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Tumor Necrosis Factor-α-Induced Lipolysis via Protection 
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Background: Tumor necrosis factor (TNF)-α and AMP-activated protein kinase (AMPK) are known to stimulate and repress li-
polysis in adipocytes, respectively; however, the mechanisms regulating these processes have not been completely elucidated.
Methods: The key factors and mechanism of action of TNF-α and AMPK in lipolysis were investigated by evaluating perilipin 
expression and activity of protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 α (eIF2α) 
by Western blot and an immunofluorescence assay in 24-hour TNF-α-treated 3T3-L1 adipocytes with artificial manipulation of 
AMPK activation.
Results: Enhancement of AMPK activity by the addition of activator minoimidazole carboxamide ribonucleotide (AICAR) sup-
pressed TNF-α-induced lipolysis, whereas the addition of compound C, an inhibitor of AMPK phosphorylation, enhanced lipoly-
sis. Perilipin, a lipid droplet-associated protein, was decreased by TNF-α and recovered following treatment with AICAR, show-
ing a correlation with the antilipolytic effect of AICAR. Significant activation of PERK/eIF2α, a component of the unfolded pro-
tein response signaling pathway, was observed in TNF-α or vesicle-treated 3T3-L1 adipocytes. The antilipolytic effect and recov-
ery of perilipin expression by AICAR in TNF-α-treated 3T3-L1 adipocytes were significantly diminished by treatment with 
2-aminopurine, a specific inhibitor of eIF2α.
Conclusion: These data indicated that AICAR-induced AMPK activation attenuates TNF-α-induced lipolysis via preservation of 
perilipin in 3T3-L1 adipocytes. In addition, PERK/ eIF2α activity is a novel mechanism of the anti-lipolytic effect of AICAR.
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INTRODUCTION

Tumor necrosis factor (TNF)-α is a cytokine with a well-estab-
lished role in immunomodulatory and inflammatory responses, 

and has been implicated in the development of obesity [1,2]. El-
evated TNF-α production in adipose tissues and adipocytes from 
obese subjects suggests that TNF-α may be linked to diabetes 
and insulin resistance [3-5]. Several laboratories have demon-
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strated that TNF-α increases lipolysis and release of free fatty ac-
ids (FFAs) from adipocytes [6-8]. In addition, it has been shown 
that the levels of TNF-α and FFAs are positively correlated in 
adipose tissues [9]. However, the mechanism of TNF-α function 
in obese subjects and lipolysis is not completely understood.
  AMP-activated protein kinase (AMPK) is a widely-expressed 
serine/threonine kinase that is considered to act as an intracel-
lular energy sensor. Because AMPK activation may have ben-
eficial metabolic consequences in diabetic patients, AMPK 
has emerged as a potential target for the treatment of obesity 
and type 2 diabetes [10]. It has been demonstrated that two 
classes of antidiabetic drugs (metformin and thiazolidinedio-
nes) act at least in part through activation of AMPK in liver 
and muscle [11,12]. Whereas the function of AMPK in liver 
and muscle has been well-illustrated, the role of AMPK in adi-
pose tissue remains poorly documented. An antilipolytic effect 
of the AMPK activator minoimidazole carboxamide ribonu-
cleotide (AICAR) has been demonstrated in a lipolysis model 
treated with cyclic AMP (cAMP) inducers [13,14]. However, 
although the cAMP level is increased in TNF-α-treated adipo-
cytes, the main mechanism of TNF-α-induced lipolysis has re-
mained unknown.
  In adipocytes, induction of stress can increase the expression 
and secretion of proinflammatory cytokines [15]. Overproduc-
tion and chronic exposure to proinflammatory cytokines such 
as TNF-α and interleukin-6 can induce lipolysis and apoptosis 
in adipocytes as a result of endoplasmic reticulum (ER) stress 
and generation of reactive oxygen species [16]. A variety of en-
vironmental insults leads to the phosphorylation of a family of 
proteins associated with the unfolded protein response (UPR), 
including protein kinase RNA-like endoplasmic reticulum ki-
nase (PERK) and eukaryotic initiation factor 2 α (eIF2α), to al-
leviate cellular injury, or alternatively induce apoptosis. Phos-
phorylation of eIF2α regulates global translation, allowing cells 
to conserve resources and to initiate the reconfiguration of gene 
expression to effectively manage stress conditions [17].
  The aim of this study was to determine the mechanism of 
TNF-α-induced lipolysis and the antilipolytic effect of AMPK in 
fully differentiated 3T3-L1 adipocytes. We identified the key fac-
tor in TNF-α-induced lipolysis, and also investigated the effect of 
TNF-α and AMPK on factors relating to ER stress and the UPR.

