Some discrepancies are observed between genus and species
level when examining classification capacity based on the variables
of interest (lifestyle and location). The general trend in improve-
ment continues for all lifestyles and populations at the genus level,
with results that exceed 50% of average classification for the
filtered-MAG enriched database. However, the classification capac-
ity decreases for some urban datasets compared to the original
database at the species level (Fig. 1B-C). As the number of species
in the database increases, so too does the difficulty in estimating
species, which is due to large fractions of sequence similarity
[40]. This leads to the assignment of many sequences at the genus
level or above, but not at the species level since Kraken uses the
Last Common Ancestor (LCA) strategy [48] in which lower taxo-
nomic levels will be reached only if the assignment reaches suffi-
cient confidence. This behavior would explain the observed
discrepancies, considering the greater representation of urban-
western genomes in the databases and the increase in species from
the enrichment studies.

Based on these results, we decided to continue using the
enriched filtered-MAG database to perform the Bracken

https://github.com/sarpiens/corescripts
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Fig. 1. Kraken 2 results showing a comparison between the enriched and NT original databases. The performance of the databases was examined in terms of classification
capacity for all samples as a whole at different taxonomic levels (A) and separating them by lifestyles and countries at genus (B) and species (C) level. In the box plots, the
black line within the box marks the median and the red triangle the mean, outliers are presented as red dots. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

S. Piquer-Esteban, S. Ruiz-Ruiz, V. Arnau et al. Computational and Structural Biotechnology Journal 20 (2022) 421–433
re-estimation and all subsequent analyses, as it offers better results
at our taxonomic level of interest (genus level). On examining the
Bracken results, greater similarities are observed between the
genus and species level. The average classification capacity of the
NCBI NT database is 45.5% and 82.2% for the enriched filtered-
MAG database at the genus level, whereas at the species level,
these values are 45.9% and 83.9%, respectively. Classification levels
are more similar across lifestyles and locations for the enriched
database. In this case, we do not see discrepancies between the
results at either the genus or species level. The trend in improve-
ment continues for all lifestyles and populations, with results that
exceed 70% average classification (Supplementary Fig. 4). As dis-
cussed above, Kraken2 uses the LCA strategy, which implies that
in some cases a great number of sequences may be classified at a
higher taxonomic level, but not at our level of interest. Bracken
applies Bayesian inference to estimate species abundances in a
metagenomic sample by probabilistically re-distributing reads on
the taxonomic tree. Reads assigned to nodes above the level of
interest are distributed down at this level, while reads assigned
at lower levels are re-distributed upward to their parent nodes
[40]. This would explain the large differences in classification
capacity between both tools.
3.2. Defining a core criterion

A Pan-Core of 32 genera was defined for all samples using the
core analysis approach. Additional cores were generated for each
lifestyle and geographic origin (Fig. 2-A; Supplementary Table 5).
Among the Pan-Core genera, four members are missing in both
the Peru and Periurban Cores (Lachnobacterium, Lachnospira,
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Solobacterium, and Streptococcus), two in the Peru Core (Anaerobu-
tyricum and Agathobacter), and one more in the Madagascar Core
(Bifidobacterium). Other single taxa are missing in multiple cores.
It is the case of Anaerostipes (absent in Peru, Madagascar, and Peri-
urban cores), Dialister (absent in Peru, United States, Japan, Periur-
ban and Urban cores), Flavonifractor (absent in Madagascar and
Rural cores), Gemmiger (in China, United States, Japan, and Urban
cores) and Sutterella (absent in the United States, Japan, and Urban
cores). All these missing taxa account for 37.5% of the Pan-Core
genera.