METHODS

Materials
TNF-α and 2-aminopurine (2-AP) were purchased from Sigma 

Chemical (St. Louis, MO, USA). AICAR and compound C 
(CC) were purchased from Calbiochem (San Diego, CA, 
USA). Antibodies against AMPK, phosphorylated-AMPK, 
β-actin, perilipin, hormone sensitive lipase (HSL), eIF2α, 
phosphosphorylated-eIF2α, PERK, and phosphorylated-PERK 
were purchased from Cell Signaling (Beverly, MA, USA).

Cell cultures
3T3-L1 fibroblasts were cultured in high-glucose Dulbecco’s 
modified Eagle medium (DMEM) supplemented with 10% fetal 
calf serum, 50 µg/mL of penicillin, and 50 µg/mL of streptomy-
cin. After the fibroblasts reached quiescence, adipocyte differ-
entiation was induced by adding methylisobutylxanthine (100 
µM), dexamethasone (0.25 µM), and insulin (1 µg/mL) for 2 
days. Cells were cultured in high-glucose DMEM supplemented 
with 10% calf serum and insulin for an additional 3 days, then 
maintained in high-glucose DMEM only supplemented with 
10% fetal bovine serum. 3T3-L1 adipocytes were used for ex-
periments 8 to 10 days after differentiation and were treated as 
described below for mature adipocytes.

Lipolysis assays
Lipolysis was stimulated by incubation with TNF-α (10 µg/mL) 
for 24 hours in the presence or absence of AICAR (1 µM) or 
CC (20 µM), an AMPK activator and inhibitor, respectively. 
Lipolysis was assessed from the release of glycerol in the cul-
ture medium, as previously described [18] using free glycerol 
reagent (Sigma, St. Louis, MO, USA). Lipolysis of adipocytes 
treated with 2-AP (5 mM), a specific inhibitor of eIF2α kinase, 
was also assessed to evaluate the relationship between the 
PERK/eIF2α pathway and lipolysis.

Western blot analysis
Cultured cells were scraped and lysed on ice in radioimmuno-
precipitation assay buffer (Santa Cruz Biochemistry, Santa 
Cruz, CA, USA). After lysis for 30 minutes, protein was ex-
tracted by centrifugation at 13,000 rpm for 20 minutes at 4°C. 
The samples containing 30 µg of protein were separated on 4% 
to 12% bis-Tris Nupage gels (Invitrogen, Carlsbad, CA, USA), 
then transferred to polyvinylidene difluoride (PVDF) mem-
branes. The PVDF membranes were incubated overnight at 4°C 
with primary antibodies against molecules of interest. After an 
additional incubation for 1 hour at room temperature, membranes 
were incubated with horseradish peroxidase-conjugated sec-
ondary antibodies, and visualized using enhanced chemilumi-
nescence Western blotting detection reagents.
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Immunofluorescence assay
For determination of perilipin protein, 3T3-L1 adipocytes were 
cultured on cover glass-bottomed dishes and incubated with re-
agents, as described above. After treatment, cells were fixed 
with 4% paraformaldehyde for 5 minutes at room temperature, 
washed, and incubated with polyclonal antibodies against per-
ilipin overnight. For fluorescence detection, fluorescein iso
thiocyanate-conjugated immunoglobulin G was used after in-
cubation with primary antibodies. Nuclei were counterstained 
with DAPI (Invitrogen).

Statistical analysis
The data are presented as the mean±SD. Significance was as-
sessed by Student two sample t tests. A P value of less than 
0.05 was considered significant.

RESULTS

AICAR inhibits TNF-α-induced lipolysis in 3T3-L1 
adipocytes
To evaluate the role of AMPK in the regulation of lipolysis, we 
first confirmed spontaneous phosphorylation of AMPK in adi-
pocytes which were exposed to TNF-α for 24 hours. Phosphory-
lation of the α-subunit of AMPK at the critical activating threo-
nine residue, Thr-172, was evaluated by immunoreactivity with 
a specific antibody for the phosphorylated AMPK protein (Fig. 
1A). The phosphorylation of AMPK was controlled by pre- and 
co-treatment with chemical reagents, showing a remarkable in-
crease and decrease by AICAR and CC, respectively. In fully-
differentiated 3T3-L1 adipocytes, treatment with TNF-α and 
manipulation of AMPK activity resulted in an alteration of li-
polysis, as measured by the amount of released glycerol. As 
shown in Fig. 1B, lipolysis was significantly elevated to ap-
proximately 1.8-fold in cells cultured in DMEM containing 10 
ng/mL of TNF-α, and accelerated 2.3-fold by blocking of 
AMPK activity. Concordantly, TNF-α-induced lipolysis was 
abrogated upon activation of AMPK by AICAR treatment. 