The differences between the Pan-Core and the rest of the cores
of interest reflect that when working with all samples, without
accounting for their country of origin or lifestyle, particularities
of the different groups are diluted. Consequently, taxa are found
that are not truly universal among all the cores of interest. More-
over, sampling differences between groups could explain the pres-
ence of some of these taxa, since there may be cases in which a
taxon is found in many samples, but not in a condition of interest.
For these reasons, rather than defining a Pan-Core, we worked with
the intersection of these additional cores in order to better discrim-
inate core taxa that are truly universal, regardless of their country
of origin and lifestyle.
3.3. A universal phylogenetic core independent of lifestyle and country
of origin

According to this criterion, a total of 20 universal bacterial gen-
era were detected (Fig. 2B). If we study their prevalence, only Bac-
teroides, Ruminococcus, Blautia, Clostridium, and Coprococcus are
prevalent in all samples with a 1e-4 relative abundance threshold,



A

C
Bacteria[20]

Bacteroidetes[4]

Firmicutes[13]Actinobacteria[2]

Proteobacteria[1]

Bacteroidia[4]

Clostridia[13] Coriobacteriia[2]

Gammaproteobacteria[1]

Bacteroidales[4]

Clostridiales[13]
Eggerthellales[1]

Coriobacteriales[1]

Enterobacterales[1]

Bacteroidaceae[1]

Ruminococcaceae[3]

Tannerellaceae[1]

Lachnospiraceae[6]

Clostridiaceae[2]

Eggerthellaceae[1]

Prevotellaceae[1]

Coriobacteriaceae[1]

Rikenellaceae[1]

Eubacteriaceae[1]

Enterobacteriaceae[1]

Oscillospiraceae[1]

Bacteroides[1]

Faecalibacterium[1]

Parabacteroides[1]

Subdoligranulum[1]

Blautia[1]

Enterocloster[1]

Clostridium[1]

Eggerthella[1]

Ruminococcus[1]

Coprococcus[1]

Prevotella[1]

Butyricicoccus[1]

Collinsella[1]

Alistipes[1]

Roseburia[1]

Lachnoclostridium[1]

Eubacterium[1]

Escherichia[1]

Dorea[1]

Oscillibacter[1]

B

Fig. 2. Universal core genera description. (A) Intersections between cores of interest. (B) Taxonomic relationships between universal core genera. The number of core genera
assigned to a particular level is indicated inside the square brackets. (C) Prevalence-Abundance Heatmap. Average relative abundances sort taxa and their NCBI’s taxID is
indicated in parentheses.

S. Piquer-Esteban, S. Ruiz-Ruiz, V. Arnau et al. Computational and Structural Biotechnology Journal 20 (2022) 421–433
without underrating the rest of the taxa that present values greater
than 0.97 prevalence. At higher abundance thresholds, such as 0.01
relative abundance, no taxon was prevalent in all samples, but
highly prevalent taxa were still found. Faecalibacterium,
Ruminococcus, and Clostridium show the highest values with preva-
lences above 0.9. Also, Bacteroides and Blautia register high values
with prevalences above 0.8, but Coprococcus does not. At even
higher abundance thresholds, most taxa show prevalence values
below 0.5, except for Prevotella (which is greater at 0.05 and 0.1
relative abundance thresholds) and Faecalibacterium (which is
greater at 0.05 relative abundance threshold) (Fig. 2C). These taxa
also account for some of the most abundant genera. In terms of
average abundance, among these, Prevotella is the most abundant,
followed by Bacteroides, Faecalibacterium, Ruminococcus, Blautia,
and Clostridium (Supplementary Fig. 4). Thus, these taxa represent
some of the most prevalent and abundant genera comprising the
human gut microbiota.

On applying this intersection-based core criterion at the species
level, a total of 22 universal bacterial species are found (Supple-
mentary Fig. 6A; Supplementary Table 6). Among these, the genus
Blautia has the highest number of representatives: uncultured Blau-
tia sp., Blautia obeum, Blautia wexlerae, [Ruminococcus] gnavus and
[Ruminococcus] torques. This core comprises uncultured species,
but we also find cultured species such as Faecalibacterium praus-
nitzii, Coprococcus comes, Dorea formicigenerans, Dorea longicatena,
Escherichia coli, and [Eubacterium] rectale (Supplementary
Fig. 6B). If we study their prevalence at high abundance thresholds,
such as 0.01 relative abundance, we find that Faecalibacterium spe-
cies show the greatest values with prevalences above 0.8 (Supple-
mentary Fig. 6C). These taxa also account for some of the most
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abundant species (Supplementary Figure 8) and are, thus, the
most prevalent and abundant species of the human gut microbiota.
The relative abundance of F. prausnitzii in vertebrate animals
besides humans [49,50] would imply it is a functionally important
member of the microbiota, with a likely impact on host physiology
and health. Indeed, it has been consistently reported as one of the
main butyrate producers found in the intestine [51,52] and buty-
rate plays a crucial role in gut physiology and host well-being. Fur-
thermore, it is the primary energy source for colonocytes, and has
protective properties [53,54].

Comparing the differences between these two universal cores,
we can see the absence of representatives of the core genera Alis-
tipes, Parabacteroides, Eggerthella, Lachnoclostridium, Oscillibacter,
and Enterocloster at the species level. In addition, some species
are absent at the genus level, such as [Eubacterium] rectale, which
has no genus entry in the NCBI Taxonomy database. These differ-
ences reinforce the importance of working at various taxonomic
levels, as we may encounter species that are less prevalent on their
own, but when treated as a whole at higher taxonomic levels,
reveal patterns that would otherwise be missed.

All the taxa from these universal cores are bacterial microor-
ganisms, with the majority of them being obligate anaerobes,
non-spore-forming, and non-motile [52,55–69] (Supplementary
Table 7). These characteristics tell us about the environment in
which these microorganisms live. Indeed, the intestinal tract is
known to constitute an environment largely devoid of oxygen,
favoring anaerobic microorganisms [70–72], whereas other traits
such as sporulation and motility, could be related to the process
of co-evolution and domestication of the microbiota by its host.
Nevertheless, spore-forming and motility characteristics present
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more variability in members of the Firmicutes phylum. Recent
studies show that many members of the gut microbiota can form
spores, especially among Firmicutes, which is linked to host-to-
host transmission and colonization promotion [30,73]. Moreover,
in the case of the Lachnospiraceae family, only those associated
with the human digestive tract possess key sporulation genes
[55,74]. In this respect, we hypothesize that non-motility could
be linked to a better spatial control of the host over their micro-
biota; however, this trait has been related to a greater susceptibil-
ity to intestinal expulsion and abundance fluctuations [75].

In accordance with the phylogenetic hypothesis, we could
expect the existence of shared taxa with other hominids, if we con-
sider that host phylogenetic relationships have been linked to
microbial co-evolution with their primate hosts [23,76]. Indeed,
previous studies have found co-occurrence within the micro-
biomes of humans and other primates. Moeller et al. [77] studied
the gut microbiome at the genus level of gorillas, chimpanzees,
bonobos, and different human populations using 16S rRNA ampli-
con data, defining a ‘‘Core Ape Microbiome” that partially overlaps
with our core. These genera include Prevotella, Bacteroides, Blautia,
Ruminococcus, Clostridium, Roseburia, and Parabacteroides. How-
ever, they also found other unclassified taxa that could not be
resolved at genus level, such unclassified Enterobacteraceae, unclas-
sified Ruminococcaceae and unclassified Lachnospiraceae, which
were better resolved using our core approach. More recent studies,
such as Amato et al. [24], have placed special focus on the differ-
ences between phylogeny and ecology. They compared the micro-
biome composition of different human populations, based on 16S
rRNA amplicon OTUs (as a proxy of species level), with those of
the great apes (which have closer phylogenetic relationships with
humans) and distantly related Cercopithecines (a subfamily of Old
World monkeys that shares closer ecology traits with humans).
Despite the ecological differences between these primate groups,
there are some simultaneously shared species which are also pre-
sent in our core, including Faecalibacterium prausnitzii, Blautia sp.,
Coprococcus sp., Roseburia sp. and unknown Ruminococcaceae. This
highlights the ancestral and phylogenetic importance of these taxa,
reinforcing the hypothesis that they have co-evolved with their
host since the dawn of the human species, despite ecological
differences.