AMPK alleviates TNF-α induced diminution of perilipin
Perilipin, which protects lipids on the surface of lipid droplets, 
is a key factor in the process of lipolysis by lipolytic enzymes. 
The amount of perilipin protein was decreased in TNF-α-
treated adipocytes, and was further diminished by treatment 
with CC, while perilipin protein was restored in adipocytes in-
cubated with TNF-α and AICAR (Fig. 2A, B). In contrast, the 
amount of HSL was unchanged in TNF-α and/or AMPK-regu-

lated adipocytes. We also evaluated the amount of perilipin 
protein using an immunofluorescence assay (Fig. 2C). The in-
tensity of green fluorescence indicating perilipin protein on 
the surface of lipid droplets decreased upon TNF-α and/or CC 
treatment. In adipocytes incubated with AICAR and TNF-α; 
however, green fluorescence was remarkably increased in 
amount and intensity, although it was weaker than the level of 
intensity in control adipocytes.

Fig. 1. Chronic incubation with tumor necrosis factor (TNF)-α 
and AMP-activated protein kinase (AMPK) activation regulates 
lipolysis in cultured 3T3-L1 adipocytes. Adipocytes were incu-
bated with or without TNF-α (10 ng/mL) for 24 hours in the pres-
ence or absence of activator minoimidazole carboxamide ribonu-
cleotide (AICAR; 1 mM) or compound C (CC; 20 µM). (A) Total 
and phosphorylated AMPK protein levels were examined by 
Western blot assay. (B) Lipolysis was quantified by determination 
of glycerol release into the media. Aliquots of the culture medium 
were collected at 24 hours, and the amount of released glycerol 
was measured. The results represent the mean±SE from at least 
three independent batches of 3T3-L1 adipocytes. The released 
glycerol level in control adipocytes was designated as 100%. 
aP<0.001 compared with the control group; bP<0.01 compared 
with the TNF-α group.
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AMPK stimulates phosphorylation of PERK/eIF2α in 
TNF-α-treated adipocytes
There is increasing evidence showing that UPR signaling, in-
cluding PERK and eIF2α, is linked to adipocyte dysfunction 
[16,19,20]. Although PERK/eIF2α was not affected by TNF-α 
treatment in 3T3-L1 adipocytes, stimulation of AMPK with 
AICAR treatment significantly increased the activation of 
PERK/eIF2α in 3T3-L1 adipocytes, with or without TNF-α 
treatment (Fig. 3).
 

Antilipolytic effect of AMPK is dependent on UPR 
Next we investigated the involvement of the PERK/eIF2α 
pathway on the antilipolytic effect of AICAR, as described by 
perilipin protein and the amount of released glycerol. To this 
end, we used a concentration of 5 mM 2-AP, which inhibits 
eIF2α kinase, to repress AICAR-induced PERK/eIF2α activa-
tion. Restoration of perilipin protein by AICAR was complete-
ly abolished by 2-AP (Fig. 4A, B). Supplementation of adipo-
cytes with 2-AP significantly overcame the antilipolytic effect 
of AICAR, describing a significant increase in lipolysis.
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Fig. 2. AMP-activated protein kinase (AMPK) attenuates the tumor necrosis factor (TNF)-α-induced decrease in perilipin. 3T3-L1 adi-
pocytes were incubated with TNF-α (10 ng/mL) for 24 hours in the presence or absence of activator minoimidazole carboxamide ribonu-
cleotide (AICAR; 1 mM) or compound C (CC; 20 µM). (A) Perilipin and hormone sensitive lipase (HSL) protein levels were examined 
by Western blot assay. (B) Quantification of blot shown in (A). (C) At the end of the incubation, cells were fixed, permeabilized, and then 
incubated with a specific antibody against perilipin (green fluorescence). Nuclei were visualized by DAPI staining (blue fluorescence). 
Bars=10 µm. aP<0.001 compared with control group; bP<0.01 compared with TNF-α group.
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DISCUSSION