3.4. Different phyla exhibit differential core taxa prevalence

This intersection criterion was also used to further investigate
less prevalent core taxa using less stringent prevalence thresholds,
defining soft and medium prevalence cores, which were compared
with the universal cores, within a prevalence range between 0.5
and 1.

A total of 44 bacterial core genera were detected (Fig. 3; Sup-
plementary Table 5), of which 13 genera are unique to the soft
core (prevalence range 0.5–0.7), 11 genera are found only in the
soft and medium cores (prevalence range 0.7–0.9) and 20 genera
are shared by all three cores (universal core genera, with � 0.9
prevalence). Firmicutes gains most of the new core taxa when
relaxing the prevalence threshold (79.17% of the new core taxa),
although most of them show lower levels of abundance, and are
thus more diverse in terms of prevalence. Within this phylum,
the order Clostridialesmonopolizes their universal core genera. Pro-
teobacteria gains two more core taxa, also with lower abundances,
being equally distributed among the three prevalence ranges stud-
ied, with one genus per range. Actinobacteria also gains two new
core taxa, being the only phylum to gain a core genus with higher
abundance levels, namely the Bifidobacterium genus (which fails to
reach the 0.9 threshold in the Madagascar population). This phy-
lum is equally distributed between the intermediate 0.7–0.9 range
and the universal core prevalence range (�0.9 prevalence) with
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two genera per range. Whereas Bacteroidetes, not only presents
members that are generally more prevalent (80% are universal core
taxa, with � 0.9 prevalence), but also tend to show higher levels of
abundance.

In applying this criterion at the species level, a total of 78 bac-
terial and one viral core species are found (Supplementary Fig. 7;
Supplementary Table 6), of which 38 species are unique to the soft
core, 19 species are found only in the soft and medium cores, while
22 species are shared by all three cores (universal core species). We
found that the vast majority of the new core taxa are cultured spe-
cies, whereas in the universal core, most genera were represented
by uncultured ones. Furthermore, the genus Bacteroides is of inter-
est, as we see that although it is one of the most prevalent genera,
many of its underlying species are found only in the less prevalent
cores. This could indicate that different species of this genus may
tend to work together in unison. Indeed, authors have reported
the existence of conserved associations between Bacteroides spe-
cies in healthy human populations, which are designated as a
‘hub’ and ‘bottleneck’ species in association networks [18].

3.5. Abundant universal core taxa are related to crucial roles and
ecological adaptation

Four abundance clusters are found when examining average
relative abundances at the genus level for the universal core taxa
(Fig. 4A). Two abundance clusters, Bacteroides and Prevotella, (clus-
ters 3 and 4), result in dominant bacterial signatures for urban and
rural groups, respectively. Bacteroides maintains a complex and
generally beneficial relationship with the host when retained in
the gut [78]. Carbohydrate fermentation by Bacteroides and other
intestinal bacteria produces a pool of volatile fatty acids, which
are reabsorbed through the large intestine and utilized by the host
as an energy source, providing a significant proportion of the host’s
daily energy requirement [79]. However, the role of members of
the Prevotella genus within the intestinal microbiota and their
effects on the host is not fully understood. High prevalence and rel-
ative abundance of Prevotella is found in non-westerners who con-
sume a plant-rich diet [80,81]. In contrast, other studies have
associated Prevotella spp. with autoimmune diseases, insulin resis-
tance and diabetes, as well as gut inflammation [82,83].

We also find another cluster of bacteria that are generally quite
abundant in all studied groups (cluster 2), consisting of Faecalibac-
terium, Ruminococcus, and Blautia. Bacteria of the genus Faecalibac-
terium, abundant butyric acid-producing bacteria colonizing the
human gut, display anti-inflammatory effects and may be used as
potential probiotics for treatment of gut inflammation [84,85].
Ruminococcus members, breakdown cellulose (with the formation
of methane) and accumulate a reserve iodophilic polymer of glu-
cose in the cytoplasm [86]. Blautia is widely distributed in mam-
malian feces and intestines. As a dominant genus in the
intestinal microbiota, Blautia, has a significant correlation with
host physiological dysfunctions, such as obesity, diabetes, cancer,
and various inflammatory and metabolic diseases due to its
antibacterial activity against specific microorganisms [87,88]. Sev-
eral recent reports have indicated that the composition of and
changes in the Blautia population in the intestine are related to fac-
tors such as host age, geography, diet, genotype, health, disease
state, and other physiological states [89–91]. Meanwhile, the rest
of the universal genera are grouped within the last cluster formed
by less abundant taxa (cluster 1). On examining the abundances of
individuals for the members of the three main clusters (Supple-
mentary Fig. 9A), we can see that, in general, these taxa maintain
high levels of abundance for most individuals, except Prevotella,
which is less abundant in urban groups in some cases, which
may be related to diet. Clostridium and Roseburia also show stable
and relatively abundant levels. Clostridium species ferment a vari-
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ety of nutrients, like carbohydrate, protein, organic acid and other
organics, to produce acetic acid, propionic acid, butyric acid, and
some solvents, such as acetone and butanol. In animal and human
intestines, Clostridium species mostly utilize indigestible polysac-
charide and most of the metabolites they produced afford many
benefits to gut health [56]. Roseburia spp. likely play a major role
in maintaining gut health and immune defense, such as regulatory
T-cell homeostasis, primarily through the production of butyrate.
The concomitant decrease in the well-known butyrate-producing
bacterial genus Roseburia in many intestinal disorders suggests
the potential use of these bacteria as indicators of intestinal health
[92].

At the species level, three abundance clusters are found
(Fig. 4B). A major abundance cluster (cluster 3), uncultured Prevo-
tella sp., proves to be a dominant bacterial signature of rural
groups. Again, we find a cluster formed by bacteria that are gener-
ally abundant in all studied groups (cluster 2), with representatives
of Faecalibacterium, Clostridium, and Ruminococcus, among others.
Finally, we encounter the last cluster containing the remaining less
abundant taxa (cluster 1), with representatives of Blautia,
427
Bacteroides, and Roseburia, among others. Examining the abun-
dances across individuals (Supplementary Fig. 9B), Faecalibac-
terium prausnitzii, uncultured Faecalibacterium sp. and uncultured
Clostridium sp. present the most stable and abundant levels. These
genera and species are Firmicutes and Bacteroidetes, which are
known dominant phyla in the human gut microbiota of healthy
individuals [93–95].

Due to their high abundance, these taxa are of special interest
since research suggests that abundant organisms could act as
‘‘ecosystem engineers” with the capacity to directly alter their
environment [96]. Furthermore, recent findings suggest that abun-
dance is a strong determinant for engaging Horizontal Gene Trans-
fer (HGT) [97], which could provide an ecological adaptation
advantage, since transferred gene functions of the microbiome
reflect the host’s lifestyle and are driven by niche adaptation
[97–99]. For instance, an interesting case is the transfer of por-
phyranases and agarases from the marine bacterium Zobellia galac-
tanivorans to the gut bacterium Bacteroides plebeius in the Japanese
population, which has been associated with their dietary habits,
such as high seaweed consumption [100]. As HGT is a highly
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frequent process in the human gut, even within single individuals
[97], and following the logic that ‘‘everything is everywhere, but
the environment selects” [99,101], we hypothesize that certain
ancestral organisms which have co-evolved with the human host
may present a selective advantage in this ecological adaptation
process. This would result from their shared evolutionary history
and the associated host’s domestication process.