AMPK regulates cellular metabolism, as well as responses to a 
variety of signals not directly related to metabolism, such as 
ischemia [21], hypoxia [22,23], and oxidative stress [24]. In 
adipocytes it has been reported that AMPK is involved in tri-
glyceride breakdown [25], with most reports indicating that 
AMPK antagonizes cAMP-mediated lipolysis [14,26]. Recent-
ly, it has also been reported that a key factor in the antilipolytic 
effect of AMPK is HSL in cAMP-dependent lipolysis in ma-
ture adipocytes [18]. However, because TNF-α-induced lipoly-
sis is mediated by an intracellular pathway distinct from 
cAMP-dependent lipolysis, it is difficult to fully explain the 
mechanism of antilipolysis.
  Here we demonstrated an increase in phosphorylation of 
AMPK by TNF-α in adipocytes. We also showed that addi-
tional enhancement of AMPK activity by artificial manipula-
tion repressed TNF-α-induced lipolysis (Fig. 1). These find-
ings imply that an increase in AMPK activity in TNF-α-treated 
adipocytes is an antagonistic response to resist the lipolytic ef-
fect of TNF-α. TNF-α can stimulate lipolysis by at least three 
separate mechanisms in adipocytes: inhibiting insulin receptor 
signaling, thereby counteracting the antilipolytic effect of the 
hormone; inhibiting signaling through the Gi-protein-coupled 
adenosine receptor to counteract the antilipolytic effect of ade-
nosine; and stimulation of basal (nonhormonal) lipolysis 
through a decrease in the lipid-binding protein, perilipin [27]. 
In the present study, we found quantitative and morphologic 

alteration of perilipin by TNF-α and AMPK. In addition, lipol-
ysis was directly affected by fluctuation of perilipin expres-
sion (Fig. 2). We concluded that perilipin is an essential factor 
in TNF-α-induced lipolysis, and that AMPK represses lipoly-
sis via preservation of perilipin.
  In response to a variety of environmental insults such as ac-
cumulation of misfolded proteins, a family of protein kinases, 
including PERK and eIF2α, is phosphorylated to alleviate cel-
lular injury or induce apoptosis. Phosphorylation of PERK/
eIF2α is a pivotal process of the UPR and reduces global trans-
lation, allowing cells to conserve resources and initiate the re-
configuration of gene expression to effectively manage stress 
conditions [17]. We therefore investigated variation in perilipin 
expression under conditions that inhibit eIF2α phosphorylation 
to determine whether PERK/eIF2α signaling induced lipolysis 
in adipocytes. We used 2-AP, a specific inhibitor of PERK/
eIF2α phosphorylation, to damage the UPR mechanism, which 
manages cell stress. In adipocytes treated with TNF-α, activa-
tion of AMPK by AICAR preserved perilipin expression with 
stimulation of eIF2α phosphorylation. However, AICAR-in-
duced preservation of perilipin was greatly diminished in 
2-AP-treated adipocytes, which showed an increase in lipolysis 
(Fig. 4). Blockade of PERK/eIF2α signaling completely abro-
gated protection of perilipin and repression of lipolysis by 
AICAR. These data suggested that PERK/eIF2α plays a central 
role in the antilipolytic effect of AMPK in TNF-α-induced li-
polysis.
  AMPK has been investigated as an essential target molecule 
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Fig. 3. AMP-activated protein kinase (AMPK) stimulates phosphorylation of protein kinase RNA-like endoplasmic reticulum kinase 
(PERK)/eukaryotic initiation factor 2 α (eIF2α). 3T3-L1 adipocytes were incubated with tumor necrosis factor (TNF)-α (10 ng/mL) for 
24 hours in the presence or absence of activator minoimidazole carboxamide ribonucleotide (AICAR; 1 mM). (A) Total and phosphory-
lated form of eIF2α, and PERK protein were detected by Western blot assay. (B) Quantification of blot shown in (A). aP<0.01; and 
bP<0.001 compared with control group; cP<0.01; and dP<0.001 compared with TNF-α group.
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in a number of organs and cells, including pancreatic β-cells, 
muscle, liver, and brain, to cure diabetes and obesity [28]. TNF-α 
is one of the etiologic factors in a variety of diseases, and it is 
increased in obese individuals. In this study, we demonstrated 
an antilipolytic effect of AMPK in TNF-α-induced adipocytes 
through regulation of PERK/eIF2 signaling. The cytoprotec-
tive effect of AMPK against TNF-α could be of practical use 
to treat diabetes and obesity, because the effect is expected to 
also exist in other organs and cells.
  Based on these results, we suggest that AMPK represses 
TNF-α-induced lipolysis via protection of perilipin. It remains 
to be seen whether pharmacological manipulation of these 
pathway has the same effect in the therapeutic management of 
lipolysis in vivo.
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