3.6. Universal core taxa are highly prevalent despite lifestyle and
geographic differences

Three pattern clusters are found when examining z-scored
average relative abundances at the genus level for the universal
core taxa (Fig. 5A). The first cluster presents genera, including Bac-
teroides, Parabacteroides, and Enterocloster, that are generally more
abundant in urban populations. Other country-specific patterns are
found, such as Blautia and Dorea in Japan. The second cluster com-
prises genera that are typically more abundant in China (like Rose-
buria and Eubacterium) or rural populations (Prevotella is the only
one shared by the three rural groups). In addition, the third cluster
is formed by genera enriched in the periurban samples, like Faecal-
ibacterium, Oscillibacter, and Collinsella, among others.

At the species level, three differential pattern clusters are found
(Fig. 5B). In the first cluster, we find more abundant species in
urban populations, mainly in Japan and, again, we find species pat-
terns shared by the three urban populations, such as [Eubacterium]
rectale and Coprococcus comes. The second cluster is formed by spe-
cies mainly enriched in rural groups, like uncultured Prevotella sp.
and uncultured Roseburia sp. Finally, the third cluster is enriched
in periurban samples, with species such as uncultured Collinsella
sp. and uncultured Faecalibacterium sp., among others. Interestingly,
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the urban cluster comprises cultured species, while the rural and
periurban clusters are formed by uncultured species, which could
be related to the under-representation of non-western micro-
biomes in conventional reference databases [20–22]. In general,
the aforementioned patterns are maintained across individuals
(Supplementary Fig. 10), although they are not completely homo-
geneous in all cases.

Typically, the differences between urban and rural groups have
been explained by their underlying dietary habits associated with
these lifestyles. As we have already commented, Prevotella has
been associated with rural non-western individuals that present
high-fiber and high-carbohydrate diets enriched in plant foods,
likely due to their ability to process complex polysaccharides
[34,102]. By contrast, Bacteroides has been related to western
urban individuals with high-protein and high-fat diets, which is
probably due to their bile-tolerant abilities, which are common
in gut environments of consumers of animal-based foods
[102,103]. The same could be said for the related Parabacteroides
genus, showing bile-tolerant capabilities [57]. Japan is a special
case that shows the highest average lifespan, very low body mass
index and a particular microbial uniqueness, with the highest
abundance of the genera Blautia [33]. Interestingly, the use of cer-
tain traditional Japanese food preparations, acting as prebiotics,
has been related to an increase in certain Blautia species [104].
Finally, the lower levels of Prevotella and Bacteroides in the periur-
ban group could be indicative of the transition from a rural area to
an industrialized one.

Global differences between samples were examined by means
of a PCA at the genus level (Fig. 6). The samples are clearly sepa-
rated into three groups for the lifestyle variable, each reflecting a
different lifestyle. The first component separates the urban and
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rural samples, whereas the second component separates the peri-
urban samples from the other two groups, with the former being
in an intermediate position. These two components manage to
explain 65% of the variability between samples. Further analysis
using the PcoA and NMDS methods provided similar ordination
results (Supplementary Fig. 11). In general, urban populations
group together, and rural populations do likewise. We also see that
Peru is divided in two, as it has both rural and periurban samples.
Altogether, these results reflect differences in community configu-
rations that seem to be associated mainly with lifestyle and the
subsequent degree of westernization. Although host factors such
as genetics, immune regulation, or age play a role in shaping the
gut microbiota [105–107], environmental factors such as geogra-
phy, lifestyle, or diet appear to play a dominant role [108–110].
Moreover, even considering populations that share the same geo-
graphical origin, like the Urban Versus Rural Settings in Northern
Ecuador of Soto-Girn et al. [111], lifestyle and westernization seem
to be the main driver of differences. Furthermore, other findings
suggest that the microbial composition of great apes and humans
would be more closely related to their host’s lifestyle than to their
geography [112].

The main taxa drivers of the differences of these two first com-
ponents were investigated (Fig. 6C). In the first component, the
main drivers of the differences between urban and rural samples
are Bacteroides and Prevotella, respectively. Differences in the
human gut composition, especially the Prevotella-Bacteroides
exchange between rural and urban populations, have often been
explained by their unique dietary traits [20,108,109]. Furthermore,
these genera have been used to define different community com-
position types termed enterotypes, which appear to be useful to
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some degree in attempting to stratify human populations
[93,113]], although with some controversy [114,115]. On the other
hand, for the second component, the main driver towards the peri-
urban samples is Bifidobacterium, and to a lesser degree Collinsella
and Faecalibacterium. As stated in the original study from which
these samples were taken, diarrheal episodes are frequent in this
particular community due to the high prevalence of various infec-
tious agents [32]. The continued presence of pathogenic agents
may explain the selection of protective microorganisms. A broad
range of beneficial effects on human health has been associated
with Bifidobacterium and Faecalibacterium, promoting the use of
strains of these genera as probiotics [116–119]. Probiotics are cur-
rently considered to exert anti-diarrheal action through different
mechanisms such as homeostasis regulation of the microbiota,
immune system activation, manipulation of the intestinal defense
barrier, and the production of certain metabolites [120]. For
instance, certain Bifidobacterium strains can inhibit growth and
adhesion to epithelial cells of some enteropathogens [121]. Like-
wise, Faecalibacterium is a good example of inhibition by metabo-
lites considering that Faecalibacterium prausnitzii has been
considered a major producer of butyrate in the gut, a substance
involved in regulating the immune system [119]. By contrast, the
presence of Collinsella could have a dietary basis, since it has been
associated with low fiber intake [122,123].

As we can see, even within this core of universal taxa there are
differences that are clearly influenced by factors such as geogra-
phy, lifestyle and their underlying levels of westernization. Their
abundances shift according to the different roles they may play
depending on these factors, and some of them are even the main
drivers of these differences. However, there is no substitution in
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terms of ‘‘replacement”, but rather ‘‘displacement”, since they do
not disappear completely. Thus, they are highly prevalent in the
different studied scenarios, even in spite of apparent differences,
which could indicate that these core taxa go beyond ecological fac-
tors, playing a vital role in the human gut.
4. Conclusions

Our enrichment strategy improves, and almost double, classifi-
cation capacity compared to the original NT database. This strategy
provides greater similarity of classification levels between the dif-
ferent studied datasets, which compensates for the infra-
classification of non-western microbiomes in conventional data-
bases. Furthermore, a MAG filtering strategy was tested and dis-
cussed, based on the existence of incomplete-taxonomy MAGs,
that could work as catch-all taxa depending on the taxonomic level
of interest, illustrating that while these types of genomes are use-
ful, they should be used with caution.

At the same time, we have sought to prove the existence of a
phylogenetic core of highly prevalent common taxa in the healthy
human gut microbiota worldwide, which we achieved despite clear
ecological differences. Giving a leading role to this type of analysis,
which is often relegated to a secondary place, and studying it at a
greater level of detail thanks to the use of WGS sequence data. Fur-
thermore, the universality of these results was pursued by covering
different gradients of westernization, trying to maintain a balanced
design between urban and rural datasets, in order to avoid possible
bias towards westernized populations. Likewise, the ancestral nat-
ure, characteristics, crucial roles and ecological adaptation capaci-
ties of these taxa were discussed. The study aims to provide
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candidates for a hypothetical phylogenetic core of mutualistic
microorganisms that has co-evolved with the human species.

Taken together, the results reported here attempt to contribute
to the still diffuse knowledge about the use of genome databases in
metagenomics and apply it to a problem of great interest, as is the
study of the core human gut microbiota.
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